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Abstract

INTRODUCTION: This paper presents a comprehensive structural monitoring framework for wind turbine blades based on
MEMS-FBG (micro-electro-mechanical systems—fiber Bragg grating) sensor fusion technology.

OBJECTIVES: The system integrates high-resolution strain and vibration sensing across multiple blade segments, combined
with real-time data processing, fault detection, and SCADA-level visualization.

METHODS: A multilayered load consistency model is introduced, incorporating thermal compensation, strain-to-load
calibration, and a novel consistency index (1) to quantify inter-blade aerodynamic symmetry.

RESULTS: Experimental validation was conducted on a 2.0 MW wind turbine over a 60-day continuous monitoring
campaign. Static calibration demonstrated a load reconstruction accuracy within £3%, while dynamic data revealed a strong
correlation between load and blade vibration (R > 0.86).

CONCLUSION: Fault simulation through pitch angle manipulation confirmed the system’s rapid alarm response within 3
seconds for major asymmetry events. Additionally, signal drift testing showed MEMS-FBG sensors exhibited 80-95% lower

drift than conventional resistance strain gauges under rotating and EMI-intensive conditions.
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1. Introduction

This is the body text with no indent. The global transition
toward renewable energy has become a pressing priority in
response to the dual challenges of environmental
sustainability and energy security. Wind power, as one of
the most mature and rapidly expanding forms of clean
energy, plays a pivotal role in this transition[1]. Central to
wind energy systems are the turbine blades, which are
subjected to complex and fluctuating loads during
operation. These include aerodynamic forces, gravitational
loads, centrifugal forces, and vibrational stresses, all of
which may vary with wind speed, yaw angle, turbulence,
and blade pitch. Over time, these variable loads can lead to
fatigue, structural degradation, or even catastrophic
failure[2,3]. Therefore, monitoring the mechanical.
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Behaviour and load consistency of wind turbine blades in
real time are essential for ensuring operational safety,
extending service life, and optimising energy output.

Traditionally, structural health monitoring (SHM) of wind
turbine blades has relied on techniques such as resistance
strain gauges, piezoelectric sensors, acoustic emission
testing, ultrasonic inspection, and infrared thermography
[4, 5]. While these methods offer varying degrees of
sensitivity and precision, they suffer from inherent
limitations. Resistance-based sensors are prone to drift and
require frequent recalibration to maintain accuracy.
Ultrasonic and acoustic systems are vulnerable to
environmental noise and require complex signal
processing. Moreover, most conventional sensors are
susceptible to electromagnetic interference, have limited
durability in harsh weather conditions, and are difficult to
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Integrate into the rotating components of wind turbines. In
addition, these methods often rely on discrete point
measurements and fail to provide comprehensive spatial
coverage or real-time inter-blade comparisons, making it
difficult to detect subtle asymmetries or early-stage faults

[6].

MEMS-FBG sensors provide a reliable and advanced
solution for monitoring wind turbine blades. They combine
high sensitivity with excellent signal stability and
resistance to electromagnetic interference. Compared to
piezoelectric and acoustic sensors, MEMS-FBGs are more
consistent and less affected by environmental noise. Unlike
ultrasonic and infrared methods, they support real-time,
continuous monitoring. Optical interferometers and
wireless networks, although sensitive and flexible, face
challenges such as complexity and power limitations.
MEMS-FBG sensors enable accurate, distributed sensing
along the blade. Their compact, embedded design makes
them ideal for long-term structural health monitoring in
harsh turbine environments.

To overcome these challenges, researchers and engineers
have increasingly turned to optical fibre sensing
technologies, particularly those based on fibre Bragg
grating (FBG) and micro-electro-mechanical systems
(MEMS). FBG sensors operate by reflecting specific
wavelengths of light, which shift in response to mechanical
strain or temperature changes[7,8]. When combined with
MEMS structures, these sensors form compact, low-power,
and highly sensitive systems capable of precise
measurement over long distances. MEMS-FBG sensors
offer several critical advantages, including immunity to
electromagnetic interference, corrosion resistance, a high
signal-to-noise ratio, and multiplexing capability, which
allows multiple sensors to share a single fibre optic line.
Additionally, their small size and flexibility make them
ideal for embedding directly into the composite materials
of turbine blades without compromising structural integrity
[9,10]. MEMS-FBG sensors offer major benefits over
traditional sensors for structural health monitoring. They
are electromagnetic interference-free, allowing for precise
and stable measurements in noisy environments, such as
those found in wind turbines. This results in low signal drift
compared to conventional resistance strain gauges. They
are multiplexed, which eliminates wiring complexity and
enables distributed sensing by allowing multiple sensors to
be accommodated on a single optical fibre. MEMS-FBG
sensors are robust against severe weather, small, and
corrosion-free. Grandhi inspired the energy-efficient
integration of renewable systems with environmental
sustainability. Our research incorporates this approach in
designing a low-power, HMI-integrated passive IoT optical
fibre sensor network for real-time water level monitoring,
enabling autonomous operation, clean technology
deployment, and improved efficiency in remote
environments [11].

MEMS-FBG sensors offer significant advantages over
conventional resistance strain gauges in wind turbine blade
monitoring, providing highly accurate readings with
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minimal signal drift, thereby ensuring long-term
consistency of performance. The immunity to
electromagnetic interference enhances signal stability in
interference-prone environments. The sensors are also
resistant to corrosion and harsh weather conditions. They
are compact and easy to integrate into the blade structure.
They also facilitate distributed sensing, making real-time
monitoring along the entire length of the blade possible.
Recent developments in both academia and industry have
highlighted the potential of MEMS-FBG sensors for wind
turbine applications. For instance, several European
manufacturers, including Vestas and Siemens Gamesa,
have piloted optical fiber-based monitoring systems in
commercial turbines. In South Korea, researchers have
demonstrated the feasibility of using FBG sensors for real-
time load and vibration detection in experimental blades
[12]. China, too, has made significant progress in the
localization of MEMS-FBG sensor fabrication and system
integration. However, despite these advancements, existing
research and commercial products rarely address the need
for inter-blade load consistency monitoring—the
comparative analysis of dynamic loads across multiple
blades, which is vital for identifying structural asymmetry,
pitch deviation, or rotor imbalance in real time [13,14].
Wind turbine unbalanced loads lead to higher wear,
vibrations, and potential structural damage, lowering
efficiency and reliability. Such occurrences are a result of
uneven stress on the blade and drivetrain parts, resulting
in quicker fatigue and possible damage. MEMS FBG
sensors enable the real-time detection of such imbalances
by precise strain and vibration measurement. Their
excellent stability and minimal signal drift make them
suitable for continuous monitoring, enabling timely fault
detection and improved turbine performance.

Recognising this gap, the present study proposes a
comprehensive MEMS-FBG optical fibre sensing system
specifically designed for multi-blade, real-time load
consistency monitoring in utility-scale wind turbines. The
system enables distributed sensing along each blade,
supports high-frequency data acquisition, and integrates
seamlessly with turbine SCADA (Supervisory Control and
Data Acquisition) systems for remote monitoring and
control. In this paper, we detail the architectural design of
the sensing network, present the mathematical modelling
framework for load calculation and consistency evaluation,
and validate the system through experimental deployment
on full-scale wind turbines. We also introduce a set of
derived indicators—including load balance coefficient,
correlation with blade vibration, and consistency index—
to quantify structural integrity over time. Our results
demonstrate the system's ability to detect load
asymmetries, correlate structural loads with dynamic
behavior, and identify early signs of fatigue or fault
conditions [15]. The MEMS-FBG technology integrates
microelectromechanical systems (MEMS) with fibre
Bragg grating (FBG) optical sensors to deliver accurate,
real-time readings of strain, temperature, and vibration.
These sensors possess high sensitivity, are immune to
electromagnetic interference, and are appropriate for direct
use.
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Integration into turbine blades. To assess the distribution of
mechanical loads on blades, the system presents the load
consistency index (1), a statistical measure that gauges the
evenness of blade loading. Higher values signify improved
aerodynamic symmetry and structural equilibrium.
Moreover, the system includes complete SCADA
integration, allowing real-time data from the sensors to be
processed and displayed via the turbine’s Supervisory
Control and Data Acquisition platform. Kumar et al.
emphasised optimising wind and solar energy performance
with a focus on environmental sustainability. Their
technique is adopted in our proposed work through
MEMS-based optical fiber sensing to monitor wind turbine
blade loads. This enhances turbine reliability and more
stable renewable energy generation [16]. The renewable
energy domain enables real-time monitoring of wind
turbine blade loads using MEMS optical fibre sensing. The
high-frequency data captured offers a strong foundation for
applying deep learning techniques to predict structural
behavior, detect anomalies, and enhance maintenance
strategies. Although the primary focus is on sensing
technology, the approach supports integration with deep
learning models such as LSTMs or autoencoders for time-
series analysis and anomaly detection.

This work contributes to the field of wind energy
monitoring by providing a scalable and reliable
methodology for continuous blade load assessment, which
supports predictive maintenance strategies and enhances
turbine reliability. The remainder of the paper is structured
as follows: Section 2 introduces the overall system design,
sensor calibration methods, and signal interpretation
models. Section 3 presents the field deployment,
experimental procedures, and data analysis. Section 4
concludes with a summary of findings and directions for
future research and engineering implementation.

2. System Design and Implementation
Scheme

This section provides a comprehensive overview of the
hardware architecture, sensor selection, data processing
methodology, and communication protocols employed in
the MEMS-FBG-based wind turbine blade load monitoring
system. The system is designed to capture distributed
strain, vibration, and temperature data from multiple blades
and convert these into interpretable load consistency
metrics in real time [17,18].

2.1 Sensing Architecture and System
Overview

The system architecture consists of MEMS-FBG strain
sensors, MEMS accelerometers, optical fiber cables,
wavelength ~ demodulation  units, an d industrial
control
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processors, and a SCADA-connected data visualization
platform. Sensors are embedded directly into the blade
structure or mounted near critical cross-sections. Each
blade is equipped with 8 strain sensors and 3
accelerometers. Correct mounting of MEMS-FBG sensors
on wind turbine blades requires proper surface preparation,
high epoxy bonding, cured control, and protection.
Surfaces are cleaned and ground before application of
high-strength adhesives, with curing either at room
temperature or accelerated through heat. Sensors are
encapsulated by shielding and coating after curing to
protect them from moisture, extreme temperatures, and
vibration. Strain relief and correct routing of optical fibres
add further durability. These processes ensure the long-
term stability and performance of sensors in demanding
operating conditions.

Blade 1 Blade 2 Biade 3
WEMEFEG NEMSFEC MEMI-FEE |
Elrain sansor SiEn sensot sirai sansor|

MEMS
~ Beoskaomer

MENSFEG WEMs | [wEmgeme | Wems | IFC

siran senus acceloromaler | stain sansor sccelnome- Fibar-oplic
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Figure 1: Overall system
architecture showing sensor
distribution across three blades,
fibre-optic network, demodulation
unit, IPC, and SCADA interface.

Figure 1 illustrates how optical fibres from each blade
converge to a central demodulation cabinet. The real-time
load and vibration signals are then transmitted to a cloud
server for analytics and visualization. This modular design
allows scalability for larger turbines.

2.2 Strain-to-Load Mathematical Modeling

The system uses MEMS-FBG optical sensors to detect
strain through shifts in reflected light wavelengths.
Temperature compensation is applied to isolate true
mechanical strain. This strain is converted into internal
loads using structural models, such as Euler-Bernoulli
beam theory. Each sensor undergoes calibration to relate
wavelength shifts to physical loads accurately. Real-time
data processing enables continuous monitoring of blade
loads and vibration. The system then assesses load
consistency and detects faults via SCADA integration. The
proposed monitoring system utilises the fundamental
principles of fibre Bragg grating (FBG) sensing to establish
a mathematical relationship between the measured optical
parameters.

EAI Endorsed Transactions on
Energy Web
| Volume 12| 2025 |



Yong Xue et al.

Signals and the actual mechanical loads acting on the wind
turbine blades. When the blade undergoes strain due to
aerodynamic or gravitational forces, the embedded FBG
sensor reflects a shifted wavelength that is linearly
dependent on the magnitude of the strain and temperature
change at the sensing location [19]. This wavelength shift
is the primary measurable quantity from which the entire
load evaluation process begins. The monitoring system
interprets optical signals from fiber Bragg grating (FBG)
sensors to determine mechanical loads on wind turbine
blades. These sensors detect changes in light wavelength
caused by structural strain and temperature variations.
Thermal effects are filtered out to obtain accurate strain
measurements. Using beam mechanics, the system
converts this strain into bending forces. A calibration
model then translates these forces into precise load values
along the blade. This process supports continuous tracking
of structural behavior. The data is displayed through the
turbine’s SCADA interface for real-time analysis and
maintenance alerts.

The initial step involves capturing the wavelength shift
(AL) as a function of both strain & and temperature
variation AT. This is expressed in the Bragg strain shift
relation as:

A=K -e+Kr-AT (1)

Where Ksand Krare strain and thermal coefficients,
respectively.

Here, K and K7t are constants representing the sensitivity
of the FBG sensor to mechanical strain and temperature,
respectively. Since the wind turbine operates in a dynamic
environment with temperature fluctuations, this expression
is essential to isolate strain-induced wavelength shifts from
thermal noise, thus ensuring accurate strain recovery.

Once the strain at various points on the blade is determined,
we translate it into internal mechanical responses such as
bending moment. For a slender, linearly elastic blade
structure, the bending moment M at the root or any section
is proportional to the curvature k, which in turn is the
second derivative of the blade deflection u(x). This
relation, derived from Euler-Bernoulli beam theory, is
written as:

%u(x)

9x?

M=E-1-k=E-I- 2)

Where « is curvature, and u(x) is blade deflection.

Here, E denotes the Young’s modulus of the blade material,
and I is the second moment of area for the blade cross-
section. This equation allows us to quantify the amount of
bending moment induced in the blade under a certain
strain distribution.

Finally, we link the calibrated wavelength shift vector A to
actual blade loads in both flapwise and edgewise
directions using a sensor-specific calibration matrix [C].
This matrix is derived through laboratory tests or field
calibrations where known loads are applied to the blade,
and the corresponding wavelength shifts are recorded. The
generalized linear mapping is given as follows:

Liiapjeage = [C] - (A" = 270) (3)

In this equation, A~ represents the baseline wavelength
values when no load is applied. Subtracting this baseline
ensures that only load-induced shifts are considered in the
analysis. The output Lfip/edge corresponds to the
reconstructed load vector, giving us real-time insights into
how each blade section is loaded under operational
conditions.

To support these models, the selection of appropriate
sensors is critical. The following table summarizes the
specifications of the MEMS-FBG strain sensors deployed
on the blades:

Table 1: MEMS-FBG strain sensor

specifications
Model Rang | Resolution(ue | Center Temp
e(ue) |) Wavelengt | Rang
h e

FDS30 | 2000 | 0.1 1525-1565 | -40-
-1 nm 70°C
FDS50 | £5000 | 0.5 1525-1565 | -40-
nm 70°C

Table 1 shows that the FDS30-1 sensor, with its higher
resolution, is primarily used in low-strain regions, such as
the blade root, where precise detection is essential. In
contrast, FDS50 sensors are suitable for high-strain zones
near the blade tip due to their wider measurement range.
The integration of both sensor types enables
comprehensive coverage of the blade's structural response
from root to tip.

The MEMS-FBG-based wind turbine blade monitoring
system processes strain and vibration data through a
structured pipeline. Optical sensors measure strain through
wavelength shifts, while accelerometers capture vibrations.
The signals are demodulated, thermally compensated, and
calibrated to calculate mechanical loads accurately.
Filtering techniques, including RMS analysis and statistical
models, are used to remove noise and assess load
consistency across blades. A consistency index (1) and
load-vibration correlation help detect imbalances and
structural issues in real time. Compared to traditional
sensors, MEMS-FBG sensors show superior noise
resistance and stability, making the system reliable for
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Continuous, high-precision blade monitoring and early fault
detection.

Collectively, the above modeling framework—rooted in
optical signal theory, structural mechanics, and sensor
calibration—establishes a reliable pipeline to transform
raw optical wavelength data into physically meaningful
load parameters. This allows the system to perform
accurate, distributed, and dynamic load monitoring across
all blades in a wind turbine.

2.3 Calibration Strategy

Accurate calibration is the cornerstone of any quantitative
sensing system. For the MEMS-FBG blade load
monitoring system, calibration is essential to translate the
optical wavelength shift measured by each sensor into a
reliable estimate of the actual mechanical load experienced
by the blade [20]. The -calibration process aims to
determine the unique coefficients that define this
relationship for each sensor, accounting for variations in
bonding, placement, adhesive thickness, and local material
properties.

In this work, a hybrid calibration method is adopted that
combines both theoretical mechanical modeling and
empirical validation. Specifically, we use two well-
established calibration strategies: Static loading using
known masses and Self-weight deflection calibration
through rotor positioning under no-wind conditions.

Under the assumption that the blade behaves as a
cantilevered beam, the tip deflection 6\deltad due to a
known applied force F (e.g., from a calibrated mass) can be
predicted using the classical beam bending equation:

43
15 =" @
3EI

Here, L is the distance from the load point to the blade root,
EEE is the Young’s modulus of the blade material, and III
is the second moment of inertia of the blade cross-section.
This formula provides a theoretical estimate of blade
deflection for a given load, which can be directly compared
to the wavelength shifts observed from the FBG sensors to
establish calibration coefficients.

To further relate this deflection to internal stress and strain,
we calculate the curvature x of the blade using the
moment-curvature relation from Euler-Bernoulli beam
theory:

k="
E-l

This expression links the mechanical moment M at a given
cross-section to its curvature and, by extension, to the strain
distribution measured by FBG sensors. Since each sensor
may respond slightly differently due to its local bonding
environment, it is crucial to empirically determine a
sensor-specific mapping from wavelength shifts to
mechanical loads.

Based on the above theoretical relations and field
calibration tests, a linear calibration matrix is derived for
each sensor. The final coefficients capture the response of
each FBG to loads in both flapwise and edgewise
directions. These coefficients are summarized in Table 2:

Table 2: Blade 1 sensor calibration

coefficients
Se Fl E Ao
ns ap dg (n
or Cc e m)
ID oe C
ff. oe
ff.
S1 22 - 15
00 45 37.
5 00 10
7
S2 - - 15
39 25 42.
00 00 88
3 .6
S3 48 29 15
00 00 49.
.0 5 61

Table 2 shows that the flap coefficient and edge
coefficient represent the sensitivity of the sensor to
bending in the respective directions, expressed in units
that relate the wavelength shift (in nm) to mechanical load
(typically in kN). The baseline wavelength Ao denotes the
FBG reflection wavelength under unloaded, ambient
conditions.

Each sensor exhibits a unique set of coefficients due to
variability in installation conditions such as adhesive type,
curing time, local curvature, and thermal gradient. Hence,
per-sensor calibration is critical for achieving a high-
fidelity mapping from optical domain measurements to
mechanical load parameters.

Ultimately, this calibration strategy ensures that the
sensing system delivers quantitative, comparable, and
consistent data across all blades, thereby enabling real-
time load comparison, structural integrity assessment, and
intelligent fault diagnosis.
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2.4 Load Consistency Evaluation Algorithm

In wind turbine operation, one of the key indicators of
structural balance and aerodynamic health is the

Consistency of loads across multiple blades. Ideally, in
Uniform wind conditions, all blades of a wind turbine
should experience similar loading patterns[21]. However,
Due to pitch angle deviation, blade ageing, contamination,
or manufacturing defects, load distribution may become
asymmetric, potentially leading to mechanical imbalance,
increased vibration, and long-term fatigue damage. The
load consistency findings demonstrate that MEMS-FBG
sensors effectively detect real-time blade load imbalances.
This model utilises a consistency index (1) to facilitate the
early identification of aerodynamic or structural issues,
thereby supporting predictive maintenance and reducing
downtime, as well as avoiding unnecessary repairs. Fast
alarm triggering enhances operational safety by allowing
quick responses to faults. Strong load-vibration
correlations further improve diagnostic accuracy. The
integration with SCADA and cloud systems enables
continuous monitoring and trend analysis.

To address this, the system introduces a statistical metric—
the load consistency index n—which quantifies the degree
of uniformity among the real-time loads of the three blades.
This index is computed as:

Load consistency index:

Where ais the standard deviation and Lis the mean load.
Here,

o(L1y, L2, L3) is the standard deviation of the
instantaneous blade loads L1, L2, L3, and L is their
mean. When all blades carry nearly equal loads,
c—0\sigma \tooo—0, resulting in n—l\eta \ton1—1,
indicating high consistency. Conversely, as inter-blade
differences increase, mndecreases, flagging potential
structural or aerodynamic imbalances. The load
consistency index () is a real-time metric that measures
how evenly loads are distributed across wind turbine blades
by comparing the standard deviation of blade loads to their
mean. Values close to 1 indicate high aerodynamic
symmetry and structural balance, while lower values reveal
potential imbalances. This index enables early fault
detection, alarm triggering, and improved turbine safety
and efficiency.

While load consistency evaluates the static equilibrium
among blades, dynamic behavior is equally important for
health monitoring. To assess the vibrational stability of
each blade under operational load, the system calculates the
root-mean-square (RMS) acceleration from the onboard
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MEMS accelerometers. The RMS value captures the
effective magnitude of fluctuating acceleration signals:

Vibration RMS:

A =\/_*2n a? (7)
n i=1 i

rms

Where aia iai is the instantaneous acceleration sample at
time step iii, and nnn is the total number of samples in a
sliding time window (e.g., 1-5 seconds). This metric is
used to characterize the vibration energy of each blade,
which tends to increase under uneven loading or
aerodynamic excitation.

To further understand the interplay between mechanical
loading and vibrational response, the system computes the
Pearson correlation coefficient RRR between the load
and the corresponding RMS acceleration:

Correlation between load and vibration:

cov(L,A)

OL'0A

R = (8)

Where o is the standard deviation, and L is the mean load.
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Figure 2: Example of load signal
trends across blades and their
respective vibration levels

Figure 2 shows synchronized data streams from blades 1—
3. When loads increase (e.g., wind gust at t=12 min),
vibration amplitudes rise proportionally, confirming strong
mechanical coupling.

2.5 Communication and Data Management

A critical component of the proposed MEMS-FBG
monitoring system is the design of a robust, low-latency,
and scalable data transmission and visualisation
framework, capable o f supporting real-time load.
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Diagnostics and decision-making. Given the distributed
nature of sensor deployments across multiple rotating
blades and the need for central data fusion, the
communication infrastructure must ensure high reliability,
minimal signal degradation, and seamless integration with
existing turbine Supervisory Control and Data Acquisition
(SCADA) systems [22]. The system routes and
synchronises signals from rotating wind turbine blades
using fibre-optic cables connected to MEMS-FBG strain
sensors and accelerometers embedded in each blade. These
signals travel through the rotating hub to a central
demodulation unit, where they are converted into digital
data. A local processor synchronises the signals using GPS
and performs real-time analysis, including load
consistency and vibration correlation. Processed data is
being integrated into the SCADA system and cloud
platform for monitoring, visualisation, and fault detection.
This setup ensures accurate, real-time tracking of blade
conditions with fast alarm response and high signal
stability.

2.5.1 Data Flow Architecture

Each blade is equipped with a set of optical fiber sensors
(strain and temperature) and MEMS-based accelerometers.
These sensors are routed via ruggedized single-mode
optical fibres to a hub located within the turbine nacelle.
To minimize signal attenuation and avoid electromagnetic
interference, passive optical splitters are used to multiplex
signals before they are fed into a multi-channel
wavelength demodulation unit (e.g., FT703E).

The demodulation unit operates at high speed (e.g., 1 kHz
per channel) and converts the reflected Bragg wavelengths
into digital strain and temperature values. Simultaneously,
analogue acceleration signals from MEMS sensors are
digitized using a high-resolution ADC module.

All raw sensor outputs are forwarded to a local Industrial
PC (IPC) embedded in the turbine's control cabinet. This
IPC runs a custom real-time data processing software that
performs Wavelength normalization and thermal
compensation; Load reconstruction using pre-calibrated
coefficient matrices; Vibration signal filtering and RMS
analysis; Consistency index (n\eta) and correlation
coefficient (RR) computation; Fault detection logic and
alarm flag generation.

Processed data packets are then transmitted via industrial
Ethernet or wireless bridge (e.g., SG/LoRa) to the
turbine’s SCADA system and cloud server. For offline
analysis, all sensor data are logged locally at 10 Hz
sampling resolution and synchronized using GPS time-
stamping.
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Figure 3: Dashboard visualization
for operator interface

Figure 3 shows how data is presented in the SCADA
interface. Each blade has a dynamic load graph, vibration
level, and alert status. Historical data trends support long-
term performance evaluation.

2.5.2 Data Fields and Update Rates

The system continuously generates several key diagnostic
variables at different update frequencies, as summarized in
the following Table 3:

Table 3: Real-time data fields

Data Field Unit | Update Description
s Frequency
y
Blade Load | kN 10 Hz Reconstructe
(Li-Ls) d
flap/edgewise
loads
RMS m/s?2 | 10 Hz Blade
Acceleration vibration
energy
Temperatur | °C 1Hz FBG
e (T4-T3) temperature
data
Consistency | — 0.1 Hz Multi-blade
Index (n) load
uniformity
Load- - 0.1 Hz Structural
Vibration behavior
Corr. (R) correlation
Fault Flags | — Event- Alarms for
triggered load deviation
or imbalance

2.5.3 Operator Interface and Visualization

A user-friendly graphical dashboard is deployed using
Grafana and integrated with the SCADA backend.
Operators can monitor real-time curves of load, vibration,
and temperature for each blade, inspect 24-hour historical
trends, and export customized reports. Dynamic gauges
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indicate the current health status of each blade via color-
coded consistency levels: 1>0.90\eta > 0.90 — Healthy;
0.80<1<0.900.80 < \eta \leq 0.90 — Watch; n<0.80\eta \leq
0.80 — Action Required.

Blade 1 Blade 2 Blade 3
Dyriamic Load (KNrm) Dynamiz Load kim) Cynamic Laad (KNm)
g = n
T om wm ow TR e wm w R T
Vipration Leval \ibration Level Aloem Status
N Alanm o Blarm

Historica! Data

Figure 4: Real-time SCADA
dashboard showing blade load
curves, vibration bands, and
warning messages.

When abnormal load deviations or high vibration RMS
values are detected, the system triggers audible and visual
alarms. Operators can also trace the anomaly timeline
through historical trend plots, facilitating root-cause
analysis and early maintenance planning.

2.5.4 Cloud Integration and Data Security

For long-term data retention and cross-turbine fleet
comparison, all metrics are uploaded to a secure cloud
database using encrypted MQTT or HTTPS protocols.
Data is anonymized and compressed to reduce bandwidth
consumption. The cloud platform enables wind farm
managers to view health status across multiple turbines,
Schedule blade inspections based on load history, generate
monthly or seasonal reports on blade performance and
apply machine learning models for failure prediction.
Redundant backups and access authentication ensure data
integrity and security.

3. Experimental

This section presents the field deployment, data acquisition
procedures, and analysis results of the proposed MEMS-
FBG-based wind turbine blade load monitoring system.
Through comprehensive testing on a full-scale turbine
under real operational conditions, we evaluate the system’s
accuracy, reliability, and its effectiveness in capturing load
behavior and detecting inconsistencies across blades[23-
25].

3.1 Experimental Setup and Field
Deployment

The experimental validation was carried out on a 2.0 MW
horizontal-axis wind turbine installed in Jiangsu Province,
China. The turbine features three fibreglass-reinforced
epoxy blades, each approximately 45 meters long. MEMS-
FBG strain sensors and accelerometers were installed on all
blades at three critical locations: root, mid-span, and near
the tip. The sensors were embedded using protective epoxy
channels to ensure signal fidelity and long-term durability.

Figure 5: Field deployment of
MEMS-FBG strain and acceleration
sensors on wind turbine blades.

Each blade was connected via fibre-optic cables to a 15-
channel FT703E demodulation unit housed inside the
nacelle. Real-time data was processed through an
embedded IPC and transmitted to the SCADA system and
cloud platform.

3.2 Static Calibration Test Results

To evaluate baseline accuracy, static loading experiments
were conducted. Known weights were suspended at
specific points on each blade, and the resulting Bragg
wavelength shifts were recorded.

Table 4: Static calibration test
results for blade root strain sensors

Ap
plie Mea
d n
_Il__oag Lo Sure
yp ad d
(kN Load
) (kN)
Flap 12. 12.1
wise 5 8
Edge
wise 8.0 7.89

The deviation was consistently within £3%, indicating high
reliability of the strain-load conversion.
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Figure 6: Overlay of measured and
theoretical strain-to-load calibration
curves for Blade 1.

To evaluate the baseline accuracy of the MEMS-FBG
sensing system, static loading experiments were conducted
by suspending known weights at key strain locations on the
turbine blades. The resulting Bragg wavelength shifts were
compared against theoretical load-strain predictions. As
shown in Table 4, the measured loads closely matched the
applied reference values, with only 2.56% deviation in the
flapwise direction and 1.38% in the edgewise direction,
well within the £3% error threshold. These results confirm
the high fidelity of the strain-to-load calibration and
demonstrate the stability of the sensor's adhesive bonding
and optical signal interpretation. Figure 6 further supports
these findings by displaying an overlay of measured and
theoretical calibration curves for Blade 1. The curves
exhibit strong linearity and minimal hysteresis across the
load range, indicating excellent repeatability and negligible
drift. The narrow deviation band and close alignment
between datasets reflect a high calibration quality,
validating that the MEMS-FBG system is capable of
reliable strain detection under static loading conditions and
is thus well-suited for subsequent real-time dynamic
monitoring applications. The calibration curves in Figure 6
show a linear relationship with minimal hysteresis,
verifying the effectiveness of sensor bonding and model
fitting.

3.3 Dynamic Load Distribution and
Consistency Evaluation

To assess the real-time performance of the proposed
MEMS-FBG system under dynamic conditions, the turbine
was monitored continuously over 60 days, encompassing
a full range of wind speeds (3—17 m/s) and operational
modes including idle, partial-load, rated-power, and storm
cut-out states. Hourly load data for each blade were
collected and used to compute the consistency index 1,
which quantifies the degree of load balance among blades.
As presented in Table 5, high values of n were

2 EA

observed during stable operating periods (e.g., 0.987
between 00:00 and 01:00), indicating a near-uniform load
distribution. During moderate conditions (06:00—-07:00), n
slightly decreased to 0.942, reflecting mild asymmetries
likely induced by transient wind variations or minor pitch
angle differences. By 13:00-14:00, under more turbulent
or high-load conditions, the consistency index declined
further to 0.823, suggesting a notable imbalance among the
blades, potentially caused by gust-induced asymmetrical
aerodynamic loading. Figure 7 complements these findings
by illustrating the 24-hour load fluctuation patterns of all
three blades alongside the corresponding m index
trajectory. The results highlight the system’s ability to
detect subtle changes in load uniformity in real time and
validate the effectiveness of 1 as a practical indicator for
blade load balance monitoring and early anomaly
detection.

Blade Load (ki)
o

Figure 7: Load variation across
blades during 24-hour continuous
operation.

Table 5: Load consistency metrics
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Figure 8: Hourly evolution of load
consistency index n\eta over 3
consecutive days.

Figure 8 illustrates the hourly evolution of the load
consistency index 1 over a continuous three-day
monitoring period, providing insights into the temporal
stability and aerodynamic balance of the wind turbine
system. During the first 24 hours, n values remained
consistently high, typically above 0.95, indicating stable
load distribution and effective aerodynamic alignment
among the three blades under low wind speed conditions.
In the second phase (Day 2), the consistency index began
to exhibit mild oscillations, with periodic dips toward 0.90,
likely due to transient wind disturbances and minor control
fluctuations. On the third day, a significant downward
trend in m was observed, with values approaching and even
dropping below the 0.85 threshold during certain intervals.
These drops correspond to periods of increased wind
turbulence or partial yaw misalignment, suggesting that
high-speed gusts and directional wind shifts can induce
notable aerodynamic imbalance. The gradual degradation
pattern in the consistency index underscores the system’s
sensitivity to operational irregularities and its capability to
flag early signs of blade load asymmetry. The figure

Thereby validates the use of n as a reliable, real-time
indicator for turbine health monitoring and imbalance
prediction under varying environmental and control
conditions.

3.4 Vibration Analysis and Load
Correlation

x o ,,---;";/{ . _z__’:———")“_-__y
w xS
Figure 9: RMS acceleration vs.
blade load scatter plots with
regression fitting.
Table 6: Vibration-load correlation
statistics
M
R e
M a
S n
B A L Corre
la c o lation
N
e d
i ( R
/s k
2) N
)
5 ! ;
1 2 0.89
5 .
]
5 ! ;
> 1 0.86
7
3
5 ! ;
3 2 0.91
9 .
0

To investigate the relationship between structural loading
and dynamic response, RMS acceleration values were
extracted from each blade’s mid-span MEMS
accelerometer and analyzed against the corresponding
mean load levels. As shown in Table 6, all three blades
exhibited strong positive correlations between vibration
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intensity and mechanical loading, with Pearson correlation
coefficients (R) of 0.89, 0.86, and 0.91 for Blades B1, B2,
and B3, respectively. These results confirm a clear
mechanical coupling, where increased aerodynamic or
gravitational loads lead to elevated vibrational amplitudes.
Figure 9 provides further visual validation through scatter
plots of RMS acceleration versus load for each blade,
overlaid with linear regression fits. The trendlines
demonstrate near-linear behavior with high coefficients of
determination, indicating consistent vibrational patterns
across all operating regimes. Notably, Blade B3 exhibited
both the highest RMS acceleration and the strongest
correlation, suggesting that it may be more sensitive to
load-induced dynamic effects or may have slight structural
variability. The coherence among all three datasets reflects
the uniformity and precision of the sensing system. At the
same time, the strong linearity validates the reliability of
vibration data as a diagnostic proxy for load monitoring.

3.5 Fault Simulation and Alarm Triggering

To test the fault detection system, artificial imbalance was
induced by modifying the pitch angle on Blade 2 by +2°.
The system rapidly detected a drop in nm\eta below 0.80
and triggered an alarm within 3 seconds.

]
Tirve [ninuces)

Figure 10: SCADA alert and consistency
drop visualization from fault simulation.

Table 7: Fault detection system reaction time
and thresholds

Fault Type | n\eta Detection Alarm
Drop Time (s) Triggered

Blade 210812 —- | 3.2 Yes

pitch +2° 0.746

Blade 310901 — | 56 x No

detuning 0.879

The system’s response demonstrates

effective fault

sensitivity, distinguishing between major and minor

asymmetries.
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To validate the responsiveness and fault sensitivity of the
MEMS-FBG-based monitoring system, controlled
imbalance scenarios were introduced under operational
conditions. Specifically, a +2° pitch deviation was applied
to Blade 2 to simulate asymmetrical aerodynamic loading.
As shown in Table 7, this induced a rapid drop in the load
consistency index 1 from 0.812 to 0.746 within a short time
window, triggering an alarm just 3.2 seconds after the fault
was introduced. In contrast, a more subtle detuning of
Blade 3 resulted in only a marginal decline in 1 from 0.901
to 0.879, which did not surpass the predefined alarm
threshold and hence did not elicit a system warning. Figure
10 illustrates this behavior clearly, with a distinct 1 drop
corresponding to the Blade 2 disturbance and a subsequent
alert visualization on the SCADA interface. The alarm
zone below the threshold of 0.80 is shaded, and annotations
highlight both the imbalance injection point and the alarm
trigger event. This experiment confirms the system’s
ability to distinguish between critical and non-critical
asymmetries, enabling early detection of significant load
imbalances while avoiding false positives in minor
deviations. The rapid detection time and high specificity of
the alarm logic underscore the practical value of the n-
based fault detection algorithm for real-time wind turbine
monitoring and control optimisation.

3.6 Signal Stability and Noise Comparison

The signal-to-noise performance of MEMS-FBG sensors
was compared to traditional resistance strain gauges.

Table 8: Sensor noise comparison

Drift
Sensor RMS after
Type Noise 7
(pe) Days
(pe)
MEMS-
FBG 1.12 0.06
Resistance
Gauge 5.46 1.14

08|

0.6/

02

0.0

Signed Drift (e}

02
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Figure 11: 7-day signal drift
monitoring under idle and
operational periods.

The optical system showed superior signal stability and
near-zero drift, particularly under rotating conditions and
in high-EMI environments.

To evaluate the long-term signal fidelity of the proposed
sensing architecture, a comparative assessment was
conducted between MEMS-FBG sensors and conventional
resistance strain gauges in terms of noise characteristics
and drift performance over seven days. As summarized in
Table 8, the MEMS-FBG sensors exhibited significantly
lower root-mean-square (RMS) noise (1.12 pe) compared
to resistance gauges (5.46 pe), confirming superior signal
clarity and reduced susceptibility to environmental
fluctuations. More importantly, drift after seven days of
continuous operation was nearly negligible for the FBG
sensors (0.06 pe), while resistance-based sensors
exhibited over 1 pe of signal drift, indicating substantial
baseline instability. Figure 11 provides a visual
comparison of drift behavior under both idle and rotating
conditions. The FBG curves remained tightly bound
throughout the observation window, while the resistive
sensor data showed increasingly erratic deviations,
especially during high-dynamic periods.

Additionally, shaded zones in the figure mark low-drift
regions for optical sensors, emphasizing their robustness
in high-EMI and mechanically active environments. These
findings confirm that MEMS-FBG sensors offer
dramatically improved long-term stability, making them
ideal for continuous monitoring of wind turbine blades in
real-world operating scenarios where precision and
resilience are critical. Embedding sensors in composite
turbine blades gave challenges such as potential structural
weakening, calibration  sensitivity, environmental
exposure, and maintenance difficulties. Sensors might be
precisely installed to avoid stress concentrations, with
thermal and mechanical stability ensured under harsh
conditions. Signal integrity during rotation, the impact on
blade dynamics, and the difficulty of repairing embedded
components further complicate implementation. While
modern systems improve data reliability and scalability,
integration costs and complexity remain high, requiring a
careful balance between performance and durability.

4. Conclusion

This study demonstrates the effectiveness of a MEMS-
FBG-based sensing and monitoring system for
comprehensive wind turbine blade load analysis. Through
a combination of distributed strain and vibration sensing,
accurate calibration, and real-time analytics, the system
achieves reliable quantification of blade load consistency
and structural health. The proposed consistency index (1)
proved to be a robust and interpretable metric for detecting
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inter-blade  aerodynamic imbalance wunder diverse
operational scenarios. Static calibration results validated
the model’s accuracy, with load measurement errors below
3%. Vibration-load correlation analysis confirmed tight
coupling between mechanical loads and blade dynamics,
while fault injection tests showcased the system’s
sensitivity and low-latency response capabilities.
Furthermore, long-term signal drift comparisons
established the superior stability and environmental
resilience of MEMS-FBG sensors relative to conventional
gauges. These results collectively affirm the system's
potential to enhance wind turbine reliability, optimize
maintenance schedules, and reduce the risks associated
with unbalanced loading. Future work will explore large-
scale deployment across turbine fleets and integration with
Al-based fault prognosis algorithms to improve wind farm
operational efficiency further.
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