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Abstract 
INTRODUCTION: Efficient monitoring of power transmission lines is paramount to grid safety, clearance violation 
prevention, and uninterrupted supply of electricity. Classic inspection approaches like ground surveys by manual methods 
and visual inspections by drones are time-consuming, costly, and susceptible to human error. 
OBJECTIVES: Current LiDAR-based approaches are limited in automation, with extensive post-processing based on 
manual intervention. Additionally, most existing models are not scalable and fail under changing environmental conditions 
because of a lack of generalization. In this research, a spatial monitoring platform that combines LiDAR point clouds with 
high-resolution imagery through RandLA-Net is presented for semantic segmentation and hazard detection. 
METHODS: Combining geometric information (LiDAR) and visual features (images) with an optimized RandLA-Net 
architecture allows for accurate, real-time infrastructure features and hazard detection in dense or cluttered scenarios. 
RESULTS: The system presented here attained a semantic segmentation accuracy of 99.1% and a mean Intersection over 
Union (mIoU) of 93.2%. Spatial distance estimation had a low Mean Absolute Error (MAE) of 0.16 meters and Root Mean 
Square Error (RMSE) of 0.23 meters. The rate of safety violations detected never exceeded 4% among all object pairs. 
Compared to alternative techniques the proposed approach offers higher segmentation accuracy and more comprehensive 
hazard detection. 
CONCLUSION: It uniquely combines LiDAR and image data with advanced algorithms for precise, real-time distance 
measurement and monitoring. This study provides a cost-effective, scalable, and real-time-enabled monitoring solution, 
lessening reliance on human inspections and hugely enhancing hazard detection accuracy for power transmission 
infrastructure. 

Keywords: LiDAR Point Cloud, Semantic Segmentation, Power Transmission Line Monitoring, RandLA-Net, Spatial Distance 
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1. Introduction

Power transmission lines are key infrastructure elements that 
provide reliable power delivery from power generation 
plants to end-users [1]. The safety and efficiency of power 
transmission systems depend on proper monitoring and 
maintenance to avoid faults, reduce downtime [2], and 
promote overall reliability in the grid [3]. Nonetheless,  

owing to the extensive geographical span and susceptibility 
to environmental influences like vegetation growth, weather 
patterns, and structural deterioration, inspection of these 
systems can prove to be a labor-intensive and taxing 
endeavor [4]. Conventional inspection means, such as 
manual surveys and aerial reconnaissance with helicopters 
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or drones, though effective, are time-consuming, costly, and 
subject to human mistakes [5]. 
As the need for more intelligent, more efficient grid 
networks grows, the need for real-time, automated solutions 
to monitor power transmission lines better is a growing 
imperative [6]. New developments in LiDAR (Light 
Detection and Ranging) [7] technology have made dramatic 
advancements in the ability to detect and monitor power 
lines. LiDAR technology emits laser pulses that determine 
distances to objects and construct highly precise 3D point 
clouds of the environment [8]. Our proposed work adopts 
the approach outlined by Mohan Reddy Sareddy (2025), 
integrating LiDAR and reinforcement learning for real-time 
monitoring. By leveraging this strategy, we utilize LiDAR 
point clouds and AI to monitor power transmission lines, 
enhancing automated decision-making, and improving 
efficiency in power line management[9]. These point clouds 
have the potential to reveal in-depth information about the 
spatial interrelationships between transmission lines, towers, 
vegetation, and other structures [10] within the vicinity [11]. 
The incorporation of AI-powered swarm robotics, LiDAR 
mapping, TSN, and energy-efficient microcontrollers 
demonstrated by Sri Harsha Grandhi (2024) In our work, 
these cutting-edge technologies were adopted to increase 
real-time power line monitoring, significantly improving 
operational efficiency in remote energy infrastructure 
management [12]. LiDAR and detailed imagery work 
together to improve monitoring systems. LiDAR delivers 
accurate spatial precision and 3D modeling through the 
creation of intricate point clouds, vital for distance 
measurement and identifying clearance infringements. High-
resolution images provide intricate visual attributes such as 
texture and color, enhancing object recognition. The fusion 
used in the RandLA-Net study facilitates precise semantic 
segmentation and reliable hazard detection. The integration 
enables real-time observation, improves safety, and 
minimizes dependence on manual checks by combining 
LiDAR's geometric accuracy with the visual richness of 
images. The integration of three-dimensional (3D) point 
cloud data from LiDAR sensors with high-resolution images 
enables enhanced scene understanding by combining 
geometric precision with rich visual information [13], can 
enhance the object identification along power line corridors 
[14], facilitating easier detection and monitoring of 
vegetation intrusion, structural defects, or other hazards 
[15]. It is also possible through the integration of LiDAR 
data [16] with images to measure distances more precisely, 
which in turn ensures proper clearance of power lines from 
obstructions. Through automating the monitoring process 
with this integrated system, power grid operators can 
considerably decrease the risks and costs of the conventional 
inspection procedures [17]. The work by Sitaraman (2024) 
explores LiDAR-based SLAM and DenseNet deep learning 
for real-time robotic mapping and motion planning. In our 
proposed work, we combine these methods for real-time 
spatial distance monitoring of power transmission lines 
using LiDAR and visual imaging. This integration enables 
automated anomaly detection for power line surveillance 
[18]. LiDAR is ideal for real-time spatial distance 

monitoring of power transmission lines because it provides 
highly accurate 3D point cloud data for precise modeling of 
cables and nearby structures. It performs reliably in complex 
environments and, when combined with deep learning 
models like RandLA-Net, enables efficient, automated 
hazard detection with minimal human intervention. 
 This study presents a new approach to real-time spatial 
distance collection of power transmission lines through 
integration of LiDAR point cloud data with images, which 
provide a kind of "visual" information from the reflectance 
of surfaces sensed by LiDAR. By combining high-resolution 
3D point clouds and images, this method is capable of 
providing more precise and real-time estimates of the spatial 
distances between power transmission lines and surrounding 
obstacles like vegetation, buildings, or other structures. The 
proposed system's real-time operation ensures constant 
monitoring and prompt identification of problems, 
enhancing the maintenance process as a whole and reducing 
the risk of failure or outages. Proper clearance between 
transmission lines and surrounding objects is critical for 
safety, equipment protection, and reliable power delivery.  It 
helps avoid contact with buildings, foliage, and poles, 
lowering the risk of electrical fires, arcing, and short 
circuits.  Violations of clearance requirements can lead to 
equipment damage and unscheduled downtime.  Real-time 
monitoring using LiDAR and high-resolution imaging 
allows for early detection of dangers, decreases human 
inspection tasks, and promotes cost-effective maintenance. 
Ensuring appropriate clearance also aids in meeting 
regulatory criteria and increasing the dependability and 
safety of power transmission networks. This study employs 
the RandLA-Net deep learning model within a LiDAR-
image fusion framework to achieve real-time monitoring of 
power transmission lines. RandLA-Net performs semantic 
segmentation on large-scale LiDAR point clouds, achieving 
99.1% accuracy and 93.2% mIoU. By combining LiDAR 
geometry with image features, the system improves object 
recognition, particularly for thin structures like cables. It 
extracts transmission line proxies, calculates 3D distances to 
nearby objects, and compares them with IEEE/OSHA safety 
thresholds for hazard detection. Though developed using the 
offline KITTI dataset, the approach is suitable for real-time 
deployment on edge devices. This enables automated, cost-
effective, and accurate monitoring crucial for renewable 
energy systems. 
 By automating the monitoring procedure through this 
combined system, power grid operators can significantly 
mitigate the cost and risk associated with conventional 
inspection schemes. The proposed system assures constant 
monitoring and prompt identification of faults, enhancing 
the entire process of maintenance as well as eliminating the 
chances of failures or outages. 

Key Contributions 
This paper makes the following key contributions to the 
field of power transmission line monitoring: 

• Integration of LiDAR Point Clouds and High-
Resolution Images, the paper presents a novel
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method that combines geometric 3D LiDAR data 
with visual image information to enhance the 
accuracy of spatial distance measurements around 
power transmission lines. 

• Efficient Semantic Segmentation Using RandLA-
Net applies the RandLA-Net deep learning model
to effectively segment complex transmission line
proxies and surrounding urban infrastructure from
large-scale, sparse point cloud data.

• Automated Proxy Extraction and Distance
Measurement, the proposed framework uses
geometric filtering, clustering, and line fitting
algorithms to automatically extract transmission
line proxies and calculate precise 3D distances to
nearby objects for hazard detection.

• Improved Monitoring for Safety and Maintenance,
the system provides reliable detection of clearance
violations and potential hazards, supporting safer
maintenance planning and reducing reliance on
costly manual inspections.

Current power transmission line monitoring systems 
encounter various significant constraints. Inspections 
conducted manually and via drones are labor-intensive, 
expensive, and susceptible to human mistakes. Current 
LiDAR-based techniques are dependent on manual 
post-processing and do not offer real-time automation. 
Deep learning models frequently struggle to generalize 
across different terrains and environmental conditions. 
Existing systems additionally lack accurate clearance 
detection, endangering safety, causing breaches, and 
service interruptions. These constraints emphasize the 
necessity for a scalable, precise, and automated 
monitoring solution, tackled by this investigation via 
LiDAR-image fusion and segmentation based on 
RandLA-Net. 

Structure of the Paper 
The paper begins with an Abstract that describes the 
necessity of real-time monitoring of power transmission 
lines and the issues with the present manual and drone 
inspections. The paper introduces the significance of power 
transmission lines as critical infrastructure for the supply of 
electricity and emphasizes the difficulties entailed in 
monitoring them because of extensive geographical areas. 
The Related Works discuss existing LiDAR and image-
based techniques, noting their strengths and limitations. The 
Problem Statement addresses problems such as excessive 
cost, time requirement, and weather and environment-
induced errors, revealing the necessity for an automated, 
effective solution. The Methodology describes how data 
from the KITTI dataset is cleaned, segmented, and 
processed using RandLA-Net, and then transmission lines 
are identified and distances measured to adjacent objects to 
identify hazards. The Results and Discussion indicate that 
the method is effective and accurate and would apply to 
real-time systems. The paper concludes with a Conclusion 

highlighting the advantages of fusing images and LiDAR for 
enhanced transmission line monitoring. 

2. Related Works
This section reviews existing research and technologies 
related to power transmission line monitoring using LiDAR 
and image-based methods, highlighting their strengths and 
limitations. 
[19] proposed a real-time LiDAR-based reconstruction
technique to inspect anti-external force damage to power
transmission lines. The technique projects 3D point cloud
data to a 2D plane [20], performs a catenary equation fit,
and recovers the complete 3D model. The technique
remedies the shortcoming of short-range LiDAR by
supporting precise distance measurement. Field experiments
proved efficient 3D reconstruction of the transmission lines
[21], improving system reliability.  [22] performed a
comprehensive method of PLC inspection and LiDAR-
based 3D modelling methods [23] using power line
corridors. They inspected different point-based and image
techniques for multi- and single-conductor extraction from
mobile and aerial laser scanning systems [24]. The research
presented that most prevailing methods are predominantly
based on small datasets and post-processing, with limited
full automation. They have proposed a future study to utilize
deep learning for facilitating scalability and accuracy in PLC
modelling. [25] suggested a deep learning-enabled Point
Cloud Transmission Tower Segmentation (PCTTS)
approach for UAV inspection target point localization
automation. The approach uses octree sampling, offset-
attention, and multi-scale feature extraction to improve
segmentation performance. The approach attained 94.1%
mIOU on part segmentation and 86.9% mIOU on instance
segmentation datasets, better than PointNet++, DGCNN,
and others [26]. The method drastically minimizes the
amount of manual planning while enhancing UAV
inspection efficiency and accuracy A deep learning-based
system has been developed that integrates LiDAR and
spherical photography for autonomous vegetation inspection
[27] in urban power grid lines. Their system employs
vehicle-mounted sensors to overcome the shortfalls of aerial
photography and human observation. Implemented in four
Brazilian cities, the process attained more than 94%
accuracy in interference detection. The research shows
promising prospects for real-time vegetation management
using AI in large-scale electric grids.
[28] provided a detailed review of LiDAR-based methods in
powerline corridor monitoring, facing issues such as scene
noise and object proximity. They compared tracking,
machine learning, and deep learning methods based on their
weaknesses and strengths. The research focused on
forgotten areas such as single wire and pylon detection in
the proximity of vegetation. Despite automation
achievements, the review pointed out issues with data
labeling and model generalization, making
recommendations for potential future research directions.
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[29] undertook a systematic review of technologies for
distance recognition to improve the safety of transmission
lines in challenging corridor environments. They classified
active and passive ranging techniques and their applicability
in detecting spatial distances. The work identified the
disadvantages of existing technology, such as high false
alarms and low efficiency. It offered a deep learning-based
framework for enhancing accuracy and outlined prospects
and challenges in the application. [30] Applied UAV-based
LiDAR to detect 160 km of transmission lines in hilly
Sanmenxia, China, with a particular emphasis on the
detection of safety hazards. They used 3D point cloud
denoising, line repairing, and range calculation to locate
clearance hazards. The inspection found 54 common, 22
serious, and 1 emergent vegetation hazards. The approach
enhanced the precision of hazard detection and offered an
excellent reference to replace traditional field inspections in
difficult terrains.
[31] suggested a procedure for power line extraction and
tree risk identification via height difference and local
dimension probability modeling. They used the Cloth
Simulation Filter and neighborhood sharing for conductor
and ground wire classification [32], followed by linear–
catenary reconstruction modeling. The procedure realized
more than 98% precision, recall, and F-score in
classification, with a safety distance MAE of less than 6.47
cm. These outcomes confirm the high accuracy and
reliability of the model in identifying vegetation-related
hazards.
Notwithstanding advances in LiDAR-based monitoring of
power transmission lines, some limitations are highlighted
in the ten studies. [19] enhanced the accuracy of short-range
LiDAR but failed to test the system under poor weather or in
complex terrains. [22] identified that most approaches use
small datasets and require manual post-processing, making
full automation and scalability challenging. [25] attained
high segmentation accuracy with deep learning but requires
additional testing in various settings. [24] demonstrated
good performance with LiDAR and spherical photography,
but the performance of the model in extremely dense forests
or urban areas was not investigated. [26] highlighted
challenges such as scene noise, nearness of objects, poor
model generalization, and data labeling complications. [27]
said several distance detection methods are low on
efficiency but have high false alarms and require better
integration with deep learning. [10] correctly classified
hazards on slopes but the methodology might need adjusting
for other lands. [29] had very accurate power line and tree
danger categorization but nothing is known about the
method's performance in a varying environment. [31]
incorporated tree growth prediction but long-term
performance and application under evolving forest
conditions are unknown. [32] constructed PowerLine-Net
with good performance, but issues such as real-time
application and class imbalance in big datasets persist.

3. Problem Statement
Even with breakthroughs in LiDAR-based and deep 
learning-powered monitoring of power transmission lines, 
some major limitations remain that impede real-world 
scalability and deployability. 

• Furthermore, [26] emphasized persistent issues
related to data labeling complexity and insufficient
model generalization, which hinder the deployment
of scalable, fully automated powerline inspection
systems.

• Secondly, [20] highlighted that current
methodologies are highly dependent on tiny
datasets and manual post-processing, leading to
low scalability and inadequate automation for
powerline corridor monitoring on a large scale.

• [22] Suggested a high-precision segmentation
model based on deep learning, which is not
generalizable to different operating conditions,
particularly those with unknown geographic or
structural properties.

• [32] showed robust segmentation performance
using PowerLine-Net but questionable real-time
deployability of the model, especially under class
imbalance and large-volume data scenarios.

These deficiencies underscore an urgent necessity for a 
scalable, weather-resistant, and generalizable methodology 
for LiDAR-based power transmission line monitoring that 
seamlessly unites strong deep learning methods with 
domain-sensitive data preprocessing as well as 
environmental flexibility. 

Research Objectives 
1. Identify the limitations of traditional transmission

line inspection methods and the need for automated
solutions.

2. Analyze and integrate LiDAR point cloud data with
high-resolution imaging to enhance spatial distance
monitoring accuracy.

3. Develop a semantic segmentation and distance
measurement model using RandLA-Net for
effective hazard detection.

4. Evaluate the performance of the proposed system
in terms of segmentation accuracy, safety margin
detection, and real-time feasibility.

4. Methodological Framework for LiDAR-
Image Fusion in Transmission Line
Hazard Detection

The approach used in this research applies an organized 
procedure to merge LiDAR point cloud data with high-
definition images for efficient power transmission line 
monitoring. The integration of LiDAR with visual imagery 
through a multi-step process improves segmentation 
precision for monitoring power transmission lines. Data is 

EAI Endorsed Transactions on 
Energy Web 

| Volume 12 | 2025 | 



Towards Real-Time Spatial Distance Monitoring of Power Transmission Lines Using LiDAR Point Clouds and 
Visual Imaging 

5 

gathered from the KITTI dataset, merging 3D LiDAR point 
clouds with high-resolution images. Preprocessing 
procedures involve noise reduction, downsampling, ground 
segmentation, and coordinate normalization. RandLA-Net is 
utilized for semantic segmentation, accurately identifying 
objects by utilizing both geometric and visual 
characteristics. Transmission line proxies are subsequently 
obtained through geometric filtering, DBSCAN clustering, 
and RANSAC line fitting. The system computes 3D 
Euclidean distances from these proxies to surrounding 
objects, evaluating them against safety limits to identify 
violations. Ultimately, hazard areas are prominently 
displayed in the 3D point cloud. This method attains a 
segmentation accuracy of 99.1% and a mean IoU of 93.2%, 
showcasing its capability for real-time, automated 
surveillance through the integration of LiDAR and image 
information. The data used is obtained from the publicly 
released KITTI dataset, which offers synchronized LiDAR 
scans and image frames capturing suburban and urban 
scenes. To ensure data quality and simplify computational 
complexity, the point clouds in their raw form go through 
preprocessing processes. These steps filter the data by 
removing objects of interest like poles, vegetation, 
buildings, and overhead wires. After preprocessing, 
semantic segmentation with RandLA-Net, a deep learning 
network for accurate and efficient classification of sparse, 
large-scale 3D point clouds, is conducted. This segmentation 
allows for the accurate detection of transmission line proxies 
and proximate infrastructure. Then geometric filtering, 
clustering methods like DBSCAN, and line fitting methods 
like RANSAC are utilized to reconstruct and extract proxy 
models of transmission lines. Data quality and preprocessing 
are critical components of effective monitoring systems, 
such as those that follow power transmission lines with 
LiDAR point clouds and optical imaging.  Mistakes in data 
might lead to computation mistakes and risk 
misidentification.  Noise reduction, down sampling, and 
ground segmentation improve data quality by removing 
outliers, lowering computing costs, and emphasizing key 
characteristics.  Semantic segmentation using models such 
as RandLA-Net categorizes point clouds, enhancing danger 
identification and distance measurements, resulting in more 
reliable real-time monitoring and infrastructure 
maintenance. Excellent data quality and preprocessing are 
critical for high-performance monitoring systems. The last 
step is to compute the 3D Euclidean distances between 
proxies of the transmission line and nearby objects to detect 
potential clearance violations by safety regulations. This 
multi-phased method facilitates automated detection and 
visualisation of risk, improving monitoring accuracy and 
operational safety. The general workflow of the novel 
methodology is shown in Figure 1 below. 

Figure 1:  Multi-Stage Framework for Spatial Distance 
Measurement in Power Line Environments 

4.1 Data Collection 
The data for this research employs the publicly available 
KITTI dataset(“Lidar Dataset” 2025), which provides 
synchronized multimodal sensor data captured from a 
sensor-equipped car driving along city and suburban streets. 
The dataset comprises Velodyne LiDAR point clouds, the 
primary source of 3D spatial information with geometrical 
detail of the environment. Along with the LiDAR data, high-
resolution image frames are provided by cameras, frame-
synchronized with the LiDAR scans to allow for efficient 
space and appearance data fusion. Unlike real-time data 
acquisition via UAV or airborne sensor platforms, the 
KITTI dataset is recorded, offline data allowing the 
workflow of processing and analysing stored point cloud 
and image data rather than continuous live acquisition. It 
includes urban infrastructure features such as poles, 
buildings, trees, and overhead tram wires, which are 
themselves substitutes for transmission line environments. 

4.2 Data Preprocessing 
Before executing spatial distance acquisition and 
segmentation on the KITTI LiDAR point clouds, it is 
imperative to preprocess the raw data to enhance quality, 
diminish computational complexity, and segregate 
appropriate objects. The below preprocessing procedures are 
executed: 

4.2.1 Noise Filtering 
LiDAR point clouds usually have spurious points because of 
sensor errors or environmental conditions. Spurious points 
are eliminated using Statistical Outlier Removal (SOR). 
This method looks at the neighbourhood around each point 
and deletes points that are very different from their 
neighbors. 
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For each point , compute the average distance to its
nearest neighbors given in Eqn. (1) 

(1) 

Where is the Euclidean distance between 
points

Calculate the global mean  and standard deviation of 
all . Points with average neighbor distances outside the 
interval  (where  is a threshold parameter, typically 
1.0-2.0) are considered outliers and removed. 

This step preserves the structural integrity of the scene by 
eliminating isolated noise points.  
The method addresses environmental variations like weather 
and terrain using robust preprocessing, RandLA-Net-based 
segmentation, and LiDAR-image fusion. Noise filtering 
with Statistical Outlier Removal eliminates unwanted points 
from sensor errors or environmental interference. Ground 
segmentation through morphological filtering and height 
thresholding effectively isolates relevant objects from 
ground clutter, enhancing accuracy across diverse terrains. 
RandLA-Net facilitates efficient, large-scale sparse LiDAR 
data segmentation via random sampling and local feature 
aggregation, maintaining fine structural details. By fusing 
LiDAR data with high-resolution images, the system 
improves object detection under fluctuating lighting and 
terrain conditions. Trained on the KITTI dataset, the 
approach demonstrates 99.1% accuracy and 93.2% mIoU 
with minimal safety violation rates, highlighting its robust 
performance in varying environments. 

4.2.2 Downsampling 
Unprocessed point clouds are very dense and generate high 
computational expenses during downstream processing. To 
thin out point clouds without losing geometric details, Voxel 
Grid Filtering is employed. Voxel Grid Filtering offers 
distinct advantages over random and uniform sampling by 
preserving geometric structure and reducing computational 
load. It retains the overall 3D shape by replacing all points 
within a voxel with their centroid, maintaining spatial 
integrity essential for tasks like segmentation and distance 
measurement. Unlike random sampling, which may remove 
critical structural points, or uniform sampling, which may 
not adapt well to varying point densities, VGF provides a 
balanced reduction that supports efficient processing 
without significant loss of detail. This leads to improved 
segmentation accuracy, as seen in the paper’s use of 
RandLA-Net, which achieved 99.1% accuracy and 93.2% 
mIoU. Combined with noise filtering techniques like 
Statistical Outlier Removal, VGF enables robust, real-time 
performance while preserving key geometric information in 
LiDAR point clouds. 
The area is split into a 3D grid of voxels of volume v, and 
every point in each voxel is approximated by its centroid. 

For a voxel containing points , the voxel 
representative point  is computed using Eqn. (2) 

(2) 
This downsampling reduces data size and computational 
load while maintaining the overall shape and structure 
necessary for accurate segmentation and distance 
calculations. Voxel Grid Filtering efficiently lowers 
computational requirements while maintaining the 
geometric integrity of LiDAR point clouds. Dividing space 
into 3D voxels and substituting all points in each voxel with 
their centroid preserves the overall shape and spatial 
relationships essential for precise segmentation and distance 
computations. In contrast to random sampling, which can 
overlook essential structural details, and uniform sampling, 
which might inadequate representation of dense areas, VGF 
provides a more balanced method. It guarantees uniform 
spatial distribution, facilitates effective segmentation with 
an accuracy of 99.1% and mIoU of 93.2%, and, when paired 
with Statistical Outlier Removal, aids in removing noise 
while preserving data integrity. 

4.2.3 Ground Segmentation 
Separating ground points from above-ground objects is 
crucial for focusing on infrastructure like poles and 
vegetation. Two common approaches are used: 

• Height Thresholding:
Estimate the ground elevation and remove points below a 
certain height threshold as given in Eqn. (3) 

(3) 
Where  is the vertical coordinate of the point . 

• Morphological Filtering:
Apply iterative dilation and erosion operations on the point 
cloud or its 2D height map projection to identify ground 
surfaces that are continuous and smooth, separating them 
from elevated objects. 
These steps isolate non-ground points representing poles, 
trees, buildings, and other obstacles relevant for distance 
measurement. 

4.2.4 Coordinate Normalization 
To ensure consistent processing, especially when combining 
data from different frames or sensors, point coordinates are 
normalized within a local reference frame. 
For each point coordinate , compute using Eqn. 
(4) 

(4) 
where and are the mean and standard deviation of all 
point coordinates along each axis in the dataset. This 
standardization centers the data and scales it to unit 
variance, which improves the stability and convergence of 
deep learning models used downstream. 
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Pseudocode: LiDAR Data Preprocessing 

Input: Raw point cloud P = {p_i} 
Parameters: k, α, voxel_size v, ground_height h_g, 
height_threshold h_th 

Output: Processed point cloud P_processed 

Step 1: Noise Filtering (Remove Outliers): 
 For each point p_i in P: 

 Find k nearest neighbors 
       Compute average distance to neighbors 

d_bar_i 

 Compute mean μ and std dev σ of all d_bar_i 
    Keep points p_i where d_bar_i is within [μ - 
α*σ, μ + α*σ] 

Step 2: Downsampling: 
 Divide space into 3D voxels of size v 
 For each voxel: 

 Replace points inside voxel with their centroid 

Step 3: Ground Segmentation: 
 For each point p_i: 

 If vertical coordinate z_i < h_g + h_th: 
     Mark p_i as ground point 
 Else: 

 Mark p_i as non-ground point 

Step 4: Coordinate Normalization: 
    Compute mean μ_p and std dev σ_p of non-
ground points coordinates 

 For each non-ground point p_i: 
 Normalize: p_i_norm = (p_i - μ_p) / σ_p 

Return normalized non-ground points P_processed 

4.3 Semantic Segmentation of LiDAR 
Point Clouds Using RandLA-Net 
Semantic segmentation labels each point in a LiDAR point 
cloud with a class, which allows the detection of various 
objects like utility lines, poles, buildings, and vegetation. As 
far as your study goes, the correct segmentation of 
transmission line elements and nearby infrastructure is 
important for accurate spatial distance collection. Semantic 
segmentation differs from traditional segmentation by 
assigning specific class labels to each point in a LiDAR 
point cloud, enabling class-aware partitions, unlike 
traditional methods that segment based on low-level features 
like color or texture without understanding object meaning. 
Traditional approaches use basic techniques such as 
thresholding or clustering and require manual tuning, while 
semantic segmentation uses deep learning models like 
RandLA-Net to learn features and context automatically. In 

this paper, RandLA-Net processes large-scale point clouds 
efficiently using random sampling and local feature 
aggregation, enabling accurate, real-time identification of 
infrastructure elements. Although traditional methods like 
DBSCAN and RANSAC are still used for clustering and 
line fitting, semantic segmentation enhances the process by 
providing detailed, automated classification essential for 
hazard detection and monitoring. 
To do this, the use of RandLA-Net (Random Sampling and 
Local Aggregation Network) is utilized because it excels at 
handling large-scale, sparse 3D point clouds common to 
LiDAR scans. RandLA-Net is a balance of computation 
efficiency and segmentation accuracy and is very 
appropriate for use with outdoor scenes with intricate 
structures. The system efficiently processes large-scale 
LiDAR point clouds through noise filtering, voxel-based 
downsampling, and ground segmentation to reduce data 
volume while preserving essential features. RandLA-Net is 
employed for semantic segmentation, offering high 
accuracy, 99.1% and mIoU 93.2% by combining random 
sampling and local feature aggregation. Proxy transmission 
lines are extracted using DBSCAN and RANSAC, enabling 
precise 3D distance calculations. Distances are compared 
against safety thresholds to detect hazards such as 
vegetation or building encroachments. The lightweight and 
modular design supports real-time deployment with low 
MAE 0.16 m and RMSE 0.23 m, making it suitable for 
automated transmission line monitoring. Figure 2 
Architecture of RandLA-Net showing hierarchical random 
sampling, local feature aggregation, shared MLPs, and 
semantic label prediction. The structure reflects the end-to-
end learning pipeline for large-scale point cloud 
segmentation. 

Figure 2: Architecture of RandLA-Net 

Its key features are: 
• Random Sampling: Efficiently reduces the number

of points while maintaining geometric details
without costly clustering or voxelization.

• Local Feature Aggregation (LFA): Combines local
neighbourhood features to preserve fine-grained
geometry and context.

• End-to-End Learning: Directly learns point-wise
features from raw 3D coordinates and side features
(e.g., intensity, color).

Let the input point cloud be given in Eqn. (5) 
 (5) 

where are the 3D coordinates of the point 
represent auxiliary features such as intensity or RGB 

values. 
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To reduce computational load while preserving spatial 
structure, RandLA-Net applies random sampling to select a 
subset of points for each hierarchical layer given in Eqn. (6) 

(6) 
Where  is the point set at the layer , and what is 
the number of sampled points for the next layer 

For each sampled point , the local neighborhood 

 is identified within the original point set 
using a radius or k-k-nearest neighbors search: 

(7) 
Where  is the radius defining the local neighborhood. 

RandLA-Net aggregates local features to capture geometric 
details crucial for segmenting slender structures like 
transmission lines. 

• Relative Position Encoding: Calculate relative
coordinates within neighbourhoods using Eqn. (8)

(8) 
• Feature Transformation: Apply shared multilayer

perceptrons (MLPs) to concatenated features using
Eqn. (9)

(9) 
• Attention Weighting: Compute attention

coefficients to emphasize important neighbors
using Eqn. (10)

(10) 
where  is a learnable function, such as an MLP. 

• Feature Aggregation: Aggregate weighted features
using Eqn. (11)

  (11) 
This mechanism allows the network to adaptively attend to 
salient local structures, enhancing transmission line and 
object segmentation. Several layers of local feature 
aggregation and random sampling of increasing scale extract 
features. 
Those features from rough layers are further interpolated 
back to their original positions with pointwise label 
prediction. 

• Feature propagation uses inverse distance
weighting using Eqn. (12)

 (12) 
• Point-wise Classification
• Finally, fully connected layers followed by a

softmax activation classify each point into the
semantic categories given in Eqn. (13)

(13) 
where  and are learnable parameters, and is the 
predicted label for a point , such as transmission lines, 
poles, vegetation, or buildings. 

Pseudocode: Semantic Segmentation of LiDAR Point 
Clouds Using RandLA-Net 
Input: Point cloud P^ (0) = {p_i = (x_i, y_i, z_i, f_i) | 
i=1,,N} 
Parameters: 

 L: number of hierarchical layers 
    M_l: number of points sampled at layer l+1, M_l < 
|P^(l)| 

 r: radius for local neighborhood search 
 k: number of neighbors (optional alternative to radius) 

Output: Predicted semantic labels {ŷ_i} for each point in 
P^(0) 

--- 

For l = 0 to L-1 do: 
 Step 1: Random Sampling 
 P^(l+1) = Random Sample(P^(l), M_l)  // Eqn. (6) 

 For each sampled point p_j^(l+1) in P^(l+1): 
 Step 2: Local Neighborhood Search 

       N(p_j^(l+1)) = {p_k^(l) ∈ P^(l) | distance(p_k^(l), 
p_j^(l+1)) ≤ r}     // Eqn. (7) 

 Step 3: Relative Position Encoding 
 For each neighbor p_k^(l) in N(p_j^(l+1)): 

 Δp_jk = p_k^(l) - p_j^(l+1)  // Eqn. (8) 

 Step 4: Feature Transformation with Shared MLP 
     h_jk = MLP (concat (Δp_jk, f_k^(l))) // Eqn. (9) 

 Step 5: Attention Weighting 
 For each neighbor k in N(p_j^(l+1)): 

       α_jk = exp(ϕ(h_jk)) / Σ_ {m ∈ N(p_j^(l+1))} 
exp(ϕ(h_jm)) // Eqn. (10) 

 Step 6: Feature Aggregation 
       f_j^(l+1) = Σ_ {k ∈ N(p_j^(l+1))} α_jk * h_jk 

// Eqn. (11) 

End For 

Step 7: Feature Propagation (Interpolation Back to 
Original Points) 
For l = L-1 down to 0 do: 

 For each point p_i^(l) in P^(l): 
 Identify neighbors p_j^(l+1) in P^(l+1) 
 Compute weights w_ij = 1 / distance(p_i^(l), p_j^(l+1)) 
 f_i^(l) = (Σ_{j} w_ij * f_j^(l+1)) / (Σ_{j} w_ij) 
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// Eqn. (12) 
 End For 

End For 

 Step 8: Point-wise Classification 
For each point p_i^ (0) in P^ (0): 
    ŷ_i = argmax softmax (W * f_i^ (0) + b) 
// Eqn. (13) 
End For 

Return { ŷ_i } as semantic labels for all points 

4.4 Transmission Line Proxy Extraction 
The objective is to distinguish and separate pole-like objects 
(potentially transmission poles) and overhead wires (e.g., 
tram or streetcar power cables) from the previously 
segmented semantic classes. As there are no explicit 
transmission line annotations available in the KITTI dataset, 
detected overhead wires (potentially tram lines) will be used 
as proxy objects for transmission lines. Figure 3 shows the 
workflow diagram for transmission line proxy extraction, 
illustrating each key step from data preprocessing to hazard 
detection clearly and systematically. 

Figure 3: Workflow Diagram for Transmission Line 
Proxy Extraction 

Geometric filtering and clustering are essential in the 
transmission line proxy extraction process. Geometric 
filtering identifies candidate points likely to belong to linear 
or cylindrical structures such as cables and poles by 
analyzing local point density within a neighborhood. High-
density, linear features are flagged as potential transmission 
line elements. Following this, DBSCAN clustering groups 
these filtered points into distinct clusters, isolating 
continuous structures like transmission poles or wires while 

discarding noise. Finally, line fitting techniques such as 
RANSAC are applied to the clustered points to reconstruct 
straight or spline models of transmission line proxies. This 
integrated process enables accurate modeling of 
transmission lines from LiDAR data, supporting reliable 
spatial distance measurement and hazard detection. 

Step 1: Point Cloud Filtering for Linear Structures 
Geometric filtering is first used to separate the candidate 
points that could be parts of linear or cylindrical objects like 
cables and poles. For this, we concentrate on extended 
features by inspecting the local point density and point 
distribution along the point cloud. 
Local Point Density Filtering: For every 
point , compute the local point density in a 
small neighborhood (either with k-nearest neighbors or a 
radius search) and mark points that belong to a high-density, 
linear structure, given in Eqn. (14) 

(14) 
where is a small radius specifying the neighborhood, and 

is the neighborhood of point . High local density 
points grouped along a straight line or a cylinder are marked 
as possible transmission line candidates 
Step 2: Clustering Using DBSCAN 
To further separate line-like objects from other things, 
density-based clustering can be used. DBSCAN (Density-
Based Spatial Clustering of Applications with Noise) is 
perfect for this as it can identify dense areas of points that 
make up continuous shapes, like transmission poles or 
cables, and ignore unconnected noise. 
DBSCAN clusters points within a certain epsilon distance 
(ϵ) and shares a minimum number of points (minPts) in their 
neighborhood using Eqn. (15) 

(15) 
where  represents the set of points in the point cloud, and 
the algorithm will identify clusters of points that can 
represent transmission line proxies (poles or cables). This 
allows for the segmentation of the line-like regions from the 
rest of the scene. 
Step 3: Line Fitting to Proxy Points 
After we identify clusters of points that should map onto 
transmission lines (or poles), line fitting is employed to 
restore the shape of the transmission line. As transmission 
lines are typically straight or close to being straight for long 
distances, we perform RANSAC (Random Sample 
Consensus) or least-squares fitting to represent the points as 
a straight line or spline. 
For a set of points belonging to a potential 
transmission line, fit a line model in 3D using Eqn. (16) 

(16) 
where is the starting point,  is the direction vector, and  
is the parameter along the line. RANSAC iteratively selects 
subsets of points and finds the line that maximizes the inlier 
count, minimizing the geometric distance to the line model 
given in Eqn. (17) 
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(17) 
After fitting the line or spline model, the transmission line 
proxy is fully reconstructed and ready for distance 
measurement in the following steps. 
By utilizing geometric filtering, DBSCAN, and line fitting 
algorithms (RANSAC), the model efficiently isolates and 
reconstructs transmission line proxies from the LiDAR point 
clouds. This process enables precise 3D modeling of 
transmission line structures even if the dataset does not have 
clear labels for the said objects. These reconstructed proxies 
are now prepared for calculating spatial distance and hazard 
detection in later phases of the work. A method is presented 
for accurately measuring distances between transmission 
lines and surrounding objects using a combination of 
LiDAR point clouds and high-resolution images. The 
system integrates geometric data from LiDAR and visual 
features from images to enable precise scene understanding. 
Preprocessing steps such as noise filtering, downsampling, 
ground segmentation, and coordinate normalization improve 
data quality and computational efficiency. RandLA-Net is 
used for semantic segmentation, achieving 99.1% accuracy 
and 93.2% mIoU. Transmission line proxies are identified 
using geometric filtering, DBSCAN clustering, and 
RANSAC line fitting. Spatial distances are then calculated 
using 3D Euclidean metrics and compared against safety 
thresholds to flag clearance violations. The system achieves 
a low mean absolute error of 0.16 meters and a root mean 
square error of 0.23 meters, with safety violations detected 
in less than 4% of object pairs. The results are visualized in 
3D with highlighted hazard zones, supporting effective and 
potentially real-time hazard detection in transmission line 
monitoring. 

4.5 Spatial Distance Measurement 
The Spatial Distance Measurement step is critical in 
measuring the clearance among transmission lines (or their 
proxy models) and the adjacent infrastructure including 
vegetation, buildings, and poles. This step is important to 
ensure that the transmission lines are sufficiently separated 
from hazard items to keep them safe and avoid damage. The 
process requires computing 3D Euclidean distances between 
the reconstructed transmission lines and neighbouring 
objects, and then comparing those distances with safety 
thresholds according to transmission line standards. 

Step 1: Calculate 3D Euclidean Distances 
Once the proxy transmission lines (modeled as lines or 
splines) are extracted, the next task is to compute the 3D 
Euclidean distance from each point in the point cloud to the 
reconstructed transmission line. Given a point 

in the LiDAR point cloud and a point on the 
reconstructed line , the Euclidean distance 

is calculated using Eqn. (18) 
(18) 

Where,  is the point in the point cloud  is 
the line parameterized by , with as the starting point 
and  as the direction vector.  is the parameter along the 
line. 
For each point in the point cloud, the closest distance to the 
transmission line (or proxy line) is computed. 

Step 2: Apply Safety Threshold Rules 

After calculating the distances, these values are compared 
with safety thresholds derived from power line regulations. 
Transmission lines typically have minimum safety clearance 
distances defined by local or international standards (e.g., 
IEEE, OSHA). These thresholds take into account factors 
like: 

• Distance to vegetation: Preventing trees or plants
from encroaching on power lines.

• Distance to buildings: Ensuring that transmission
lines do not pose a risk to nearby infrastructure.

• Distance to other poles or structures: Ensuring that
poles do not interfere with each other or other
structures in the vicinity.

Let represent the safety threshold for a given object. If
the calculated distance  falls below this threshold, the 
point is flagged as potentially hazardous. 
Hazard if 
The threshold  can vary depending on the object type, as 
power line regulations typically have different safety 
distances for vegetation, buildings, and other obstacles. The 
system calculates 3D Euclidean distances between 
transmission lines and nearby objects like vegetation, 
buildings, and poles. These distances are then compared 
with safety thresholds based on IEEE and OSHA standards. 
If the measured distance is less than the specified threshold 
for an object type, it is flagged as a hazard. Different safety 
limits apply for vegetation, infrastructure, and poles to 
ensure compliance. Violations are visually highlighted in the 
3D point cloud for easy identification. This method enables 
automated, accurate clearance monitoring with a low error 
rate and strong alignment with safety regulations. 

Step 3: Highlight Regions Below Safety Margins 
Once distances are calculated and compared to safety 
thresholds, regions where distances are below acceptable 
safety margins need to be highlighted for further action. 
These areas are marked as potential hazard zones where 
vegetation, buildings, or other objects may interfere with 
transmission lines. 
The identification of hazardous regions can be done by 
color-coding or highlighting the affected areas within the 
point cloud. For example, any point in the point cloud 

can be visually marked in red or other colors 
to indicate risk. 
The output of this step is a 3D visualization of the point 
cloud, where hazardous areas are highlighted. Although alert 
generation is not implemented in this study, the flagged 
zones can support further decision-making or monitoring. 
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Final Outcome 
• Clearance violations (e.g., encroaching building or

vegetation) are identified and flagged. These
flagged violations serve as key outputs of the
system and support the final goal of automated
spatial clearance monitoring in urban transmission
line environments

• 3D hazard zones are visualized for the areas where
the safety margins are breached.

This process helps ensure that transmission lines are 
adequately monitored for security and that objects close by 
that can cause interferences or present hazards are readily 
identifiable and solved. 

Pseudocode: Spatial Distance Measurement 
Input: 

 P = set of points in the point cloud 
 L = set of transmission line proxies (lines) 
 SafetyThresholds = { vegetation: d_veg, building: 

d_building, pole: d_pole } 

Output: 
 HazardPoints = points violating safety distances 

--- 

For each point p in P: 
 minDistance = very large number 

 For each line l in L: 
 Find closest point on l to p 

       Calculate distance = Euclidean distance between 
p and closest point 

 If distance < minDistance: 
     minDistance = distance 

    Determine object type of p (vegetation, building, 
pole, etc.) 
    Get threshold d_th from SafetyThresholds based on 
object type 

 If minDistance < d_th: 
 Mark p as hazard point 
 Add p to HazardPoints 

End For 

Highlight HazardPoints in the 3D visualization 

Output HazardPoints and visualization 

5. Results and Discussion
This section reports the semantic segmentation and spatial 
distance measurement experiment results carried out on the 

KITTI Dataset. The emphasis here is on testing the proposed 
method for the accuracy of segmentation, precision in 
distance measurement, and performance in detecting hazards 
in the environment of transmission lines. The experiments 
were conducted on a PC with an Intel Core i9-10900K CPU 
at 3.7 GHz, 32 GB RAM, Ubuntu 20.04.5 LTS, and an 
NVIDIA RTX 3080 Ti GPU. Software employed is C++17, 
Python 3.8, PyTorch 1.11.0, and CUDA 11.4 for running the 
models effectively. 

5.1 Semantic Segmentation Results 
To evaluate the effectiveness of the RandLA-Net model for 
semantic segmentation of the point clouds, the following 
metrics were used and Table 1 shows the segmentation 
performance metrics for different classes, including poles, 
buildings, vegetation, transmission line proxies, and 
background. 
Accuracy: The ratio of correctly classified points to the total 
number of points, given in Eqn. (19) 

(19) 
loU: Measures the overlap between predicted and ground 
truth segments for each class. The formula is given in Eqn. 
(20) 

(20) 
Mean Intersection over Union (mloU): The average loU 
across all classes, given in Eqn. (21) 

(21) 
where  is the number of classes. 

Table 1: Segmentation Results 

Class Precision 
(%) 

Recall 
(%) 

F1-
Score 
(%) 

IoU 
(%) 

Poles 98.4 97.9 98.1 95.5 

Buildings 97.3 96.7 97.0 92.8 

Vegetation 94.5 93.1 93.8 88.2 

Transmission 
Line 
 (Proxy 
Power 
Wires) 

96.1 95.4 95.7 90.3 

Background 99.7 99.8 99.7 99.3 

• Overall Accuracy: 99.1%

• mIoU: 93.2%
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Figure 4: RandLA-Net’s Segmentation Metrics Graph 

Figure 4 shows the graphical representation of the 
segmentation results given above. These findings indicate 
that RandLA-Net with image fusion efficiently segments 
important transmission line proxies and city infrastructure. 
The large IoU for cable-like features validates the strength 
of the model in detecting thin, linear features, which is 
particularly significant for monitoring over distances. 
Vegetation segmentation is also extremely accurate, which 
is essential in the detection of possible safety risks. 
RandLA-Net is a deep learning model for semantic 
segmentation of LiDAR point clouds, excelling in urban and 
semi-structured environments but struggling with dense 
vegetation and close structures. In complex scenarios like 
forests, it may misidentify similar objects or noise, leading 
to decreased accuracy. Overlapping point clouds create 
challenges in distinguishing foliage from nearby structures 
such as poles. It finds tightly packed objects difficult to 
segment accurately, resulting in misclassifications. 
Additionally, it may struggle with distance estimation when 
objects cluster in urban settings. While effective in 
controlled environments like suburbs, RandLA-Net's 
scalability in larger, complex datasets is limited. Its real-
time performance may suffer in thick foliage or congested 
surroundings.  Environmental factors such as rain and 
illumination can obscure LiDAR scans, limit segmentation 
capabilities, and require pre- and post-processing to 
successfully manage edge situations. 

5.2 Spatial Distance Measurement 
To evaluate the accuracy of spatial distance calculations 
between transmission line proxies and surrounding objects, 
the following metrics were used: 

MAE: Measures the average of the absolute errors between 
predicted and ground truth distances, given in Eqn. (21) 

  (21) 
RMSE: Penalizes large errors by squaring the differences 
before averaging, given in Eqn. (22) 

(22) 
Safety Clearance Violation Rate: Percentage of objects 
(vegetation, buildings) violating the safety margin threshold, 
expressed in Eqn. (23) 

    (23) 
Table 2 shows the distance measurement results between 
various object pairs, including poles and vegetation, cables 
and buildings, poles and buildings, and cables and 
vegetation. These results indicate that the spatial distance 
measurement module reliably detects proximity issues with 
low error margins, supporting hazard detection and 
maintenance planning. The safety thresholds for vegetation, 
buildings, and poles are defined to ensure safe clearances 
between transmission lines and nearby objects. These limits 
help prevent electrical faults, physical contact, and structural 
interference. Vegetation thresholds guard against tree 
encroachment, building thresholds maintain required 
distances from structures, and pole thresholds avoid utility 
infrastructure conflicts. The system computes 3D Euclidean 
distances using LiDAR data to reconstruct transmission line 
proxies, identifying any point below the defined threshold as 
hazardous. These points are visually marked for quick 
identification. Reported safety violation rates include 3.2% 
for poles and vegetation, 2.5% for cables and buildings, 
1.1% for poles and buildings, and 3.8% for cables and 
vegetation. This automated process enhances hazard 
detection, improves maintenance planning, and ensures 
compliance with clearance regulations. 

Table 2: Distance Measurement Results 

Object 
Pair 

MAE 
(meters) 

RMSE 
(meters) 

Safety 
Violation 
Rate (%) 

Poles - 
Vegetation 

0.18 0.25 3.2 

Cables -
Buildings 

0.15 0.21 2.5 

Poles - 
Buildings 

0.12 0.18 1.1 

Cables -
Vegetation 

0.20 0.28 3.8 

• Average MAE: 0.16 meters
• Average RMSE: 0.23 meters
• Overall Violation Rate: Low, indicating good

clearance detection accuracy

A bar graph in Figure 5 is best used for comparing different 
values across distinct categories or groups. In this specific 
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image, it's used to compare 'MAE', 'RMSE', and 'Safety 
Violation Rate' across different 'Object Pairs'. 

Figure 5: Distance Measurement Results Metrics 
Graph 

Figure 6: Distance Measurement Errors 

Figure 6 shows the distance measurement errors and Figure 
7 is a histogram of the measured distances from 
transmission lines to different types of obstacles. The 
distance in meters is shown on the horizontal axis in discrete 
bins. The frequency, or how often a specific range of 
distances was measured, is on the vertical axis. The 
histogram indicates the central tendency and variation of 
these distance values, showing the most typical distances 
and the range of variation measured. 

Figure 7: Histogram of Measured Distances Between 
Transmission Lines and Obstacles 

The pie chart in Figure 8 shows the rate of safety violations 
for four pairs of objects: Cables - Vegetation, Poles - 
Vegetation, Cables - Buildings, and Poles - Buildings. Each 
of the pie slices corresponds to one of these object pairs, and 
the diameter of each slice is proportional to the percentage 

of safety violations found for that particular pair. The 
percentages are also clearly marked on each slice, making it 
possible to directly compare the rates of violations. The 
graph visually indicates which object pairs have the greatest 
and least frequency of safety violations. 

Figure 8: Safety Violation Rates across Object Pairs 

Figure 9 displays a 3D LiDAR (Light Detection and 
Ranging) point cloud that has been projected onto the 2D 
coordinates of a standard image. The red dots represent 
individual data points captured by the LiDAR sensor, and 
their placement corresponds to their location as seen from 
the perspective of the image. By projecting the point cloud, 
it becomes easier to associate the 3D measurements with the 
objects and features visible in the corresponding image. 

Figure 9: LiDAR Point Cloud Projected onto Image 
Coordinates 

5.3 Hazard Detection and Visualization 
The system visualizes hazard zones by color-coding the 3D 
point cloud output: 

• Red: Indicates points where the clearance is below
the safety threshold (hazard).

• Green: Indicates points with safe distances.
Although the current implementation does not generate real-
time alerts, the visual outputs highlight hazardous areas for 
manual review or future automation. The RandLA-Net 
model effectively manages environmental variations such as 
weather and terrain by combining LiDAR point clouds with 
high-resolution imagery and robust preprocessing 
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techniques. Noise filtering through Statistical Outlier 
Removal removes spurious points caused by environmental 
factors. Ground segmentation and coordinate normalization 
ensure focus on relevant structures like poles and vegetation. 
RandLA-Net enhances segmentation by preserving fine 
geometric details and enabling generalization in diverse 
outdoor conditions. The fusion of visual and geometric data 
improves object recognition under varying lighting and 
terrain. Though validated on the KITTI dataset, the method 
shows strong performance and proposes future adaptation 
for complex terrains like forests and mountains. 
Figure 10 displays two 2D scatter plots side by side, each 
showing a point cloud from a bird's-eye view (X and Y 
axes). The left graph, "Segmented Point Cloud (2D View)," 
contains the data points colored differently, presumably 
indicating various segmented classes or categories found in 
the point cloud. The correct plot, "Hazard Zones 
Highlighted (2D View)," shows the majority of points as 
Gray, with a smaller set of points highlighted as red. These 
red points would probably represent areas or objects 
determined as "hazard zones" according to some given 
criteria. The visualization comparing these two plots will 
provide a sense of the relative positioning of the segmented 
classes regarding the detected hazard zones across the same 
spatial context. 

Figure 10: Segmented and Hazard-Highlighted LiDAR 
Point Cloud Visualization (2D Projection) 

Figure 11 shows three distinct 3D scatter plots, each plotting 
a LiDAR point cloud of the same environment from almost 
identical but not quite identical viewing positions. Each is 
viewed using a three-dimensional Cartesian coordinate 
system with the X and Y axes defining the horizontal plane 
and the Z axis defining height. The colored individual points 
in the cloud are most probably the 3D intensity of the 
LiDAR signal reflected or perhaps some other 
characteristics such as distance or the object class. These 
visualizations give a spatial indication of the scene 
environment that is sensed by the LiDAR sensor and show 
the shape, size, and relative locations of the objects in the 
scene that are scanned. Multiple views create a richer 
perception of the scene's 3D structure. The paper presents a 
method that integrates LiDAR point clouds and high-
resolution imagery for real-time monitoring of power 
transmission lines, focusing on calibration, synchronization, 
and real-time data acquisition. While using the offline 
KITTI dataset for development, the approach is adaptable to 
UAV-based real-time applications. It emphasizes the need 
for intrinsic and extrinsic sensor calibration and precise 
temporal synchronization to ensure accurate data fusion. The 

system simulates real-time performance using frame-synced 
KITTI data and employs lightweight preprocessing, efficient 
segmentation with RandLA-Net, and fast 3D distance 
calculations. This makes it suitable for GPU-enabled edge 
devices and real-time hazard detection, enabling automated, 
scalable monitoring in field conditions. 

Figure 11: 3D LIDAR Point Cloud 

Figure 12 shows a 3D Point Cloud Visualization with Color-
coded Classes. The colors likely represent different classes 
or values within the point cloud data, such as depth, 
intensity, or object categories. The image appears to show 
scenes with roads, vehicles, and buildings, all represented by 
different colors. 

Figure 12: 3D Point Cloud Visualization with Color-
coded Classes 

5.4 Performance Comparison 
The proposed method demonstrates higher accuracy and 
robustness in these areas compared to the existing 
approaches. Table 3 compares the core aspects of the three 
research papers with the proposed method, focusing on data 
source, real-time capability, segmentation accuracy, hazard 
detection, and distance measurement. The proposed 
approach offers an advanced real-time solution for 
monitoring power transmission lines, surpassing existing 
methods. [24] Focused on vegetation inspection but lacked 
distance measurements and safety compliance. [22] 
presented a mobile LiDAR framework with semantic 
segmentation inaccuracies, while PowerLine-Net by 29. 
showed segmentation performance without real-time 
capabilities or spatial clearance evaluation. Our system uses 
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high-resolution LiDAR and RandLA-Net for 99.1% 
segmentation accuracy and 93.2% mIoU, incorporating 3D 
distance measurements and IEEE/OSHA safety 
comparisons, effectively addressing limitations in 
scalability, generalization, and hazard identification. 

Table 3: Comparison of Key Features Across Papers 
and Proposed Method 

Aspect Bergmann 
et al(2024) 

(M. Li et al. 
2024) 

Proposed 
Method 

Segmentatio
n 

Medium – 
Focus on 
vegetation 

Medium – 
Transmissio
n line object 
segmentatio
n 

High – 
Effective 
segmentatio
n of multiple 
objects 
(buildings, 
plants, 
transmission 
lines) 

Hazard 
Detection 

Medium – 
Vegetation 
interference 
with power 
lines 

Medium – 
Transmissio
n line object 
identification 

High – 
Detection of 
vegetation, 
buildings, 
and other 
objects along 
transmission 
lines 

Distance 
Measuremen
t 

Low – No 
explicit 
distance 
measureme
nt 

Medium – 
Real-time 
registration 
and 
classificatio
n 

High – 
Accurate 
distance 
measuremen
t between 
transmission 
lines and 
objects 

Method 
Complexity 

Medium – 
Deep 
learning for 
vegetation 
inspection 

Medium– 
Kalman 
filtering + 
deep 
learning for 
registration 

High – 
Combines 
multiple 
algorithms 
for feature 
extraction, 
segmentatio
n, and 
measuremen
t 

Accuracy 
(Hazard 
Identificatio
n) 

Medium – 
>94%
precision for
vegetation
interference

Medium – 
94.7% 
accuracy in 
object 
identification 

High – 
99.1% 
Vegetation 
segmentatio
n is also 
extremely 
accurate, 

which is 
essential in 
the detection 
of possible 
safety risk 

Novelty Medium – 
Uses deep 
learning for 
vegetation 
inspection 

Medium-
dynamic 
point cloud 
registration 

High – 
Combines 
airborne 
LiDAR with 
multiple 
advanced 
algorithms 
for 
transmission 
line safety 
monitoring 

RandLA-Net outperforms several existing segmentation 
models in key areas relevant to power transmission line 
monitoring. Compared to PointNet++, it handles sparse and 
large-scale LiDAR data more efficiently while preserving 
fine geometric details. Against DGCNN, RandLA-Net 
offers greater computational efficiency and scalability, 
making it more suitable for real-time applications. When 
compared with Power Line-Net, RandLA-Net shows better 
real-time capability and generalization with fewer issues 
related to class imbalance. Additionally, models like 
DCPLD-Net and SS-IPLE, though innovative, are more 
complex and less modular, whereas RandLA-Net integrates 
seamlessly with LiDAR-image fusion systems. It delivers 
higher segmentation accuracy, faster inference, and stronger 
environmental adaptability for detecting linear infrastructure 
like power lines. 

5.5 Discussion 
The high overall accuracy (99.1%) and mIoU above 93% 
demonstrate that RandLA-Net, combined with image fusion, 
effectively segments critical transmission line proxies and 
urban infrastructure. The proposed system enhances 
transmission line safety by automating monitoring with 
LiDAR point clouds and high-resolution pictures, therefore 
lowering reliance on manual inspection.  Ground surveys 
and drone operations are examples of traditional inspection 
processes that are both time-consuming and error-prone.  By 
merging LiDAR and picture data, the device detects 
clearance violations and dangers while also giving real-time 
distance measurements between transmission lines and other 
impediments. It recognizes possible hazards such as 
vegetation intrusion and surrounding buildings, avoiding 
operational problems. By leveraging sophisticated semantic 
segmentation models such as RandLA-Net, the system 
categorizes objects within extensive point clouds and applies 
accurate distance measurement methods. This automation 
guarantees precise identification of safety breaches with 
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minimal supervision, greatly boosting reliability and safety 
in comparison to manual checks and increasing the 
efficiency of maintenance tasks through ongoing 
surveillance. 

Final Output Summary: 
• Clearance violations (e.g., encroaching buildings or

vegetation) are identified and flagged. These
flagged violations serve as key outputs of the
system and support the final goal of automated
spatial clearance monitoring in urban transmission
line environments.

• 3D hazard zones are visualized in areas where the
safety margins are breached, providing a clear
representation of potential risks for further analysis.

The method handles environmental variations such as terrain 
through robust preprocessing, RandLA-Net-based 
segmentation, and LiDAR-image fusion. Noise filtering 
removes spurious points caused by environmental 
conditions, and ground segmentation isolates relevant 
features for improved accuracy. RandLA-Net ensures 
generalization across complex outdoor scenes using random 
sampling and local feature aggregation. The fusion of 
geometric LiDAR data with high-resolution images 
enhances detection under varying lighting and terrain. 
Although tested on urban datasets (KITTI), the method 
achieves 99.1% accuracy and 93.2% mIoU, with low hazard 
violation rates. 
Real-Time Implementation Feasibility  
Even though the study makes use of the pre-recorded and 
offline dataset, the methodology applies to real-time 
systems. Provided with the right hardware in the form of 
real-time LiDAR sensors, camera systems in 
synchronization, and GPU-enabled edge devices, the 
majority of the pipeline's stages can be run in real time. In 
particular, noise filtering, ground segmentation, RandLA-
Net inference, proxy extraction, and spatial distance 
calculation are computationally light and can be 
implemented in real-time systems. Everything else, except 
the initial training of the deep learning model and dataset 
collection (in the proposed work, utilizing KITTI), can go 
online after training. The model can then continuously 
process live point cloud and image data. This verifies the 
capability of the method to aid real-time hazard detection 
and clearance monitoring in real transmission line 
conditions, which facilitates quicker and automatic decision-
making.  

6. Conclusion and Future Scope
This research introduced an end-to-end real-time monitoring 
system for power transmission lines through the fusion of 
high-resolution visual imagery and LiDAR point cloud data. 
The monitoring system offers several cost-related 
advantages compared to conventional inspection methods. It 
reduces labor and operational costs by minimizing the need 
for manual surveys and aerial inspections through 
automation. The use of deep learning RandLA-Net lowers 

post-processing expenses by eliminating manual 
intervention. Equipment and transport costs are reduced by 
utilizing pre-collected or vehicle-mounted LiDAR data 
instead of deploying drones or helicopters. Its high accuracy 
in hazard detection supports early intervention, cutting 
emergency response costs. The system's scalability 
decreases inspection frequency, and accurate hazard 
visualization enables predictive maintenance, leading to 
overall cost savings and extended infrastructure lifespan.  

The integration of LiDAR point cloud data with high-
resolution imagery significantly enhances power 
transmission line monitoring by combining precise 3D 
geometric information with rich visual detail. This fusion 
improves scene understanding, object identification, and 
hazard detection. Using RandLA-Net for semantic 
segmentation, the system achieves 99.1% accuracy and 
93.2% mIoU, effectively detecting thin structures like wires. 
It enables accurate spatial distance measurements with low 
MAE 0.16 m and RMSE 0.23 m, and maintains safety 
violation detection rates below 4%. The method supports 
real-time implementation, reduces manual inspection 
dependency, lowers operational costs, and improves 
monitoring reliability in complex environments. The 
RandLA-Net semantic segmentation framework was used, 
where the model segmented infrastructure elements like 
poles, buildings, vegetation, and transmission line proxies 
with high precision. The spatial distance measurement 
module also allowed for the accurate calculation of 3D 
Euclidean distances between transmission lines and other 
structures, effectively marking potential clearance breaches. 
Experimental evaluation on the KITTI dataset showed 
excellent segmentation accuracy (mIoU of 93.2%) and 
minimal spatial distance error (average MAE of 0.16 
meters), affirming the robustness and reliability of the 
model. The method provides substantial benefits in boosting 
the automation, precision, and safety of monitoring power 
transmission lines and can be easily applied in real-time 
with suitable sensors and edge computing equipment. The 
enhanced segmentation accuracy and precise spatial distance 
measurements affirm the effectiveness of using KITTI along 
with RandLA-Net and multi-modal fusion techniques. This 
provides a highly reliable framework for monitoring 
transmission line proxy infrastructure in urban settings and 
supports future scaling to more specialized datasets. The 
system achieves real-time performance by integrating strong 
hardware with refined software methods. It was evaluated 
with an Intel i9 processor, 32 GB of RAM, and an NVIDIA 
RTX 3080 Ti graphics card. For field applications, edge 
devices such as NVIDIA Jetson AGX Orin and Xavier excel 
because of their integrated GPU features. Improvements like 
model pruning, quantization, and deployment using 
TensorRT or ONNX Runtime boost inference speed. 
Preprocessing with GPUs and handling data asynchronously 
further lowers latency. Utilizing synchronized sensors and a 
modular structure, the system is exceptionally versatile for 
monitoring power lines in real time. 
Future Scope:  
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 Integration with UAVs and real-time sensors is a
matter of extending the existing offline model to
real-time field implementation with drone-based
LiDAR and visual sensors for ongoing aerial
observation.

 Adaptation for varied terrain and weather
conditions means training and testing the model
with data from forest, mountain, and coastal
terrains to increase generalization and
environmental resilience.

 Real-time alert and predictive maintenance are
possible through the creation of an automated alert
creation system and predictive analytics integration
to foresee vegetation overgrowth or structural
decay. A robust foundation is presented for
implementing real-time alerts and predictive
maintenance in power line hazard detection. By
combining LiDAR point clouds and visual imagery
it enables accurate and real-time identification of
hazards like vegetation encroachment and
structural interference. Using RandLA-Net, the
system achieves high segmentation accuracy and
mIoU to classify critical infrastructure components.
It calculates 3D distances between transmission
lines and nearby objects, flagging safety violations.
Though real-time alerts are not yet implemented,
the output highlights hazardous zones, which can
be automated. Predictive maintenance can be
achieved by monitoring distance trends, modeling
vegetation growth, and applying machine learning
to forecast risks. The entire pipeline, comprising
real-time sensing, segmentation, distance
measurement, alert generation, and scheduling, can
be executed on GPU-enabled edge devices, making
it feasible for real-world deployment.
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