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Abstract

INTRODUCTION: In an era marked by rising energy demand and environmental concerns, integrating smart grid
technologies is a crucial solution for promoting industrial expansion through efficient electricity control.

OBJECTIVES: Here, we examine the revolutionary capabilities of smart grids to enhance economic growth by leveraging
an innovative hybrid optimisation method, Trevally Optimisation (TrevOpt), at its core. The study's main focus is to show
how Turnbridge's new approach can efficiently manage energy distribution and use within industrial ecosystems by
leveraging TrevOpt's computational power, which combines the benefits of evolutionary algorithms and heuristics.
METHODS: The heart of this paper is a discussion of how the use of smart grid technologies can catalyse industrial
development. Operation eff was on another level in this experiment, enabling the optimisation of production parameters
using the TrevOpt model. Integrating real-time analytics into the TrevOpt framework allows proactive management of]
energy resources through dynamic tuning, thereby reducing waste and enhancing system reliability.

RESULTS: This highlights the potential of these technologies to inspire industrial competitiveness, drive investment in
sustainability, and open new areas in energy-intensive industries to spur economic growth. The simulation presented at the
end of the numerical section outlines the concrete benefits of using the TrevOpt method, including a 20% reduction in
energy consumption, a 15% reduction in operational costs, and a 25% increase in overall system reliability.
CONCLUSION: This study therefore provides a solid foundation that enables industries to leverage smart grid
developments as a cornerstone for transforming their businesses while also protecting the environments in which people
live.
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1. Introduction
industrialization and technological advancements [1]. The

The global economy's reshaping hlghly depends on the integration of smart grld teChnOlOgieS offers Signiﬁcant cost

integration of smart grid technologies in this period of rapid savings for both industries and households. It improves
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energy efficiency by delivering real-time information to

maximize energy use, minimize waste, and reduce
consumption in sectors such as smart grids, particularly
when combined with systems such as TrevOpt. It also
lowers operational costs by enhancing load management and
reducing energy waste. This leads to reduced energy costs
and increased efficiency. Smart grids enhance system
reliability through predictive maintenance, reducing
disruptions and downtime. Moreover, they facilitate the
incorporation of renewable energy, reduce dependence on
fossil fuels, and lower long-term costs. Smart grids enhance
the efficiency of energy supply and demand, reducing peak
load requirements and helping businesses and homes cut
energy costs. Typically, a smart grid is considered an
advanced method for dynamically controlling and managing
energy through automation and advanced digital
communication, thereby ensuring efficient generation, stable
distribution networks, and optimized power consumption
patterns [2]. Smart grids can improve power delivery
efficiency and reliability while enabling large-scale
integration of renewable energy sources through real-time
monitoring, control, and coordination of electricity
resources [3]. Smart meters and [oT sensors gather real-time
information on energy consumption and environmental
factors, which they feed into predictive models and an
energy data repository. This information enables automated
control systems to make immediate adjustments to energy
allocation, including demand-response techniques and load
shifting, while also forecasting system failures for
preventive maintenance. Central to the system, the TrevOpt
optimization algorithm employs a hybrid method to enhance
energy allocation, reduce waste, and anticipate future needs.
These elements interact in a perpetual feedback cycle, as
monitoring systems guide optimization methods, control
mechanisms implement changes, and real-time data enables
ongoing adjustments, ensuring overall system effectiveness
and reliability. This shift in thinking has far-reaching
economic consequences and can lead to industrial upgrading

through improved energy management [4]. The smart grid

is fundamentally a dynamic community that involves the
sharing of contemporary technologies such as artificial
intelligence (Al), the internet of things (IoT), and big data
analytics with conventional energy systems [5]. The
combination of AlI, IoT, and big data in smart grids
improves energy distribution and reliability through ongoing
monitoring and management. These technologies enable the
incorporation of renewable energy sources such as solar and
wind, and they also encourage consumer involvement
through Al-generated energy-saving suggestions. Moreover,
Al models help forecast and prevent disruptions, while IoT
devices provide real-time information, enhancing grid
stability. The application of big data and Al optimization
minimizes energy waste, lowers operational expenses, and
promotes sustainability in multiple sectors. As a result of
this association, it is now possible for utilities, companies,
and even individuals to use micro-level data analysis in
operational decision-making [6]. By optimizing energy use
and reducing waste, companies can save significant money
and lower their carbon emissions [7]. In addition,
applications such as electric vehicles (EVs) and distributed
energy resources (DERs) can readily adopt these solutions
to meet the needs of other new, fast-expanding sectors.
Moreover, this creates employment opportunities besides

fostering economic growth and innovation [8].

The smart grid serves as a catalyst for economic
progress by enabling industrial upgrading and building a
responsive, elastic energy system [9]. This will ensure that
businesses operate efficiently, as disruptions constrain
production. Once disruptions are controlled, operational
certainty increases, leading to high performance [10]. In this
case, investments in other sectors are triggered by returns,
and that is why they are stimulated by grid stability and the
mitigation of disruptions [11]. Also, the use of smart grid
technology is fostering a research-friendly environment that
underpins improvements in energy efficiency and
sustainability [12]. The effectiveness of smart networks and
cloud technologies is highlighted by Alavilli, S.K. (2022),

who discussed their role in enhancing real-time data
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management and scalability. In our work, we leverage these
strategies to optimize energy management within smart
grids and improve the integration of renewable energy
sources. This application enhances system reliability,
reduces costs, and fosters industrial growth through data-
driven solutions [13]. Following the adoption of smart grids
by nations and organizations across the globe, there is a high
likelihood that this will lead to stronger economic growth
and greater competitiveness in the international market, as
improved energy management will bring additional benefits.
Smart grids optimize energy distribution, prevent overloads,
and integrate renewable energy sources such as wind and
solar, thereby aiding carbon reduction. By reducing energy
wastage and improving efficiency,

smart grids help

businesses cut costs and increase competitiveness. They also

support industrial upgrading by enabling real-time

adjustments and predictive maintenance, improving
reliability and productivity. Additionally, smart grids
contribute to significant reductions in carbon emissions and

provide a stable energy supply during peak demand.

2. Literature Review

The current literature focuses on two main categories:
smart grids with efficient energy management and economic
growth. A detailed review is provided in the subsections

below.

2.1 Review of Smart Grid in Efficient Energy
Management

According to Wesley, B.J. et al. [14], a smart grid
system that combines a unique Microgrid unit with a
centralised battery management system has been introduced
to provide electricity to regions such as hills, faraway
remote areas, and military bases. An LSTM-based ANN is
used for power generation at different epochs. Furthermore,
an Al-based OS optimises energy management across

various circumstances. To improve voltage quality, a seven-

level aligned multilevel inverter is proposed with an LSTM-
ANN controller that outperforms PI and Fuzzy controllers,
achieving voltage fluctuations of 70V, 180V, and 370V,
respectively. The operationality of the suggested EMS is
verified using a hardware-in-the-loop method with OPAL-
RT modules, which confirm its proper operation.

Hugo, P., et al. [15] investigate the potential of an Al-based
predictive model to improve solar energy system
management by integrating it into the Smart Grid. They
applied Long Short-Term Memory (LSTM) to train Deep
Learning Networks (DELNs) and achieved a significant
increase in short-term solar power forecasting accuracy.
Additionally, they found that it is more useful to consider
nMAE,

nRMSE, and R?>—rather than other models tested in this

selected performance metrics—MAE, RMSE,

study. For evaluating forecast efficiency of each technique
under different meteorological conditions (e.g.: sunny days
with various irradiance levels), we calculate mean absolute
error (MAE), root mean square error (RMSE), normalized
RMSE (nRMSE) and squared correlation coefficient (R?)
between predicted values and observed ones.

A hybrid technique for IoT-based energy
management in smart grids underprice-based demand
response has been proposed by Balasubramanian, C. et al.
[16]. The method, called FHO-RERNN, integrates Fire
Hawk Optimiser with Recalling Enhanced Recurrent Neural
Network. Its objective is to decrease energy consumption,
reduce power bills, and achieve a balance between
electricity costs and user inconvenience by maintaining the
peak-to-average ratio.

According to Khan, Z.A., et al. [17], they published
a paper on the Dual Sequence Predictive Model (DSPM). In
their publication, we read that it was developed based on a
Spatiotemporal CNN (STCNN) architecture to predict
power generation and consumption in smart grid operations.
The predictive model (DSPM) increases forecasting
accuracy by integrating a 1-D filterbank with a spatial

attention mechanism and using common historical weather
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information, leading to better performance statistics than
control algorithms in terms of RMSE values.

In their study, Bhagath Singh Jayaprakasam and R.
Hemnath (2018) optimized microgrid energy management
using cloud-based analytics and predictive modeling.
Building on this, our proposed work integrates similar
techniques into smart grids to enhance energy management
and forecast demand. This approach will reduce costs,
improve sustainability, and stimulate economic growth
through efficient energy distribution [18].

C. A. Ezeigweneme et al. [19] analyze well the
union and influences of intelligent networks in industrial
segment. In their study, smart grids were examined from the
perspective of traditional grids and the role of predictive
maintenance in their evolution. They also uncovered how
these energy management schemes can be improved for
industrial companies, combining high efficiency with

reliability and sustainability, during their 2018-2023

systematic literature review.

2.2 Review of Smart grid and Economic
growth

In [20], Stamopoulos et al. analyse the main
components and indicators of the Smart City Industry (SCI)
in Greece. They build a synthetic sector using an input-
output technique to estimate the repercussions for GDP,
output, employment, capital formation, and GHG emissions
in terms of CO2-eq.

In their study on urban energy management, economic
environmental information

growth, sustainability and

communication technology (ICT) intersections with
renewable energy integration into green buildings [21],
Zhang, M. et al. (2015) presented a novel Polar Bear
Optimization Algorithm (PBOA) for the optimal scheduling
of residential power consumption by considering endusers'
behavioral patterns within residences as well as different
types of loads found within residential areas such as heating
or cooling systems among others to minimize both

electricity expenditure and peak load ratio. It was tested

2 EA

through comparative analyses with Differential Evolution
(DE).

In their paper, Hassan et al. (20) discuss the
complexities of smart grid-integrated renewable distributed
generation (SG-IRDG) focusing on the challenges related to
this technology such as intermittency and variability of
renewables like solar power and wind power that affect
power system security and reliability; calling for
introduction of advanced grid control techniques, use of
energy storage systems, completion of large infrastructure
projects, restructuring of laws as well as financial methods.

A modern power grid integrated with bi-directional
communication networks is how Thakur, A., et al. [23]
describe the smart grid, which is radically transforming
global power systems. An energy delivery network that is
both vast and automated depends on two-way information
and electricity exchange within the advanced grid system
that forms it. Through computational transformations from
generation to transmission to distribution, power
transformers underscore the necessity of modernising global
electricity infrastructure and highlight prospects for the
future evolution of electricity systems.

The usage of smart grids is critical for improving
energy management by leveraging real-time data to improve
energy distribution and efficiency. These electrical networks
enable seamless integration of renewable energy sources,
reducing operating expenses and increasing system
reliability. Smart grids use cutting-edge technologies to
improve industrial efficiency, supporting the economy while
maintaining energy sustainability. Emphasising real-time
optimisation and  forecasting through data-driven
methodologies directly enhances efficiency and performance
in renewable energy systems. Khaleel and his colleagues
[24] argue that smart cities and smart grids work together to
build urban energy systems that are robust, streamlined, and
sustainable in light of the population explosion and
environmental needs. Iris and Lam. They use examples of

cities with smart grids in place, as well as energy-efficient
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measures such as these, which have impacted energy

sustainability and urban resilience [25].

2.3 Research Gaps

it comes to harmonising advanced energy management
systems with existing infrastructure and ensuring they can
interoperate with a wide variety of technologies. Filling
these gaps requires a deeper understanding of how
enables industrial transformation

technology transfer

There are still significant gaps in research on

. . . . ) ) through economic development.
integrating smart grid technologies with economic growth

dynamics. Despite the great strides made in this area, there

3. Proposed Methodology

has been little effort directed towards providing

comprehensive models that would capture fully the

interaction between smart grids and economic development,

3 q q Optimization .
‘ Data Collection }——{ Economy Analysis }—b{ Algorithm }——{ Implementation

especially in emerging economies Sarker E ., et al [26]. This i. l, l,
. . . Si Data Analyti .
technology, which leverages tools such as artificial e oAb Hybrd Trevally Automated Control
IoT Sensors | —»| Machine Learning |—s  COPtmizer | | Systems
intelligence (AI) and big data analytics, enables industries in L L
emerging economies, such as China, India, and Brazil, to [ ey o | [ prediivemones | [ St e

streamline energy use and drive industrial progress. These

countries are adopting smart grid solutions to reduce energy

waste, lower operational costs, and improve reliability,

A F [ PUN—

Srﬁart grid Dapluymant

thereby supporting sustainable economic development.

Key industries such as manufacturing, mining, and

steel production, which require substantial energy resources, ) )
Figure 1: Proposed Architecture of smart grid and
benefit greatly from smart grid technologies. These sectors
o ) energy growth
can now minimize energy consumption by up to 20%,
) ) Figure 1 presents a comprehensive methodology
reduce operational costs by 15%, and increase system ) )
o ) ) ) for smart grid and energy management, encompassing a
reliability by 25%. As a result, the integration of smart grids
process that begins with data collection from smart meters
not only ensures a stable energy supply but also fosters
) ) . and IoT sensors to obtain real-time details on energy use,
industry growth and strengthens economic resilience,
. ] ) . ) production processes, and environmental standards. The
especially in developing economies. One major setback has
) ) o suggested model's use of IoT sensors and smart meters
been the difficulty researchers have had in obtaining
o ) ) ) ] reduces operational costs by enabling real-time energy
empirical data showing how smart grid adoption directly
monitoring, predictive analytics,

These

and optimal resource
affects industrial upgrading in any country. There is also a
allocation. technologies aid in identifying
need for scalable and adaptable smart grid solutions that
) ) ) ) ) inefficiencies, predicting energy demand, and facilitating
address diverse industrial requirements and regional
) ) effective load management. They also enable preventative
contexts (Chakraborty N, et al. [27]). Previous studies tend
maintenance, which lowers downtime and repair costs.
to overlook broader socio-economic factors influencing the
Overall, they increase energy efficiency, decrease waste, and
various industrial sectors and how their intersection with
minimise operational costs. Such information is sent over to
these factors calls for certain measures upon the
) ) ) an energy management system based at the central point for
implementation of smart grids. Pawar P, TarunKumar M
further evaluation. In energy analysis, advanced analytics

[28]. Moreover, it remains an under-explored territory when

2 EA :

and machine learning algorithms are used to identify
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patterns and inefficiencies, building predictive models to
forecast energy demand and optimise supply. Optimisation
algorithms are employed to refine energy-use strategies as
well. Demand response, load shifting and renewable energy
are then integrated. Simulations help assess how various
strategies affect consumption and costs. They are facilitated
by automatic control systems that continuously monitor and
give feedback to achieve behaviorally controlled optimality.
Case studies will show that potential improvements in
efficiency and cost savings, as confirmed by simulations,
can be discussed in terms of their applicability across
different industries. Possible future steps include
incorporating new technologies, such as those just coming to
market and still with limited uptake, as well as enhancing
existing predictive modelling techniques. In addition,
expanding operations would help us reduce our carbon

footprint.

3.1 Data Collection and Analysis Procedures

The study uses a multifaceted data acquisition and
analysis method to ensure the trustworthiness and precision
of the findings. In this case, field measurements and
simulated situations were used to collect the data. It was
obtained from different industrial setups having smart grid
technologies focusing on energy use, operational costs,
system dependability, etc. This information was intended to
adjust and authenticate the Trevally Optimisation (TrevOpt)
a hybrid

optimization method that combines evolutionary algorithms

model. Trevally Optimization (TrevOpt) is
and heuristics. It aims to optimize energy distribution and
consumption in industrial systems, enhancing efficiency by
dynamically adjusting parameters in real-time. Data are
simulated using the TrevOpt framework, which integrates
heuristic methods and evolutionary algorithms to optimize
energy distribution and use in industrial ecosystems. A
comparative approach was used to analyse the collected
data. It compared the performance metrics of the TrevOpt
model with those from real-world data. This model was

evaluated using statistical methods, including regression

2 EA

analysis and hypothesis testing. The performance of the
simulation model was compared with real-world data,
utilising indicators such as energy cost savings, operating
expenses, and system dependability.

It emphasizes the use of real-time monitoring and
dynamic tuning through the TrevOpt framework, which
offers for continuous assessment of energy consumption and
system performance, enabling quick identification of
inefficiencies or failures. By dynamically adjusting energy
distribution based on immediate data, the system helps
prevent overloads and failures. Furthermore, the proactive
maintenance approach, supported by predictive analytics,
helps forecast potential system issues before they occur.
This supports timely interventions, minimizing disruptions.
The integration of simulation models and continuous data
collection from smart meters and IoT sensors also plays a
critical role in detecting failures by replicating real-world
conditions and  enabling continuous  monitoring.
Additionally, the study includes a model validation phase in
which predictions from the TrevOpt model are compared
with actual data, ensuring accuracy and highlighting

discrepancies between theoretical and real-world outcomes.

The simulation system uses smart meters and IoT
sensors to collect real-time data on energy usage,
manufacturing methods, operational costs, and system
reliability. To improve energy usage, this data is processed
by a centralized Energy Management System (EMS) that
includes machine learning algorithms and prediction
models. The Hybrid Trevally Optimizer (TrevOpt), which
combines evolutionary algorithms and heuristic methods, is
the primary optimizing tool for

managing energy

distribution and wuse in corporate ecosystems. Key
assumptions include the adoption of smart grids in power-
intensive companies, the integration of renewable energy
sources such as wind power, and the expectation that energy
management improvements will lower operational costs,

enhance system reliability, and reduce carbon emissions.

Calibration processes ensure model accuracy by adjusting
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parameters with real-world data and validating the model
using statistical approaches such as regression analysis and
hypothesis testing. Sensitivity analysis is also used to assess
the model's robustness under different operational settings,
ensuring flexibility and reliability across a wide range of

workplaces.

3.2 Cost-Benefit Analysis of Smart Grid
Implementation

The economic analysis is done for the clean energy
(i.e wind turbine model). For generating the OBS there is

only one Power’s Suppliers (PS) is used. The cost functions

Cf for the PS are expressed as follows,

¢

_ 2
- umch + Vmch
M
Where R, . indicates the reactive power generation of the

PS,andu,, v, specifies the cost parameters of the PS. Then,

the linear supply function for the accompanying structure

M is modeled as follows,
MS = ¢m + a)mch
2
Here, @, @, the analysis coefficients are described. Then,
minimising the cost is considered under the constraints
derived below.
z,+tw,R_ =P
3)
<R

7 min,m re

<R

7 max,m

“
Where P defined the market-clearing prices and energy

stability, and forecast loads through the marketplace

operators. Suppose the power balance B, constraint is,
BL = kc - .] X P
(5)

2 EA

Where &, is a constant and j = 0 is considered as

a non-negative value, and it is defined as the load price
elasticity. Then, the reactive power generation is expressed

as,

(6)

If the solutions of R, (9) exceed their maximum limits,

R, they are set to the values specified in (7).

3.3 Analysis of Economic growth in terms of
clean energy

The economic analysis incorporating wind power
maximises profit, but uncertainty about a rival's behaviour is
mitigated using the normal probability distribution. This
huddling behaviour is a unique feature observed in some
social animals during foraging. Hence, within the
mathematical model, the primary goal may be to identify a
powerful mover within the swarm. This pricing profile is
accountable for imperial economic growth regions in unique
locations. First, the population (i.e., the parameters of the
bidding strategy) is initialised. The pricing profile around

the huddle is computed as follows:

EA
M =\M - max

0, if ¥>0.5
1, if ¥ <0.5

(7N
mp

(®)
Where EA_, denotes the maximum iteration, ¢
indicates the recent iteration, and ) defines the random

number between [0, 1]. Then the fitness function is
calculated. Here, the multi-objective function is considered:

maximise profit and power, and minimise cost.
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The distance between the analysis of energy usage and the
optimal solution quality is computed after the huddle
boundary technology. The modern-day quality-optimal
solution is the one whose fitness is close to the optimum.
The different emperor penguins will replace their positions
in step with the modern-day quality most optimal solution

that's mathematically described as follows:

Aops =S, (n).Eb (t)— ¢.E, (tj
(€))

Where, , E, defines the optimum solutions, Eep

is the EP's position vectors, S ( )indicates the social

N

forces of EPs, leps is the distances from EPs to the best

solutions, 77and & are two vectors. The two vectors 77and

& are computed as follows,

n=MPx (M, +5, (pg))x B, |-M

mp
(10)
=P,
(an
F, = nﬁi
Zﬁl
=1
(12)
S,(rg)=|E, - E,
(13)

Where M ;np represents the economic profile,
MP describes the movement parameter, S, (pg)deﬁnes
the polygon grid accuracy, and F, denotes the calculation
instead of choosing a random number, ff, denotes the

fitness function of the " population and f#, defines the

fitness function of the total population. The function SS (77)

is calculated as follows,

(14)

Here, erepresent the expression function, ¢, and

Q, represent the control parameters for a better exploration

and exploitation and obtained using Equation (14)

Eeps(t + 1)= Eb(t)_n'ﬂ’eps

(15)
By the help of PF-EPO the OBS is carried out.

3.4 Analysis for Smart Grids for Enhanced
Economy Driven Clean Energy

The Smart Grids strategy is a complex
representation that combines electrical and mechanical
parameters, particularly within the SG component. To
model the SG in the MG, the Heffron-Phillips model has
been chosen and adapted to meet the requirements of a
grid-connected MG. The Heffron-Phillips model
effectively captures the dynamics of microgrids and
smart grids by combining electrical and mechanical
system elements, which are vital to grid-tied microgrids.
It simulates dynamic interactions and incorporates crucial
control systems, including excitation and turbine
governors, that help preserve grid stability. The model's
state equations enable linear analysis, making it suitable
for real-time optimisation and dynamic modifications in
smart grids. Its flexibility in integrating renewable
energy, storage solutions, and demand response makes it
a potent tool for effectively managing the complexities of
smart grid systems. In this study, the initial operating
conditions set

are P,=0.8p.u for active power

andQ ,=0.17 pu for reactive power. This marks the start

of the SG operation. The SG model comprises two
integral components: the excitation system and the

turbine  governor system. These interconnected
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subsystems collectively ensure the efficient operation and
control of the SG. These additions are critical because the
system enables a more accurate representation of SG
dynamics that accounts for control mechanisms. The state
equations at the core of this model capture the intricate
interactions among electrical, mechanical, and control

components within the microgrid.

dw Vi
W Lr T T
dt ZEI( Y

(16)
dw
;;=WJ@—U

(17)
de’ ) ,
%o LR e X X i)
da T, !

(18)
To linearise the Equations (16-18), the system variables

are expressed around an initial operating condition.

i=i gt i,
(19)
VEv Y, (20)

4 pee= Ve %(sin 0 + jcos )
(2D

Z=(R+jX)

(22)
Y=(G+ jB)

(23)

C +jC,=1+2Y
(24)
R,=R-C,*X ,,R=R-C *X
(25)
X, =X+CpxX ,R,=R-C,*X

(26)

2 EA

X=X+C X X =X+CpxX,

27)
Z!=R,*R + X, *X ,
(28)
ig=G*v,+B*v,
29
U pinean =1 a0~ a0
(30)
iL]ner = qu - iLqO
(1)
Zi=(1+ZY) v =v,,
(32)

R -Xx\i, C,-C,\|v, sin o
= -V o
X R )i, c, C, J|v, P\ cos o

(33)

The V' and I’ in the d and g-axis are essential for

electrical parameters in system analysis and represented

(34)

By combining Equations (33-34) and Equation (35):

i, Yyl o v | Ry X, | sino
= e —_
i, Y, |' " Z2|-X,R, | coss

(35)
And Equation (36) is linearized as follows:
Ai Y .| F
=l L e+ |40
ai, Y, 1 F,
(36)
For Equation (21):
F, Ve -R,X, coso , Je’
F,| Z:| X, R, || siné, 1
(37
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The Heffron-Phillips strategy signals are

linked via constant(K, K,) , resulting in the

representation of torque and real power as

follows:
IT,=P=iv,+iy,
(38)
AT, =K 46 +K ,de,

(39)
K N[OV [FF, | XX )i,
K, lig] [YaY, e;0+(Xq_X;i)id0

(40)

The expression for the linearization of the internal

voltage in Equations (39-40) is:

(14T 4 )A4 = AE ,—(X ;- X )M,

41
By means of quiati())n (42), express the following:
(1+sT )44, =K ,[44 ,—K , 4]
(42)
K,=l/[1+(X,-X )Y,
43)
K=X,-X,)F,
(44)

The state model representing the reactive power output is

described in Equations (43-44):

Q=i*v —i*v,

(45)
A=K 40+K ; Je,

(46)
Ks]_[0],[F« F e —2-X iy
K| liol | Y. Y, || -2x,

(47)

The proposed system model is described using Equations
(43-47). Consequently, the real and reactive power as
well as their variations at the PCC are expressed as

detailed in Equations (48-49):

Ppcc = vpccd Lined + vpccq ZLineq
(48)
Q pcc: vpccq lLined + vpccd ! Lineq
(49)
Avpccd Lined0 v peed0 Lmed + AV peeq lL[ned + vpccq() Al Lineq
(50)
Qpcc = Avpccq i Linedl) pcch 4i Lined Avpccd Lineq0 vpccd(? 4i Lineq
(51

3.5 Optimization using Hybrid trevally
optimizer

After extracting feature selection process takes
place. Identifying and retaining the most relevant attributes
within the traffic and weather data. Simultaneously,
irrelevant or redundant attributes are eliminated. The HGTO
facilitates this process. HGTO stands for Hybrid Giant
Trevally Optimization. It is a computational optimization
algorithm inspired by the hunting strategies of giant
trevallies, integrating exploration, learning, and reflection
phases to solve complex energy management problems.

Evolutionary algorithms explore large solution
spaces using strategies such as mutation, crossover, and
selection, ensuring global optimisation and avoiding local
optima. Heuristic methods, in turn, refine these solutions by
guiding the search process toward promising areas based on
domain-specific knowledge. This hybridization allows
TrevOpt to balance broad exploration with precise local
optimization, optimizing energy distribution, load balancing,
and resource allocation. Additionally, TrevOpt adapts in
real-time, dynamically adjusting parameters to respond to
system changes and fluctuations in energy demand, ensuring
both short-term adaptability and long-term optimization. It
combines the strengths

of giant trevally optimizer

exploration and growth optimizer learning and reflection.
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The sequential and interweaved hybridization strategies
allow the algorithm to exploit the best of both worlds. The
giant trevally employs various hunting strategies, such as
patterned foraging movements, selecting optimal hunting
regions and jumping out of the water to catch food. The
HGTO technique repeats these approaches through a three-
step process: exploration, learning and reflection.
Exploration Phase:

In this stage, the HGTO method replicates the
extensive journeys undertaken by giant trevallies to find
food. It accomplishes this by employing a mathematical
method rooted in Levy flights, which are a form of random
walk. Levy Flights is a type of random walk used in
algorithms to model the movement patterns of certain
animals or particles. In optimization, Levy flights allow for
long jumps and small steps in the search space, which helps
the algorithm avoid local minima and explore the solution
space more effectively. It is often used in nature-inspired
algorithms like the Hybrid Trevally Optimizer. The Hybrid
Trevally Optimizer (HTO) is an optimization algorithm
inspired by the hunting behavior of the Giant Trevally fish.
It combines heuristic and evolutionary algorithms,
leveraging exploration, learning, and reflection to efficiently
solve complex problems such as energy management in
smart grids. This phase advances the technique's ability to
explore a wide range of possibilities and safeguards against
becoming trapped in local optima. Equation (52) employed

in this phase is illustrated as follows:
Y(s+1)=B, x P+ (Max—Min)x P+ Minx Levy
(52)
where Y (s +1) signifies the position vector of giant trevally

in the next iteration; s denotes iterations; B , represents the

best location attained; P is a randomly generated number
within the range 0 to 1, and Levy represents the Levy flight.

Learning phase:
During this stage, the algorithm identifies the best hunting

area by considering the presence of food within the search

space. Equation (38) mathematically mirrors this decision-

making process.

Y(s+1)=B, xXxP+Mean,,, —Yj(s)x P

inf o
(53)
where, X parameter that governs changes in position Yj(s)

signifies the current location and Pis a random integer.

Mean.

inf o Implies the actual use of all data attained from
previous positions by these giant trevallies. HGTO create a
dynamic, adaptable feature selection process that optimises
selection from traffic and weather data, accounting for the
evolving nature of the data and problem requirements.
Reflection phase:
In the last phase of the algorithm, it simulates the trevally's
attack on its prey, accounting for the disruption of trevally
vision caused by light refraction. To replicate this
performance, the algorithm calculates visual distortion using
Snell's equation and carries out the trevally's attack using
Equation (39).

Y(s+1)=K+N+H

(54)

where, K denoted as launch speed, N denoted as visual
distortion, and H denoted as leaping slope function. This
transition from exploration to exploitation allows the
algorithm to move effectively between phases.

The exploration phase employs Levy flights to
investigate a broad variety of solutions, ensuring the process
does not become trapped in inferior results. The learning
stage enhances this search by focusing on regions more
likely to yield optimal outcomes, thereby increasing
efficiency and reducing costs. The reflection stage refines
the solution by implementing final modifications to improve
energy distribution. Collectively, these phases form a
flexible, iterative that ongoing

process ensures

improvement, optimising energy efficiency, cost-

effectiveness, and sustainability.
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4. Results and Discussions

The proposed work is implemented in the python
framework due to its extensive rich libraries. Analysis

of work is detailed below.

4.1 Analysis of Energy Consumption vs. Time

The depiction of energy consumption in kilowatt-
hours (kWh) over a year is shown in Fig. 2, with the before-
and after-intervention periods. Energy consumption varied
from 500 to 550 kWh before implementation, peaked around
the middle of the year, then tapered off to almost 0 at the
end of the year.

Energy Consumption vs. Time
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Figure 2: Energy consumption Vs Time

Following completion, there has always been lower energy
consumption, starting at about 400 kWh (though fluctuating
within a narrow range). This reveals that throughout the
whole year, the intervention effectively minimized and
standardized energy consumption thus showing that energy

efficiency is better.

4.2 Analysis of Cost Savings vs. Time
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Cost Savings vs, Time
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Figure 3: Cost Savings Vs Time

Figure 3 presents incremental cost savings over 22 months
after their achievement, in thousands of dollars. At the
beginning of the first month, the savings amount to about
$20 000 as indicated by the blue colour. Consequently, there
is a consistent increase in these figures with time, such that
at the 22nd month they total to about $120 000. This upward
trend suggests that the execution has consistently reduced
expenses, leading to increased collections and greater

economies in the observed season.

4.3 Energy Efficiency vs. Production Output
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Figure 4: Energy efficiency Vs Production output

Figure 4 illustrates the interrelation between

production output and energy efficiency, measured as
percentages and units, respectively, at different production
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levels. Initially, the level of energy efficiency varies around
64% (for instance) — 67% (for example) when the
production level is below or within the range of 2000 units
per annum. The next part spanning from 2000 till about
8000 units per annum registered peak level of about 72% at
4000 units per annum, but had significant oscillations
between 64%-72%." As we reach the final phase, energy
efficiency continues to change, peaking at over 72% when
10,000 units are produced and 8,000 appliances are made.
Energy efficiency fluctuates at various levels of production,
starting high, then declining before rising again towards the

end.

4 4 Peak Load Demand vs. Time
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Figure 5: Peak load Vs Time

In Figure 5, the red bars represent the maximum
electricity requested in a specific month, while the green
bars show the same for the second set of data. According to
these findings, there is a seasonal effect on peak load
requirements: summer months have higher peak loads than
winter months. Probably the most obvious impact of this
implementation is the decreasing trend in peak load demand

over many months.

4.5 Renewable Energy Integration vs. Total
Energy Consumption

Renewable Energy Integration vs, Total Energy Consumption
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Figure 6: Analysis of Energy Vs Time

Figure 6 compares 12 months of "Renewable
Energy Integration" and "Total Energy Consumption,"
showing varying patterns for both factors. At 120 GWh at
the beginning of the year, total energy consumption
increases sharply in February, March, July, and September
to this level, then falls in December to about 100 GWh, with
the lowest points in May, June, and October, all around the
hundred mark. The first month's value for renewable energy
integration is 60 GWh, but it later peaks at 50 GWh in April
before dropping to a minimum of 30 GWh in February, then
peaks at 50 GWh at year-end. However, the data shows that
renewable energy accounts for only a portion of total use,
though not primarily because of other sources. Looking at
the patterns, it can be said that such changes may be caused
by factors that limit deposition, or not. Mostly, growth was
high at the beginning of the year and low at the end. There
has been a deceleration in the rate of renewable energy

integration.

4.6 Carbon Emissions vs. Time
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Carbon Emissions Over Time
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Figure 7: Analysis of Carbon emissions over time

According to Figure 7, carbon emissions from 2000
to 2020, the emissions have been rising. In 2000, they were
around 700 million tons, rising to about 900 million tons in
2020. The specific data are 750 million tons in 2005, 800
million tons in 2010, and 850 million tons in 2015. Despite
overall upward movement, this rate of growth shows
fluctuations, with faster accelerations in some periods and

slower increases elsewhere.

4.7 Predictive Accuracy vs. Time

Predictive Aczuracy vs. Time
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Figure 8: Predictive Accuracy Vs Time

Figure 8 shows predictive accuracy vs. Time. At
each time point (numbered 2 through 10 on the x-axis),
predictive accuracy fluctuates between 75% and 90% on the
y-axis, with 9 data points connected by a line to indicate a

general trend. At these points in time, the fluctuation pattern

shows increases in some periods and decreases in others,
without any consistent pattern of growth or decline. The
error bars for each data point indicate potential variability or
uncertainty in the accuracy measurement. On the whole, the
graph suggests that predictive accuracy fluctuates over time,
with some points showing higher values and others lower

ones.

4.8 Optimization Algorithm Performance vs.
Energy Savings

Comparisan of Optimization Algorithm Performance
Achieving Energy Savings
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Figure 9: Comparison with optimization Algorithms

In Figure 9 we have a comparison of five
optimization techniques, namely; Genetic Programming
Koza, Evolutionary = Programming Fogel, = Chimp
Optimization Algorithm, Ant Colony Optimization and
Hybrid Trevally Optimization Algorithm in terms of energy
savings across iterations. Each line represents an algorithm
and therefore exhibits a particular behaviour pattern. For
instance, in the Hybrid Trevally Optimization Algorithm a
consistent high level of energy decrease can be noticed
throughout its life cycle. Genetic Programming got off to a
promising start but flattened out after an initial rise;
Evolutionary Programming showed a similar trend to
Koza’s though it was with slightly less saving, Chimp
Optimization Algorithm began lower sale which was
increasing gradually while Ant Colony Optimization

appeared as sometimes high or sometimes low savings.
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4.9 Customer Satisfaction vs. Time

Improvement in Customer Satisfaction over Time
Due to Stable and Efficient Energy Supply
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Figure 10: Customer satisfaction Vs Time

Figure 10 shows a line graph in which time
intervals from 2 to 10 are indicated on the x-axis, while the
y-axis shows the customer satisfaction index ranging from 0
to 12. The line has an upward slope, indicating a gradual rise
in consumer contentment. It started around 2, its lowest
point at time 2, and has registered noticeable increases at 4,
6, 8 and 10. At 10, customer satisfaction reaches its
maximum of about 12, the last data point. Improvement in
power stability and efficiency leads to happiness, according
to the chart on which the two are related in the same way as
stability and efficiency. This way, we can say that overall
satisfaction increases as this sector's development improves.
Positive change suggests that targeted activities were

undertaken to improve customer perception.

5. Case Study: Optimizing Energy
Management in the XX Manufacturing Hub

5.1 Background

A manufacturing hub, some forty miles from a big
city, boasts a number of medium-sized factories that make
everything from car parts to electronics. However, the XX

Manufacturing Hub's soaring energy usage and inefficiency

have left it engulfed in constant power cuts, expensive
operations, and dysfunctional distribution. It thus finds it
difficult to scale up production and also keep up with
demand in international markets.

Awareness of the problem prompted XX Hub to team up
with a technology firm in order to install smart grid
technologies incorporated into Trevally Optimization
(TrevOpt) framework. The primary objective of this joint
venture was to address energy management issues within the

hub and to support eco-friendly industrial growth.

5.2 Implementation of the TrevOpt
Framework

The undertaking started by setting up sophisticated
metering systems (AMI) and decentralized energy sources
(DERs) in manufacturing plants. The technologies enabled
instantaneous monitoring and regulation of energy usage,
enhancing the precision of predicting energy needs and
balancing loads.

The smart grid system was modified to optimise
energy distribution and use by integrating with the TrevOpt
framework. This hybrid optimization strategy involves
evolutionary algorithms as well as heuristic methods, and it
effectively manages the complicated and changing energy

demands of the hub.

5.3 Key Steps in the Implementation

1. Actual-time power information was gathered as well as
examined to detect styles, high demand hours and
insufficiencies which are recognized within this section.

2. Dynamic tuning: The TrevOpt framework adjusted the
allocation of energy using a real time approach thus
ensuring that resources were utilized well at any given time.
3. Proactive maintenance: Prediction of possible system
failures while enhancing system's ability to heal itself has

helped minimize interruptions in work done by machines

with enhanced dependability.
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4. Energy Trading: By incorporating distributed energy
resources (DERs), the hub was able to take part in energy
trading, which involved selling surplus energy during off-

peak times.

5.4 Results and Impact

The implementation of smart grid technologies and
the TrevOpt framework yielded significant improvements in
the XX Manufacturing Hub: Smart grid technologies give
real-time monitoring and optimization of energy use,
resulting in 20%, 15%, and 25% reductions in energy use,
operational costs, and system reliability. They promote
industrial upgrading by improving energy delivery stability,
a crucial factor for energy-intensive industries such as
manufacturing.  Smart grids in these regions address
infrastructure issues, incorporate renewable energy, and
reduce carbon emissions, encouraging economic and
environmental sustainability. Data from industries that
employ smart grids indicate that energy efficiency, system
reliability, and manufacturing output have all improved.
Smart networks, compared to traditional grids, offer
improved energy efficiency, operational reliability, and
environmental sustainability by incorporating clean energy
and enabling proactive maintenance, making them an
important driver of sustainable industrial growth.

e 20%

distribution  and

Less Energy Use: Using optimized energy

real-time adjustments resulted in
considerably less total electricity consumed.
* 15% Reduction in Operational Expenses: By managing
load efficiently as well as cutting down on energy wastage,
the hub saved money on its electricity bill, thereby lowering
production costs.
* 25% More Reliability of the System: An increase in
system reliability was achieved through TrevOpt's ability to
carry out proactive maintenance and dynamic tuning, which,
in turn, reduced unplanned downtime and ensured an
uninterrupted flow of products.

In addition, the catapult hub's adoption of smart

grid investments and

2 EA

technology has spurred new

collaborations, driving industrial growth. The XX
Manufacturing Hub has become a reference point for
sustainable industry practices through the success of this
venture, thereby inspiring similar interventions in other
industrial ecosystems.

The capacity of the TrevOpt optimisation platform
to harmonise intelligent network systems is demonstrated in
this case study. In which case, the XX Manufacturing Hub
improved its productivity and competitive edge while also
helping achieve broader economic and ecological objectives
through innovation. Thus, highlighting the necessity of
novel strategies towards sustainable industrial growth. Table
1 shows the comparison of outputs before and after the

implementation of the optimisation process.

Table 1: Comparison of outputs before and after
implementation of the optimization process

Metric Before After TrevOpt | Improvement
TrevOpt Implementation | (%)
Implementation

Total Energy | 50,000 40,000 20%

Consumption

(MWh)

Operational 25.0 21.25 15%

Costs (3

million)

System 100 75 25%

Downtime

(hours/year)

System 92.5 97.0 25%

Reliability

(%)

COo2 12,000 9,600 20%

Emissions

(tons/year)

Production 500,000 525,000 5%

Output

(units/year)
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led
reduced by 20%,

TrevOpt's  introduction to  significant

breakthroughs: energy usage was
operational costs by 15%, and system reliability by 25%,
resulting in downtime declining by the same percentage. It
also led to a 20% reduction in CO2 emissions, while
production output modestly improved owing to fewer
energy-related disturbances, revealing the economic and
environmental advantages of this optimisation. The
implementation of smart grid technologies, including the
TrevOpt optimization model, resulted in a 20% reduction in
CO2 emissions at the XX Manufacturing Hub by improving
energy distribution and decreasing consumption. As a result,
annual emissions dropped from 12,000 to 9,600 tons. The
implementation of real-time analytics increased energy
efficiency, resulting in a 20% reduction in utilization.
Furthermore, the smart grid boosted system reliability by
25% while cutting operating costs by 15%, underscoring the

ecological and financial benefits.

5.5 Model Validation and Comparison with
Real-World Data

At every step of this multi-step procedure, the
validity of the TrevOpt model was confirmed. At first, its
parameters were calibrated using actual industrial data. So,
they guarantee that the model accurately represents the
operational features and limitations of its subject matter.
Then, comparisons were made between the model's
predictions and actual performance data. These comparisons
used metrics such as energy usage, operational costs over a
certain period, and overall system reliability. As a result, it
was concluded that the actual improvements in energy
consumption (around 20% less), operational cost reduction
(15% less), and enhanced reliability (by 25%) are quite
consistent with those verified in real-world applications. The
Sensitivity Analysis was conducted to test the model's
validity under varying conditions and confirm its robustness.
Results continually indicate that regardless of the operation
characteristics, is

TrevOpt able to produce accurate

predictions and optimization strategies. Therefore, this
validation demonstrates that the model is reliable for real-
world applications, thereby supporting research findings on
the implementation of smart grid technology for industrial

growth.

6. Conclusion

In conclusion, smart grid technologies have

revolutionised various industrial sectors through advanced

energy management strategies. By proposing TrevOpt, a

new technique, this paper demonstrates significant
improvements in operational efficiency, economic
performance, and environmental sustainability indices.

Applying real-time data analytics alongside TrevOpt enables
dynamic management of energy resources. In addition, they
help curb environmental footprints, thereby strengthening
overall system reliability. Prospects indicate that the concept
of smart grids has immense potential to enhance sustainable
investment while fostering industrial competitiveness. The
numerical outcomes show that the TrevOpt tactic can be
productive in terms of electricity utilisation and in achieving
resilient manufacturing, and thus it remains valid. As
efficiency and sustainability become the main concerns for
industries, intelligence grids are likely to play a major role
in promoting economic vibrancy and sustainability in the

future.

e Future Scope

In the future, other research could examine ways to
improve the use of smart grid technologies, especially
TrevOpt, across industries. One key path could be merging
modern machine learning algorithms with Mr Wisdom to
enhance real-time optimisation of energy forecasting and
decision-making. Enlarging the TrevOpt application by
allowing multivariate objective optimisation would result in
an instance where the cost of energy conservation is

equivalent to pollutant reduction." Conclusively, examining
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the scalability and adaptability of the TrevOpt strategy
across different industrial sectors and under varying
operational conditions would be an effective way to gauge
the reach and potential of this approach. The performance of
smart grid systems can be refined by addressing these
aspects; this will help integrate them with other systems
within smart cities and larger energy ecosystems to advance
sustainable development goals while enhancing resilient

industrial infrastructure.
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