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Abstract 
INTRODUCTION: Offshore wind (OsW) energy has emerged as a key factor in the global transition towards high-energy-
return renewable energy, with stable winds and minimal land take. However, the Maintenance and Operation (O&M) of 
OsW wind farms are very challenging due to their hostile marine conditions, huge running costs, and poor accessibility. 
OBJECTIVES: To address these issues, the proposed method offers a Digital Twin (DT) strategy designed to enhance the 
remote operation and maintenance (O&M) of OsW wind power equipment. From the use of high-resolution global OSW 
wind turbine observations from Sentinel-1, combined with domain-specific feature engineering and data preprocessing, 
including outlier removal and normalization, the approach provides robust input for modelling and analysis. 
METHODS: One of the most important aspects of the system is the integration of real-time sensor feeds through Arduino 
devices, secure data exchange through OPC UA, and middleware processing through Node-RED. The sensor-based data 
architecture feeds into a Unity 3D-based digital twin environment, which continuously synchronizes virtual models with 
the physical conditions of the turbines. 
RESULTS: Besides, fault classification is handled with a Categorical Network (CatNet), where attention mechanisms and 
convolutional layers are used to detect abnormalities such as gearbox faults, generator faults and yaw misalignment. 
Interactive dashboards, 3D visualization, and predictive analytics are supported within the framework, enabling operators 
to monitor, diagnose, and control offshore turbines remotely. 
CONCLUSION: Ultimately, this approach significantly reduces unplanned downtime, enhances safety, and maximizes 
power output through intelligent, data-driven decision-making. 
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1. Introduction

Due to its high capacity and minimal 
environmental impact, OsW wind energy has helped 
propel the world toward utilizing renewable resources [1]. 
Operating OSW wind farms in remote or deep locations 
presents new challenges for their traditional maintenance 
approaches [2]. Digital twin technology, which replicates 
assets in digital form, is gaining popularity as a means to 
address these issues by providing fine-tuned observation 
[3]. Integrating real data and simulations allows digital 
twins to report on the state and performance of OsW wind  

turbines [4]. By utilizing technology, this industry can 
adhere to budgets and manage the OSW wind assets more 
efficiently [5]. 

The daily activities of maintaining and operating 
OsW wind farms are shaped by challenging conditions at 
sea, supply chain issues, and the high risk to those on the 
job [6]. Wind turbines are sometimes blocked by powerful 
winds, high waves, and storms, resulting in downtime and 
increased maintenance delays [7]. Because OsW 
installations are so large and complex, it is essential to 
utilize advanced systems for early detection of faults and 
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for planning maintenance schedules [8]. It is also 
challenging to inspect and maintain wind turbines due to 
their remote locations [9]. Therefore, it is necessary to 
explore solutions that can make remote monitoring and 
predictive maintenance better [10]. As the offshore wind 
energy sector continues to grow rapidly, remote 
maintenance presents a critical challenge that must be 
overcome. Our system addresses this requirement by 
integrating real-time monitoring with offshore turbine 
predictive fault detection. This technology minimizes 
operational hazards associated with rough marine 
conditions, providing a timely and efficient solution to 
keep pace with the increasing demands of the offshore 
wind industry. 

Some drawbacks mean that OsW wind power 
systems are not as efficient and value for money as they 
could be [11]. The harsh marine setting necessitates more 
frequent and specialized care for turbine components [12]. 
Predictive maintenance is often unsuccessful with current 
remote monitoring tools, which frequently result in 
equipment breakdowns and prolonged downtime [13]. 
Additionally, because installing OsW turbines is both 
expensive and technically challenging, growing and 
sustaining the sector proves to be a significant challenge 
[14]. Therefore, it is vital to enhance digital tools to 
successfully carry out remote operations and maintenance 
(O&M) [15].  

To overcome the digital twin-based approach 
suggested here, it meets major challenges in OsW wind 
energy management by facilitating real-time, remote, and 
smart monitoring of turbine operations. The integration of 
sensor networks, robust communication protocols, and 
sophisticated data processing layers enables continuous 
performance evaluation, early fault detection, and 
predictive maintenance. The utilization of virtual 
simulations and interactive dashboards reduces 
dependence on on-site inspections, lowers maintenance 
expenses, and enhances safety in adverse marine 
conditions. Although technologies like Unity3D and OPC 
UA have been used in the past in offshore wind turbine 
systems, our work's real novelty is an integrated system 
that unites these technologies with a novel AI model 
(CatNet). The CatNet model, which is based on 
convolutional layers and attention mechanisms, enables 
more accurate and real-time fault detection compared to 
traditional techniques. This amalgamation provides an 
overall solution to offshore wind turbine maintenance, 
catering to both the requirements of real-time monitoring 
and early fault warning. This holistic approach not only 
enhances reliability and energy performance but also 

opens doors to more scalable, sustainable OSW wind 
operations. The contribution of this research is as follows: 

• Create a Digital Twin Framework to simulate
OsW wind turbine operations with real-time
information for advanced monitoring, simulation,
and control.

• Enhance Remote O&M through the fusion of
sensor networks, OPC UA communication, and
middleware processing to facilitate condition-
based and predictive O&M.

• Maximise turbine performance through smart
diagnostics of yaw misalignment, energy
efficiency analysis, and real-time wake flow
control informed by simulation-driven insights.

• Enable Fault Detection and Classification
through the integration of a Categorical Network
(CatNet) model that scrutinizes multi-sensor
information to detect gearbox and generator
faults.

• Empower Data-Driven Decision Making with
interactive dashboards and 3D visualization
software for real-time turbine status,
performance trends, and remote training.

• Improve Sustainability and Reduce Costs by
reducing downtime, optimizing turbine life, and
minimizing dependence on human inspections
through the use of predictive analytics.

Section 1 displays the introduction and literature survey in 
Section 2. Section 3 presents the proposed research 
methodology. Section 4 presents the outcomes and 
discussions, while Section 5 outlines the conclusion and 
future work. 

2. Literature Survey
Y. Cao et al. (2024) have proposed using digital

twins and CFD simulations, in conjunction with 
monitoring data, to measure the efficiency of the turbine. 
Researchers designed and tested a VWFT to ensure the 
connection between the turbine’s motion and the rotation 
of the blades. Missing data in torque, thrust, and lateral 
force were handled by a recurrent neural network that 
predicted the energy harvesting parameters with errors 
less than 10% [16]. 

E. Kandemir et al. (2023) have proposed Unity
3D to handle a digital twin; this work devised a method to 
find the best turbine placements by continuously 
repositioning the equipment. It utilized wind speed and 
direction, along with Jensen's model, to simulate the 
behaviour of wind. To determine the optimal positioning 
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of the turbines, both reactive and optimal methods were 
employed. The simulations revealed that making small 
changes to turbine positions could help create more 
energy in actual situations [17]. 

M. Mahmoud et al. (2024) have proposed a work
that outlines a clear set of steps for incorporating the four 
important systems that need to be included. Physical, 
digital, connection, and service. It examined key 
components of the turbine and identified the essential 
design, measured, and calculated values necessary to 
enhance the helicopter design. The digital system utilized 
machines and computers to store data and facilitate 
calculations, while the connection system employed 
technologies such as SCADA, wireless sensors, smart 
devices, smart grids, and cloud systems to enable 
seamless integration. The service system helped resolve 
issues that arose with the turbines and ensured they were 
operating at their best. This approach's dependency on a 
predefined group of turbine components and design 
factors could prove unsuitable for offshore wind farms 
that feature more dynamic or variable turbine 
configurations, thereby restricting generalizability [18]. 
M. Wang et al. (2023) introduced a system that combines
OSP to determine the optimal number of sensors to use
and their optimal locations, ensuring a balance between
cost and analysis accuracy. Within this model, MCMC-
Bayesian methods helped estimate the damage to the
structure while computing the associated uncertainties.
Testing on the OsW site demonstrated that damage
locations and their severity could be identified correctly
[19].

A. K. Sleiti et al. (2022) have introduced an 
architecture suitable for use in power plants and other 
major engineering structures as part of the work. Key DT 
tools were built, which included models based on physics, 
analysis of sensor data, real-time observation, simulations 
at the local location, and a digital link between all these 
aspects. The research employed anomaly detection, deep 
learning, and dynamic models, along with vector 
autoregressive (VAR) models. The use of operational gas 
turbine data confirmed improvement in finding anomalies 
[20]. Modern research in offshore wind turbine fault 
detection is primarily based on conventional approaches, 
such as threshold-based detection and basic machine 
learning methods. Our methodology, however, proposes a 
new classification system employing CatNet, which 
combines both convolutional neural networks and an 
attention mechanism to detect faults with higher accuracy, 
namely gearbox failure, generator failure, and yaw 
misalignment. This approach is stronger and larger-scale 
than legacy models because it takes into account multi-

source sensor readings and operational conditions in real-
time 

Y. Cao et al. (2023) proposed a work that
utilized computer simulations to assemble a digital model 
and simulation data from wind tunnel tests, enabling the 
rapid visualization of how air and water interact with and 
exert pressure on fixed OsW turbines. It effectively 
separated the important factors to simplify the model and 
stored the data in a combination of different types of 
databases. Uncalculated data were roughly estimated 
using a method that looks at nearby points with various 
weights and balance them out, and a special algorithm 
called Bayesian regularization-back propagation was used 
to fix bigger errors and keep prediction errors down to 
less than 10% Yet, this research delivers a thorough 
method through the application of digital twin and CFD 
simulations, it fails to mitigate the problem of missing or 
incomplete sensor readings, potentially influencing the 
predictive accuracy of the efficiency[21]. 
C. Kim et al. (2022) have suggested that a FOWT was
developed for a digital twin; the simulation model was
created in ANSYS Twin Builder and linked with sensors
using TCP/IP, allowing for live output generation. Test
data from multiple marine situations suggest that it
performs well and could increase the flexibility of power
systems by predicting real-time OsW wind farm output
[22].

X. Zhao et al. (2023) suggested that reduced-
order Modelling (ROM) based on components was 
applied to form a DT anchored on a monopile whose 
characteristics were often changing. To build the ROM 
version, a set of component archetypes was created and 
loaded into the ROM model dedicated to the blade, hub, 
nacelle, and Tower. With a speed that is nearly 650 times 
faster than Finite Element Analysis and a low error rate of 
0.2%, the DT can predict the responses and health of the 
structure in situations of wind and wave loading almost 
instantly [23]. 

M. T. Qaiser et al. (2023) suggested that the
Hywind Tampen wind farm was developed using Unity 
3D, which comprises digital models. It utilized known 
rules of physics and historical records to determine the 
energy results in every season. The findings showed that 
the wind farm was able to supply approximately one-third 
of the local oil and gas platforms' electricity each year, 
significantly reducing their annual CO2 and NOx 
emissions [24]. 

Durga Praveen Devi et al. (2023) demonstrate 
the use of digital twins and IoT-enabled AI to enhance 
operations through predictive analytics and real-time 
monitoring. In the proposed work, these concepts are 
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integrated into offshore wind power systems for the 
optimization of remote operation and maintenance, 
utilizing digital twins created from sensor data. This 
strategy offers benefits such as predictive maintenance, 
remote monitoring, and performance optimization. The 
result is reduced operational downtime, lower 
maintenance costs, and enhanced energy efficiency in 
offshore wind energy systems [25]. 

Dinesh Kumar Reddy Basani et al. (2025) 
integrate AI and digital twin technology to optimize 
healthcare systems through real-time monitoring and task 
management. This technique is leveraged in the proposed 
offshore wind power system to optimize remote 
maintenance and operation of wind turbines. The benefits 
include enhanced efficiency, proactive maintenance 
scheduling, and reduced costs and downtime in offshore 
energy operations [26]. 

Kannan Srinivasan (2020) demonstrates how 
digital twins are used for predictive analytics in system 
performance. For the current research, this strategy is 
adopted to enhance offshore wind power operations by 
utilizing digital twin technology for real-time simulation 
and predictive maintenance. The key benefits of this 
adoption include improved reliability, cost savings 
through remote maintenance, and more informed 
operational decisions [27]. 

E. Katsidoniotaki et al. (2022) have introduced a
computer model to forecast the forces when the waves are 
extremely strong. The digital twin was 90.36% accurate 
on average and significantly reduced the time required to 
complete calculations, reducing them from multiple days 
to seconds. This new method replaced old approaches and 
calculations, quickly and dependably assessing loads on 
important parts and making it safer to operate in 
unfavourable OsW conditions [28]. Modern research in 
offshore wind turbine fault detection is primarily based on 
conventional approaches, such as threshold-based 
detection and basic machine learning methods. Our 
methodology, however, proposes a new classification 
system that employs CatNet, which combines both 
convolutional neural networks and an attention 
mechanism to detect faults with higher accuracy, 
specifically gearbox failure, generator failure, and yaw 
misalignment. This approach is stronger and larger-scale 
than legacy models because it takes into account multi-
source sensor readings and operational conditions in real-
time. OPC UA integration for safe communication with 
Unity 3D enables real-time simulation and visualization 
of offshore wind turbines, facilitating seamless interaction 
and collaboration. OPC UA protocols are used to transmit 

sensor data (e.g., temperature, vibration, pressure) 
securely and reliably. Node-RED middleware is used to 
synchronize data over the network and process it 
smoothly for transfer to Unity3D, where it is visualized in 
real-time to display turbine performance and identify any 
faults. 

2.1 Problem Statement 
OSW wind systems that use digital twins have 

some key limitations. Due to the large amount of 
computer processing required, waking up movements are 
complicated and cannot be easily performed in real-time 
[29]. Hybrid-model-based digital twins rely on accurate 
hybrid models and access to good-quality data, so 
sometimes the failure predictions can be inaccurate [30]. 
Accuracy and calibration problems with sensor data can 
hamper the accuracy of monitoring using virtual sensors 
[31]. Successfully implementing predictive maintenance 
for gearboxes requires large amounts of sensor data and is 
complex to build and unite the models [32]. Moreover, 
relying on digital twin data to improve the reliability of 
OsW substructures meets difficulties due to the challenges 
involved in quantifying structural uncertainty and in 
applying the methods [33]. This suggests that further 
research is needed to enhance model accuracy, improve 
data quality, and expedite calculations in digital twin 
methods for OSWOOSW wind. 

3. Proposed Methodology of Offshore
Wind Power Digital Twin Technology to
Enhance Remote Operation and
Maintenance

Data from OsW wind turbines, as well as 
temperature, vibration, pressure, speed, and electrical 
current/voltage sensors, is gathered and fed into a digital 
twin platform through physical twin and sensor 
integration, OPC UA server resource streams, and Node-
RED middleware processing. Fault classification is 
achieved through CatNet, allowing proper identification 
of equipment faults. The digital twin enables smart 
optimization and performance monitoring, including fault 
diagnostics, energy output optimization, and wake flow 
control in wind farms. Smart diagnosis and early warning 
systems also support OsW wind power operation to 
facilitate proactive maintenance, improving overall 
system efficiency and reliability. Figure 1 illustrates the 
overall architecture diagram for improving remote 
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operations and maintenance (O&M) using digital twin 
technology. 

Figure 1. Overall Architecture Diagram for Improving 
Remote Operation and Maintenance Using Digital 

Twin Technology 

3.1 Dataset Description 
The purpose of “Global dynamics of the OsW 

energy sector monitored with Sentinel-1” is to provide 
data in a way that is useful for others. Count of turbines, 
how much power they generate, and the details of the 
location." Data on OsW farms from all over the world is 
collected using Sentinel-1 SAR images and validated 
using public and commercial sources. The dataset 
contains information on turbine hub heights, installed 
capacity, the number of turbines, and geographic details 
useful for mapping, estimating wind power, and 
constructing digital twins. The two main files contain the 
data. Turbine specifications for each project are provided 
in a CSV file, along with a corresponding GeoJSON file, 
which enables the visualization of turbines on maps and in 
remote viewing programs. Table 1 shows the parameters 
and descriptions of the global OsW turbine supplementary 
dataset derived from Sentinel-1 [34]. In remote sensing 
data, such as Sentinel-1 SAR images, missing data arises 
due to cloud cover, satellite pass, or other environmental 
reasons. To overcome the effect of missing data, 
imputation methods such as interpolation (nearest 
neighbour or linear) are used to estimate missing values 
and maintain the integrity of the dataset during analysis. 
Sentinel-1 images may contain various types of noise 
(e.g., speckle noise) that can affect the quality of the data. 
To reduce noise, we undertake preprocessing steps such 
as spatial filtering and smoothing to limit their effects on 
the dataset. Biases can arise due to various reasons, 
including satellite angle, weather conditions, and 
measurement errors. Normalization of data and the use of 

correction algorithms to compensate for dataset biases are 
strategies employed to correct these errors. 

Table 1. Parameters and descriptions of the global 
OsW turbine supplementary dataset 

Parameter Description 
Hub Height (m) Average height of turbine 

hubs in meters 
Installed Capacity 

(MW) 
Total electrical capacity 

installed for the project in 
megawatts 

Number of Turbines Total number of turbines 
in the wind farm 

Source Origin of the data (e.g., 
official reports, 

manufacturers, public 
databases) 

Latitude & Longitude Geographic coordinates of 
each turbine 

Hub Height (m) Estimated hub height 
derived from Sentinel-1 
and auxiliary sources 

Rotor Diameter (m) Diameter of the turbine 
rotor 

Installed Capacity 
(MW) 

Estimated or reported 
capacity per turbine 

Additional Attributes Other derived or observed 
turbine features (e.g., 
commissioning year, 

region) 

3.1.1 Data preprocessing 
During preprocessing, outliers are removed from 

the data, and all features are scaled to ensure equal 
importance for all variables. By taking these steps, one 
can ensure that machine learning models are reliable and 
accurate in OSW turbine analysis [35]. To fill the missing 
values, linear interpolation is done between the present 
observations found before and after absent data records, in 
order to maintain time continuity and keep the dataset 
intact. In order to remove noise, the sensor readings first 
undergo low-pass and then Kalman filtering. The low-
pass filter eliminates most of the high-frequency noise, 
while the Kalman filter determines adaptively the true 
nature of the signal by modelling measurement 
uncertainties and process uncertainties. With dual-stage 
denoising, the input data becomes reliable and consistent, 
which, in turn, paves the path for better training of any 
downstream machine learning algorithm. 
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3.1.2 Cybersecurity and Data Integrity 
Considerations 

The OPC UA communication protocol offers 
robust security features, including encryption, 
authentication, and data integrity, achieved through 
message signing. This ensures that data being passed 
between sensors, middleware, and the digital twin 
platform is secure against unauthorized access. To ensure 
the safe operation of middleware (Node-RED), secure 
MQTT protocols are implemented, and firewalls are 
configured to restrict unauthorized access to data. 
Furthermore, data integrity is maintained through the use 
of hash functions and digital signatures, which verify the 
authenticity of the transmitted data.  

 To maintain data integrity, offshore wind turbine 
real-time sensor data is verified for validity using error-
checking methods, such as checksums and cyclic 
redundancy checks (CRCs). These methods prevent 
corrupting data and ensure that only valid and reliable 
data is used for fault detection and performance analysis 

3.1.1.1 Outlier Detection 
Detecting outliers before analysis is crucial, as 

they can significantly distort the performance or accuracy 
of models that utilize the data. It removes inconsistencies 
in the data by eliminating OSW turbines whose height or 
capacity is much greater than usual. The main formula is 
in Equation (1). 

   (1) 

where Z is the Z-score,  denotes the actual data value 
(hub height of 250 m),  denotes the mean of the feature 
(average hub height) and is the standard deviation of the 
feature. Z-score in outlier detection because it proves to 
be very effective in detecting extreme values in datasets 
that tend to follow a normal distribution. Offshore wind 
turbine datasets often exhibit significant deviations due to 
sudden changes in environmental conditions (e.g., wind 
speed, vibrations). The Z-score effectively detects such 
extreme values as outliers and is a more accurate method 
than other robust statistical methods, such as the 
Interquartile Range (IQR), which does not perform as 
well in this situation. 

3.1.1.2 Normalization 
Normalization is the process of rescaling features 

to ensure they have a fixed range. It is most essential 
when varying features have different orders of magnitude, 
which would hurt some ML algorithms, notably those 
distance-based ones. The formula for Min-Max scaling is 
performed in Equation (2). 

   (2) 

were  represented by the original value,  and
denotes the minimum and maximum values of the feature, 
respectively and is the normalized value. Min-Max 
normalization normalizes all features to a range of [0, 1]. 
This is important to prevent features with varying units or 
magnitudes from having disproportionate effects on the 
machine learning models. This is especially crucial for 
CatNet with its use of convolutional layers that are 
sensitive to input feature scales. Normalizing the data 
ensures that all features contribute equally to the model's 
performance, which is essential for achieving precise fault 
detection. 

3.2 Feature Extraction using Domain-
Specific Feature Engineering 

Experts in the OSW energy use domain-specific 
feature engineering to extract useful details from raw data, 
such as the size of the hub, the rotor blades, and the 
capacity of the turbines. They are used to check the 
productivity, efficiency, and required maintenance of the 
turbines. This technique enhances model accuracy and is 
specifically designed for digital twins and predictive 
maintenance. Measuring the amount of energy produced 
by wind power is crucial for evaluating its performance, 
as shown in Equation (3). 

 (3) 

w here denotes the power output in watts (W),  is the 
air density,  denotes the swept area of the rotor ,  
denotes the wind speed , and is the power 
coefficient, typically ranging from 0.35 to 0.45 for 
modern turbines. Swept Area in Equation (4); 

      (4) 

where : Swept area of the rotor , Rotor diameter 
(m). This process uses useful features such as wind power 
output and the area of the rotor swept by the wind. The 
approach facilitates more accurate performance 
predictions, facilitates future maintenance planning, and 
enables remote monitoring with reduced reliance on 
external data. 

3.3 Structural Foundations and Smart 
Modelling in Offshore Wind Energy 
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OSW power systems rely on robust structural 
supports, such as monopiles, jackets, or floating 
foundations, to withstand the challenges of hostile marine 
environments. Smart modelling combines these structures 
with turbine elements to optimize performance, durability, 
and resilience, enabling effective energy conversion and 
stable operation in extreme OSW conditions. 

3.3.1 Basic Structure of offshore wind 
An OsW power system has important parts that 

work together to transform wind into useful electricity in 
the ocean. They involve the turbine, made up of the 
blades, hub, and nacelle, the Tower, Foundation, such as a 
monopile, jacket, or a floating base, and subsea cables to 
carry the electricity. The turbine transforms kinetic energy 
in the wind into electricity by rotating a generator inside 
its nacelle [36]. Lifted on high by the Tower, the turbine 
captures steady winds and rides out stormy seas on the 
sturdy base foundation. These OsW turbines are 
positioned to generate enormous amounts of renewable 
energy while minimizing their impact on both people and 
the environment. Figure 2 shows the basic structure of 
OsW. 

Figure 2. Structure of offshore wind 

3.3.2 Digital Twin Framework for Offshore Wind 
Operations 

Digital twin modelling produces digital replicas 
of OsW turbines or farms that are constantly updated in 
real time with operational data. The models combine 
information from design specifications and live 
performance, and weather data to reproduce real-world 

behaviour. It helps operators analyze and forecast 
behaviour by replicating operating scenarios on virtual 
platforms. Up-to-the-minute information updated in the 
digital twin proves instrumental in gaining insight and 
improving the performance of wind turbines. 
Models are created using FEM to predict and evaluate 
how various turbine parts react to conditions such as high 
winds and rough seas while they're in operation. Setting 
the parameters for hub height and installed capacity 
ensures that the model accurately represents the turbine's 
real-world capabilities. It enables improved forecasts, 
streamlined development of maintenance strategies, and 
better-informed decisions in farm management. Figure 3 
shows the schematic diagram for the digital twin platform. 
OPC UA integration for safe communication with Unity 
3D enables real-time simulation and visualization of 
offshore wind turbines, facilitating seamless interaction 
and collaboration. OPC UA protocols are used to transmit 
sensor data (e.g., temperature, vibration, pressure) 
securely and reliably. Node-RED middleware is used to 
synchronize data over the network and process it 
smoothly for transfer to Unity3D, where it is visualized in 
real-time to display turbine performance and identify 
faults. 

Figure 3. Schematic Diagram of the Digital Twin 
Platform 

3.3.2.1 Physical Twin and Sensor Integration 
The initial stage of the system uses several OsW 

turbines outfitted with critical sensors. All vital turbine 
parameters are captured by varying sensors that constantly 
measure the surrounding environment and operating state. 
The Arduino Uno is used to gather and transmit the raw 
environmental data from the physical systems. This initial 
configuration enables the system to monitor turbine 
functioning reliably, identify deviations and predict 
optimum maintenance activities. 

EAI Endorsed Transactions on 
Energy Web 

| Volume 12 | 2025 | 



 
 Huatao Si et al. 

8 

3.3.2.2 An OPC UA Server manages resource 
streams. 

The information gathered by the Arduino is sent 
to an OPC UA Server. The OPC UA server establishes an 
industry-standard, secure connection between physical 
systems and digital systems. It organizes and makes the 
data available for later analysis and interpretation. OPC 
UA enables the reliable and coherent transfer of data, 
facilitating the remote monitoring of distributed wind 
farms. 

3.3.2.3 Middleware Processing through Node-RED 
The data collected from the sensors is processed 

by a middleware module, Node-RED, which is configured 
as an OPC UA client. Node-RED takes the raw data and 
transforms it into organized and formatted outputs that 
other components can easily access. The processed data is 
in a format that various simulation tools and remote 
interfaces can use. With this middleware, maintenance 
staff can create logic rules and automated warnings using 
the transformed data. 

3.3.2.4 Digital Twin Modelling in Unity3D 
The processed data is then routed to a digital 

twin layer created using Unity3D. The platform creates a 
digital model of the wind turbines and keeps it 
continuously in sync with real-time sensor readings. The 
digital twin features both graphical and numerical 
representations of each turbine's current functioning 
condition. Users can connect to the platform from both 
server and client systems that use the Windows operating 
system. Using this virtual environment, staff can monitor 
key indicators, run virtual tests and diagnose issues even 
when they aren't on the offshore platform. Joining these 
components together enables OsW operators to operate 
more efficiently and reliably in a remote setting. 
Technicians can monitor turbine efficiency, identify 
potential issues, and plan maintenance activities before 
they escalate into major problems. The use of a digital 
twin supports maintenance approaches based on the 
equipment's condition, which reduces idle time and 
lowers costs. The integration of these layers into an 
efficient process enables enhanced predictions and 
sustains the reliable functioning of renewable energy 
systems in the face of adverse conditions at sea. Sensor 
data updates the Unity3D digital twin every 10 seconds to 
simulate the turbine in near real time. To that end, 
asynchronous data handling and buffered interpolation 
methods are employed to smooth over delay due to 
sensors, network transmission, and rendering. OPC UA 
with binary encoding, in conjunction with Node-RED 

middleware optimized for the purpose, ensures minimum 
data transfers latency. The system guarantees an end-to-
end delay of fewer than 3 seconds to allow for real-time 
visualization with acceptable accuracy. 

3.4 Fault Classification using 
Categorical Network (CatNet) 

CatNet, a convolutional attention model, enables 
fault classification in OsW power systems by processing 
various sensor data flows. It analyses signals from 
multiple sensors, including vibration, temperature, 
pressure, and rotational speed, coming from vital 
machinery such as the gearbox and generator. CatNet 
extracts spatial relationships between different points in 
time using convolutional layers, and it gives more 
significance to the aspects of the input that are most 
related to the presence of faults using attention. It allows 
the model to correctly identify whether faults originate 
from the gearbox or the generator, as well as yaw 
misalignment. The CatNet model consists of four 
convolutional layers, each utilizing 3x3 kernels and 64, 
128, 256, and 512 filters, respectively. ReLU activation 
functions then precede the convolutional layers to inject 
non-linearity. The network employs an attention 
mechanism, allowing the model to focus on the most 
relevant sensor features by assigning larger weights to 
important data points, thereby improving accuracy in fault 
detection. The network is terminated with a fully 
connected layer and a softmax activation for fault 
classification into categories such as gearbox failure, 
generator failure, and yaw misalignment. 

CatNet can provide rapid and dependable 
detection of equipment faults from multi-source data, 
aiding initiatives for predictive maintenance and reducing 
unplanned outages in offshore turbines. CatNet is a fault 
detection model based on deep learning that incorporates 
convolutional layers to learn spatial features from sensor 
data, and then utilizes an attention mechanism to focus on 
the most important features for fault detection. There are 
four convolutional layers with 3x3 kernels and ReLU 
activation functions. The attention mechanism enhances 
the model's capacity to focus on the most important 
features of sensor data, such as aberrant spikes in 
vibration or temperature, thereby improving fault 
classification accuracy. Figure 4 shows the architecture 
diagram for CatNet. 
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Figure 4. Architecture Diagram for Categorical 

Network (CatNet) 

3.4.1 Input Layer 
Data from OsW turbine sensors, combined in 

datasets, is fed into the Input Layer of the model. 
Typically, the inputs encompass vibration from the 
gearbox and generator, bearing and nacelle temperatures, 
levels of liquid pressure in the lubrication system, and 
aerodynamic stress on the rotor, as indicated by speed 
readings and measurements of generator current and 
voltage. The input vector is represented in Equation (5) 

 
 

.                                                                                   (5) 

where denotes the distinct sensor feature. 

3.4.2 Embedding Layer 
An embedding layer transforms high-

dimensional sensor input data into a dense, lower-
dimensional vector space that encompasses relationships 
among the underlying features. This enables the model to 
learn more complex patterns and interactions between 
different sensor parameters, thereby improving its fault 
classification accuracy. The Equation (6) shows the 
embedding layer, 

                   (6) 

Where  is the embedding matrix, and is the embedded 
feature vector of the input ? 

 

 

3.4.2.1 Attention Mechanism for Fault Detection 
The attention mechanism enables the model to 

attend to the most pertinent segments of the sensor 
information while fault-classifying. In offshore wind 
turbines, certain periods or characteristics (e.g., 
anomalous vibrations or temperature surges) may be 
emphasized that are highly correlated with faults, such as 
gearbox failure or generator faults. It significantly 
enhances fault class accuracy by allowing the model to 
focus on essential signals among the vast amounts of 
sensor measurements. 

3.4.3 Hidden Layers (Hidden Layer 1 & 2) 
These fully connected layers extract a deeper 

nonlinear pattern from the embedded feature vectors 
through the activation functions, such as ReLU or tanh, 
with each layer applying a transformation given in 
Equation (7):  

                   (7) 

Where  is the output from the embedding 
layer ? The weights and biases of the layer 

are an activation function. 

3.4.4 Fully Connected Layer 
The final fully connected layer acts to pool and 

combine the learned features within the hidden layers into 
a single vector. The learned representation encodes the 
most significant patterns necessary for the proper 
classification of fault types in the output layer. The 
mathematical formula for a fully connected layer is in 
Equation (8) 

 

.                                                                                     (8) 

where denotes the output vector,  is the weight 
matrix,  is the output vector from the hidden layer 
and  is the bias vector. 

3.4.5 Output Layer (Classification) 
The output layer returns the final classification 

result, indicating whether a fault exists in either the 
gearbox or generator. It employs the softmax activation 
function to transform the output scores into probabilities 
so that the model chooses the most likely class in 
Equation (9); 
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                    (9) 

were,  Probability of gearbox fault and the 
Probability of generator fault. CatNet efficiently 
categorizes OsW turbine faults by recognizing 
multivariate sensor signals through convolutional and 
attention mechanisms. It identifies gearbox faults (gear 
wear, loss of oil pressure), generator faults (overheating, 
rotor imbalance), and yaw misalignment with high 
accuracy. The model highlights key features, enhancing 
classification accuracy. This aids in the diagnosis of faults 
and predictive maintenance. During each epoch, the 50 
iterations ran the training on the CatNet model. Batch size 
was 32; Adam was the optimizer behind a 0.001 learning 
rate. The setup was done with 70% of the dataset for 
training, 15% each for validation and testing. Multi-class 
fault categorization was done by a system; hence, 
categorical cross-entropy was chosen as the loss function. 
Meanwhile, the robustness of the system was assured with 
a five-fold cross-validation on never-before-seen sensor 
data in the presence of different operational conditions. 
The evaluation parameters include accuracy, precision, 
recall, and F1-score. 

3.5 Digital Twin Applications in Smart 
Operation and Maintenance of 
Offshore Wind Energy 

The OsW farm digital twin modelling platform 
provides next-generation intelligent O&M for 
commercial-scale OsW farms. Through the fusion of real-
time sensor information, OPC UA communication 
protocols, and interactive visualization environments such 
as Unity 3D, the platform enables remote simulation, 
performance monitoring, and predictive maintenance. 
Applied to a standard 300MW OsW farm with 4MW-
class turbines, this framework can help improve 
operational efficiency and minimize unplanned downtime, 
yielding an estimated annual value of RMB 31.703 
million through better maintenance and power generation. 
The digital twin platform facilitates OsW O&M in two 
main aspects: (1) smart analysis and optimization by 
constant modelling and performance assessment, and (2) 
intelligent diagnosis & warning. The subsequent sections 
provide an in-depth discussion of the applications. 

3.5.1 Smart Optimization and Performance Analysis 
for Offshore Wind Energy 

Three fundamental applications of the OsW 
power digital twin system for intelligent analysis and 

operation optimization are energy efficiency assessment 
over the wind farm, yaw alignment diagnostics and 
optimization, and the application of wake flow control 
measures to enhance turbine performance. 

3.5.1.1 Optimizing Energy Output in Offshore Wind 
Farms 

To maximize the operating effectiveness of OsW 
turbines, an energy efficiency assessment framework is 
established through a digital twin-based simulation 
system. This system utilizes real-time sensor readings and 
simulation technologies to evaluate power generation 
capability and monitor continuous deterioration in turbine 
output. Through a combination of structural properties, 
weather conditions, and operational conditions, it 
provides real-time diagnoses of turbine health, enabling 
the early detection of inefficiency. This approach 
minimizes unexpected breakdowns, increases turbine 
uptime, and optimizes energy production efficiency. 
Figure 5 indicates the architecture of this digital twin-
driven energy efficiency monitoring system. 

 

Figure 5. Digital Twin Wind Turbine Energy 
Efficiency Analysis System Structure 

3.5.1.2 Fault diagnostics and optimization 
Conventional SCADA-based manual diagnosis 

of wind turbine yaw alignment provides instantaneous 
access to data and prevents losses during downtime. 
Nevertheless, it is still reliant on experienced technicians 
for daily interpretation, and therefore, it is time-
consuming and labour-intensive. In our process, a digital 
twin-aided yaw diagnostics and optimization model is 
constructed by combining SCADA information with 
knowledge of fault mechanisms. This model enables the 
use of machine learning-based yaw misalignment 
prediction and detection, thereby improving diagnostic 
accuracy and reducing the need for human intervention. 
Figure 6 shows the digital twin-based yaw prediction 
decision-making architecture.  
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Figure 6. Digital Twin-Based Yaw Prediction 
Decision-Making Architecture 

3.5.1.3 Wind farm wake flow control and optimization 
Wake effects of coastal wind farms significantly 

impact overall power generation efficiency, operational 
costs, and turbine lifespan, resulting in increased fatigue 
loads and reduced energy capture. In offshore cases, 
where sea surface roughness is low and wake attenuation 
is minimal, wake action is more aggressive and complex 
due to fluctuating atmospheric wind fields. This makes 
accurate wake evaluation and control very challenging. 

Traditional approaches borrow computational 
fluid dynamics (CFD) simulations and LiDAR wind 
measurements to investigate wake behaviour. Such 
approaches are, however, not endowed with smart control 
or real-time adaptability. It is possible to simulate the 
interaction between wakes by deploying a digital twin 
framework within OsW farms. This enables the real-time 
evaluation of wake loss, wind speed variability, and 
turbine power output across varying operational 
conditions. Based on this information, optimal yaw 
strategies can be executed via field-level controllers to 
enable smart wake reduction and increase the overall 
efficiency of power generation. 

3.5.2 Offshore wind power intelligent diagnosis & 
warning application 

For early warning of and diagnosis in the 
operation of a single wind turbine's main equipment, the 
transmission system and generator are used as objects to 
build gearbox temperature and generator fault early 

warning systems, respectively. At the same time, for the 
overall operation of the wind farm, the digital twin system 
of a single wind turbine is combined to build the field 
group early warning system. 

3.5.2.1 Early Warning Systems for Gearbox 
Temperature and Generator Faults in Offshore Wind 
Turbines 

The wind turbine transmission system, being one 
of the most vital components, is likely to fail under 
adverse environmental conditions and high-load 
operation. It is challenging to identify initial damage to 
the transmission system, and prolonged negligence can 
lead to a serious breakdown of key elements, such as the 
gearbox and main shaft, resulting in substantial economic 
losses. General fault diagnosis techniques for the 
transmission system are oil and fluid data analysis and 
acoustic emission data analysis. The oil-based technique 
employs iron spectrum and spectral analyzers to measure 
wear particles in the lubrication system, but tends to be 
lacking in timeliness when detecting faults. The acoustic 
emission technique identifies failure types and severity by 
detecting changes in elastic wave frequencies, but at the 
expense of requiring expensive sensors and being 
sensitive to noise. 

The generator, an essential unit that ensures the 
conversion of mechanical to electrical energy, is prone to 
faults such as overheating, rotor imbalance, and insulation 
deterioration, which can significantly affect turbine 
operation and safety. Generator fault diagnosis typically 
involves measurements of temperature, vibration, current, 
and voltage through available sensors. Predictive models 
apply artificial intelligence algorithms to these sensor data 
sets to detect early warning signs of faults by identifying 
abnormal patterns and deviations from standard operating 
behaviour. 

Based on wind turbine digital twin technology, 
real-time monitoring, diagnosis, and early warning 
systems for faults have been established for the gearbox 
and generator. For the gearbox, an early warning system 
based on temperature monitoring using SCADA and 
vibration analysis, combined with digital twins, was 
developed to extract fault features hidden in vibration 
signals and SCADA data. This methodology accurately 
identifies fault locations and severity, visualizing them 
within the digital twin gearbox model. Likewise, for the 
generator, predictive models based on AI scan sensor 
measurements—temperature, vibration, and electrical 
values—inside the digital twin platform to find anomalies 
characteristic of faults such as overheating or rotor 
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imbalance. This integration enables timely fault prediction 
and early warning, enhancing maintenance scheduling and 
minimizing unplanned downtime through precise 
diagnostics and visualization within the digital twin 
environment. 

3.6 Remote Operation & Visualization 
Digital twin technology enables remote operators 

to monitor, operate, and simulate offshore turbines from 
various locations worldwide. Virtual models of turbines 
would allow operators to remotely monitor their status, 
analyze performance data, and predict upcoming 
maintenance needs. This method helps optimize decision-
making processes, lowers costs, and ensures higher 
performance by providing continuous updates, forecasts, 
and 3D representations designed for challenging offshore 
conditions. Figure 7 illustrates the process of an Offshore 
wind farm to power a user. 

 

 
 

Figure 7. An offshore wind farm to power the user 
process 

 
3.6.1 Virtual Turbine Operation using Digital Twins 

Digital twins enable the remote control of OsW 
turbines by replicating real-time behaviour using actual 
sensor data. Virtual models replicate turbine conditions 
like wind speed, rotation speed, power, and structural 
stress. The twin allows engineers to control schemes, 
modify performance parameters, and simulate operational 
scenarios without physically accessing the turbines. 
Downtime is minimized and decision-making improved 
for offshore operations. 

3.6.2 Interactive Dashboards for Monitoring and 
Control 

O&M crews utilize interactive dashboards that 
synthesize key turbine metrics, including hub height data, 
rotor performance, vibration levels, and energy output. 
The dashboards are provided to display both real-time and 
historical performance information in an easily 
consumable format. They also have integrated 
maintenance alerts, failure logs, and status indicators to 
assist with task prioritization and the swift resolution of 
issues. Using such tools, crews can track dozens of 
turbines from one onshore command centre. 

3.6.3 3D Visualization for Simulation and 
Training 

Advanced digital twin technologies, such as 
Unity3D, enable the creation of fully interactive 3D 
models of OSW farms. The digital replicas accurately 
simulate the motion and operation of every turbine under 
the influence of environmental factors. Operators and 
technicians utilize these visualization tools to navigate 
turbine configurations, monitor structural behaviour under 
load, and practice maintenance routines in a simulated 
environment. The visualized representation is especially 
beneficial for training and maintenance planning in hostile 
marine conditions. 

3.6.4 Improving Remote Operation and 
Maintenance 

Through the integration of virtual operations, 
monitoring dashboards, and 3D simulations, digital twin 
technology significantly enhances the remote operation of 
offshore turbines. It minimizes the frequency of physical 
site visits, decreases maintenance costs, and facilitates the 
early identification of system inefficiencies or failures. 
The methodology ensures safer, smarter, and more 
sustainable operating and maintenance of all OsW 
installations. 

4. Results And Discussions 
The findings demonstrate significant 

improvements in OsW turbine performance through 
repeated simulation calibration, which are highly 
correlated with actual power output. The CatNet model 
accurately identifies temperature anomalies, issuing early 
fault alerts based on specified thresholds. Structural 
analysis indicates an increasing focus on the mass and 
strength of major turbine components as a response to 
rising capacity requirements. A breakdown of O&M 
expenses highlights vessel-related costs as the primary 
factor, promoting effective logistics and minimizing 
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downtime. Overall, the results confirm the effectiveness 
of the integrated methodology in modelling, monitoring, 
and economic assessment for achieving maximum turbine 
reliability and sustainable operation. Performance 
comparison of our CatNet model with state-of-the-art 
fault detection methods, including thresholding methods 
and decision trees. The results demonstrate that CatNet 
outperforms these methods in terms of precision, 
accuracy, and recall. 

4.1 Active Power vs. Wind Speed 
Performance 

 
 

Figure 8. Generated Active Power vs. Wind Speed 
 

The correlation of wind speed (m/s) and 
produced active power (kW) under various simulation and 
calibration conditions is shown in Figure 8. The actual 
data (blue dots) indicate that power generation rapidly 
increases from nearly 0 kW at approximately 6 m/s, 
reaching a peak of around 1700 kW at 12–16 m/s, and 
then levels off. The uncalibrated simulation (orange 
points) underestimates power at both lower and higher 
wind speeds, with values starting from below -250 kW 
and never reaching full power. The initial calibration (red 
points) represents a step towards agreement with real data, 
but differences remain. Upon second calibration (purple 
dots), the simulated result is almost identical to the real 
data, particularly within the range of 8–16 m/s, 
representing a significant improvement in accuracy. This 
indicates that iterative calibration plays a critical role in 
simulating the power performance of wind turbines. 

4.2 Detected Temperature Anomalies 
in Wind Turbine System 

The temperature anomalies identified by the 
CatNet model in a wind turbine system across time, with 
the x-axis as sample index and the y-axis as temperature 
anomaly in °C. Figure 9 has warning thresholds at ±1°C 

(dotted lines) and alarm thresholds at ±2°C (solid lines). 
Early on, temperature excursions are within safeguarding 
limits, but as the sample index increases (especially above 
~300), increasingly frequent and significant excursions 
are identified, often overcrossing warning and alarm 
limits. This illustrates the evolution of potential fault or 
abnormal thermal response behaviour, indicating CatNet's 
capability to identify accurately early failure signs for 
effective maintenance intervention. 

 

 
 

Figure 9. CatNet Detected Temperature Anomalies 
in Wind Turbine System 

4.3 Fault Detection Performance  

 
 

Figure 10. Fault Detection Accuracy using CatNET 
 

Temperature anomalies from the CatNet model 
in a wind turbine system over time, plotted against sample 
index, are shown in Figure 10. Most differences in 
temperature are within a normal range, but from around 
sample number 400, more fluctuations become apparent, 
which suggests possible system anomalies. Two threshold 
values are marked: warning level of ±1°C (dotted lines) 
and alarm level of ±2°C (solid lines). Beyond sample 400, 
the majority of the temperature differences exceed the 
warning level, and some even exceed the alarm level, 
indicating possible faults or thermal instability in the 
turbine system that require further inspection or repair. 

EAI Endorsed Transactions on 
Energy Web 

| Volume 12 | 2025 | 



 
 Huatao Si et al. 

14 

4.4 Economic and Structural Analysis 
of Offshore Wind Turbine Systems 

 
 

Figure 11. Turbine Mass Intensity and Capacity 
Over Years 

 
The changing mass-intensity of major offshore-

turbine components, reflecting the increase in nameplate 
capacity between 2020 and 2040, is illustrated in Figure 
11. Every five-year snapshot indicates that the base 
continues to be the largest contributor, increasing from 
approximately 220 ton/MW in 2020 to 300 ton/MW in 
2040, while the Tower increases from around 40 ton/MW 
to 80 ton/MW. The nacelle and rotor make smaller but 
progressively larger proportions. Superimposed on these 
bars, the black line indicates a steep ramp-up in capacity 
from approximately 6.5 MW turbines in 2020 to 
approximately 22 MW units by 2040, highlighting how 
larger turbines necessitate more substantial structural 
requirements, particularly for foundations and towers. 

4.4.1 Definition of Mass Intensity 
Mass intensity refers to the weight (tons) of 

major turbine components (nacelle, rotor, Tower, 
foundation) per megawatt (MW) of turbine capacity. 
Mass intensity is calculated with the following Equation: 
 

Mass Intensity        (10) 
 
This unit can also help designers recognize the structural 
requirements of larger turbines as their capacity increases, 
thereby further emphasizing the importance of materials 
and structural strength in turbine design. 
 

 

Figure 12. O&M Cost Distribution of Offshore Wind 
Power 

 
The evolution of mass intensity (ton/MW) for 

various wind turbine components, Nacelle, Rotor, Tower, 
and Foundation from 2020 to 2040, along with the 
relative growth in turbine capacity (in MW) display in 
Figure 12. The Foundation's mass intensity is consistently 
the highest and increases from approximately 220 
tons/MW in 2020 to nearly 300 tons/MW by 2040. The 
Tower also steadily rises, whereas the Rotor and Nacelle 
grow more slowly. At the same time, turbine capacity 
increases from 6 MW in 2020 to well over 22 MW by 
2040, meaning that as turbines get much larger and more 
powerful, their structural elements must similarly expand 
in terms of weight, particularly in the Foundation and 
Tower, to accommodate this increase. 

 

Figure 13. Breakdown of Annual O&M Costs 
 

The customized annual breakdown of O&M 
costs for OsW energy systems, illustrating the relative 
magnitude of cost components, is shown in Figure 13. 
Vessel-related costs are the highest at 35%, indicating the 
cost of transportation and logistics to transport equipment 
and personnel for offshore maintenance activities. 25% of 
unit costs reflect a significant amount of cost in 
equipment and components. The 17% production loss 
costs reflect the maintenance downtime costs, illustrating 
the financial impact of such downtime. 12% holding costs 
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and 10% emergency costs show inventory and 
unscheduled repair costs, respectively, while order costs 
are minimal at 1%. This segmentation highlights OsW 
O&M's most critical areas financially, particularly good 
vessel utilization, effective inventory management, and 
production loss prevention, to achieve the lowest total 
maintenance expenditures. 

5. Conclusion And Future Works 
In conclusion, the digital twin-based approach 

significantly enhances the remote operations and 
maintenance (O&M) capabilities of OsW farms by 
providing a virtualized, real-time operating interface and 
smart diagnostic capabilities. The methodology improves 
turbine reliability, decreases maintenance costs, and 
enables condition-based maintenance strategies through 
integrated 3D simulations and fault classification using 
machine learning-based methods. One of the key 
innovations of the proposed work is the use of an early 
warning system based on real-time sensor information and 
predictive modelling to detect potential faults or generator 
anomalies in their pre-critical phases of fault 
development. By continuously monitoring operational 
parameters and employing threshold-based notifications 
in conjunction with CatNet-based anomaly detection, the 
system enables timely intervention and minimizes 
unplanned downtime. Our system largely eliminates the 
need for on-site maintenance visits, a crucial factor in 
offshore environments where accessibility is challenging. 
The early fault detection and real-time monitoring 
features not only increase safety but also enhance 
economic efficiency by reducing unplanned downtime 
and lowering operational costs. Through ongoing 
monitoring and predictive maintenance functionality, our 
system offers a more cost-effective and safer alternative 
for the offshore wind sector. Future work activities will 
focus on enhancing the fidelity of digital twin models by 
incorporating more diverse datasets, refining fault 
classification models with recent attention-based deep 
learning models, and scaling up the platform for 
application across farms. The addition of Augmented 
Reality (AR) tools for technician training and blockchain 
to ensure safe exchange of data could further improve the 
resilience, security, and transparency of OsW systems. 
With this multi-layered digital twin ecosystem, the 
strategy lays the Foundation for intelligent, scalable, and 
anticipatory OsW turbine management. Future 
endeavours will see the implementation of reinforcement 
learning (RL) into the digital twin infrastructure to further 
bolster adaptive defence capabilities. RL allows the 

system to learn and adapt from real-time performance 
data of the turbine, refining fault detection methods by 
learning to improve decision-making through trial and 
error on an ongoing basis. This can enhance system 
robustness by enabling it to predict and respond more 
accurately to varying operating conditions, like turbine 
wear or unforeseen environmental conditions. 
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