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INTRODUCTION: This paper presents a comprehensive structural monitoring framework for wind turbine blades based on 
MEMS-FBG (micro-electro-mechanical systems—fiber Bragg grating) sensor fusion technology. 
OBJECTIVES: The system integrates high-resolution strain and vibration sensing across multiple blade segments, combined 
with real-time data processing, fault detection, and SCADA-level visualization. 
METHODS: A multilayered load consistency model is introduced, incorporating thermal compensation, strain-to-load 
calibration, and a novel consistency index (η) to quantify inter-blade aerodynamic symmetry. 
RESULTS: Experimental validation was conducted on a 2.0 MW wind turbine over a 60-day continuous monitoring 
campaign. Static calibration demonstrated a load reconstruction accuracy within ±3%, while dynamic data revealed a strong 
correlation between load and blade vibration (R ≥ 0.86). 
CONCLUSION: Fault simulation through pitch angle manipulation confirmed the system’s rapid alarm response within 3 
seconds for major asymmetry events. Additionally, signal drift testing showed MEMS-FBG sensors exhibited 80–95% lower 
drift than conventional resistance strain gauges under rotating and EMI-intensive conditions. 
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1. Introduction

This is the body text with no indent. The global transition 
toward renewable energy has become a pressing priority in 
response to the dual challenges of environmental 
sustainability and energy security. Wind power, as one of 
the most mature and rapidly expanding forms of clean 
energy, plays a pivotal role in this transition[1]. Central to 
wind energy systems are the turbine blades, which are 
subjected to complex and fluctuating loads during 
operation. These include aerodynamic forces, gravitational 
loads, centrifugal forces, and vibrational stresses, all of 
which may vary with wind speed, yaw angle, turbulence, 
and blade pitch. Over time, these variable loads can lead to 
fatigue, structural degradation, or even catastrophic 
failure[2,3].  Therefore,  monitoring  the  mechanical. 

Behaviour and load consistency of wind turbine blades in 
real time are essential for ensuring operational safety, 
extending service life, and optimising energy output. 

Traditionally, structural health monitoring (SHM) of wind 
turbine blades has relied on techniques such as resistance 
strain gauges, piezoelectric sensors, acoustic emission 
testing, ultrasonic inspection, and infrared thermography 
[4, 5]. While these methods offer varying degrees of 
sensitivity and precision, they suffer from inherent 
limitations. Resistance-based sensors are prone to drift and 
require frequent recalibration to maintain accuracy. 
Ultrasonic and acoustic systems are vulnerable to 
environmental noise and require complex signal 
processing. Moreover, most conventional sensors are 
susceptible to electromagnetic interference, have limited 
durability in harsh weather conditions, and are difficult to 
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Integrate into the rotating components of wind turbines. In 
addition, these methods often rely on discrete point 
measurements and fail to provide comprehensive spatial 
coverage or real-time inter-blade comparisons, making it 
difficult to detect subtle asymmetries or early-stage faults 
[6]. 

MEMS-FBG sensors provide a reliable and advanced 
solution for monitoring wind turbine blades. They combine 
high sensitivity with excellent signal stability and 
resistance to electromagnetic interference. Compared to 
piezoelectric and acoustic sensors, MEMS-FBGs are more 
consistent and less affected by environmental noise. Unlike 
ultrasonic and infrared methods, they support real-time, 
continuous monitoring. Optical interferometers and 
wireless networks, although sensitive and flexible, face 
challenges such as complexity and power limitations. 
MEMS-FBG sensors enable accurate, distributed sensing 
along the blade. Their compact, embedded design makes 
them ideal for long-term structural health monitoring in 
harsh turbine environments. 
To overcome these challenges, researchers and engineers 
have increasingly turned to optical fibre sensing 
technologies, particularly those based on fibre Bragg 
grating (FBG) and micro-electro-mechanical systems 
(MEMS). FBG sensors operate by reflecting specific 
wavelengths of light, which shift in response to mechanical 
strain or temperature changes[7,8]. When combined with 
MEMS structures, these sensors form compact, low-power, 
and highly sensitive systems capable of precise 
measurement over long distances. MEMS-FBG sensors 
offer several critical advantages, including immunity to 
electromagnetic interference, corrosion resistance, a high 
signal-to-noise ratio, and multiplexing capability, which 
allows multiple sensors to share a single fibre optic line. 
Additionally, their small size and flexibility make them 
ideal for embedding directly into the composite materials 
of turbine blades without compromising structural integrity 
[9,10]. MEMS-FBG sensors offer major benefits over 
traditional sensors for structural health monitoring. They 
are electromagnetic interference-free, allowing for precise 
and stable measurements in noisy environments, such as 
those found in wind turbines. This results in low signal drift 
compared to conventional resistance strain gauges. They 
are multiplexed, which eliminates wiring complexity and 
enables distributed sensing by allowing multiple sensors to 
be accommodated on a single optical fibre. MEMS-FBG 
sensors are robust against severe weather, small, and 
corrosion-free. Grandhi inspired the energy-efficient 
integration of renewable systems with environmental 
sustainability. Our research incorporates this approach in 
designing a low-power, HMI-integrated passive IoT optical 
fibre sensor network for real-time water level monitoring, 
enabling autonomous operation, clean technology 
deployment, and improved efficiency in remote 
environments [11]. 
MEMS-FBG sensors offer significant advantages over 

conventional resistance strain gauges in wind turbine blade 
monitoring, providing highly accurate readings with 

minimal signal drift, thereby ensuring long-term 
consistency of performance. The immunity to 
electromagnetic interference enhances signal stability in 
interference-prone environments. The sensors are also 
resistant to corrosion and harsh weather conditions. They 
are compact and easy to integrate into the blade structure. 
They also facilitate distributed sensing, making real-time 
monitoring along the entire length of the blade possible. 
Recent developments in both academia and industry have 
highlighted the potential of MEMS-FBG sensors for wind 
turbine applications. For instance, several European 
manufacturers, including Vestas and Siemens Gamesa, 
have piloted optical fiber-based monitoring systems in 
commercial turbines. In South Korea, researchers have 
demonstrated the feasibility of using FBG sensors for real- 
time load and vibration detection in experimental blades 
[12]. China, too, has made significant progress in the 
localization of MEMS-FBG sensor fabrication and system 
integration. However, despite these advancements, existing 
research and commercial products rarely address the need 
for inter-blade load consistency monitoring—the 
comparative analysis of dynamic loads across multiple 
blades, which is vital for identifying structural asymmetry, 
pitch deviation, or rotor imbalance in real time [13,14]. 
Wind turbine unbalanced loads lead to higher wear, 
vibrations, and potential structural damage, lowering 
efficiency and reliability. Such occurrences are a result of 
uneven stress on the blade and drivetrain parts, resulting 
in quicker fatigue and possible damage. MEMS FBG 
sensors enable the real-time detection of such imbalances 
by precise strain and vibration measurement. Their 
excellent stability and minimal signal drift make them 
suitable for continuous monitoring, enabling timely fault 
detection and improved turbine performance. 
Recognising this gap, the present study proposes a 
comprehensive MEMS-FBG optical fibre sensing system 
specifically designed for multi-blade, real-time load 
consistency monitoring in utility-scale wind turbines. The 
system enables distributed sensing along each blade, 
supports high-frequency data acquisition, and integrates 
seamlessly with turbine SCADA (Supervisory Control and 
Data Acquisition) systems for remote monitoring and 
control. In this paper, we detail the architectural design of 
the sensing network, present the mathematical modelling 
framework for load calculation and consistency evaluation, 
and validate the system through experimental deployment 
on full-scale wind turbines. We also introduce a set of 
derived indicators—including load balance coefficient, 
correlation with blade vibration, and consistency index— 
to quantify structural integrity over time. Our results 
demonstrate the system's ability to detect load 
asymmetries, correlate structural loads with dynamic 
behavior, and identify early signs of fatigue or fault 
conditions [15]. The MEMS-FBG technology integrates 
microelectromechanical systems (MEMS) with fibre 
Bragg grating (FBG) optical sensors to deliver accurate, 
real-time readings of strain, temperature, and vibration. 
These sensors possess high sensitivity, are immune to 
electromagnetic interference, and are appropriate for direct 
use. 
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Integration into turbine blades. To assess the distribution of 
mechanical loads on blades, the system presents the load 
consistency index (η), a statistical measure that gauges the 
evenness of blade loading. Higher values signify improved 
aerodynamic symmetry and structural equilibrium. 
Moreover, the system includes complete SCADA 
integration, allowing real-time data from the sensors to be 
processed and displayed via the turbine’s Supervisory 
Control and Data Acquisition platform. Kumar et al. 
emphasised optimising wind and solar energy performance 
with a focus on environmental sustainability. Their 
technique is adopted in our proposed work through 
MEMS-based optical fiber sensing to monitor wind turbine 
blade loads. This enhances turbine reliability and more 
stable renewable energy generation [16]. The renewable 
energy domain enables real-time monitoring of wind 
turbine blade loads using MEMS optical fibre sensing. The 
high-frequency data captured offers a strong foundation for 
applying deep learning techniques to predict structural 
behavior, detect anomalies, and enhance maintenance 
strategies. Although the primary focus is on sensing 
technology, the approach supports integration with deep 
learning models such as LSTMs or autoencoders for time-
series analysis and anomaly detection. 

This work contributes to the field of wind energy 
monitoring by providing a scalable and reliable 
methodology for continuous blade load assessment, which 
supports predictive maintenance strategies and enhances 
turbine reliability. The remainder of the paper is structured 
as follows: Section 2 introduces the overall system design, 
sensor calibration methods, and signal interpretation 
models. Section 3 presents the field deployment, 
experimental procedures, and data analysis. Section 4 
concludes with a summary of findings and directions for 
future research and engineering implementation. 

2. System Design  and Implementation
Scheme

This section provides a comprehensive overview of the 
hardware architecture, sensor selection, data processing 
methodology, and communication protocols employed in 
the MEMS-FBG-based wind turbine blade load monitoring 
system. The system is designed to capture distributed 
strain, vibration, and temperature data from multiple blades 
and convert these into interpretable load consistency 
metrics in real time [17,18]. 

2.1 Sensing Architecture and System 
Overview 

The system architecture consists of MEMS-FBG strain 
sensors, MEMS accelerometers, optical fiber cables, 
wavelength demodulation units, a n d industrial  
control   

processors, and a SCADA-connected data visualization 
platform. Sensors are embedded directly into the blade 
structure or mounted near critical cross-sections. Each 
blade is equipped with 8 strain sensors and 3 
accelerometers. Correct mounting of MEMS-FBG sensors 
on wind turbine blades requires proper surface preparation, 
high epoxy bonding, cured control, and protection. 
Surfaces are cleaned and ground before application of 
high-strength adhesives, with curing either at room 
temperature or accelerated through heat. Sensors are 
encapsulated by shielding and coating after curing to 
protect them from moisture, extreme temperatures, and 
vibration. Strain relief and correct routing of optical fibres 
add further durability. These processes ensure the long-
term stability and performance of sensors in demanding 
operating conditions. 

Figure 1: Overall system 
architecture showing sensor 

distribution across three blades, 
fibre-optic network, demodulation 
unit, IPC, and SCADA interface. 

Figure 1 illustrates how optical fibres from each blade 
converge to a central demodulation cabinet. The real-time 
load and vibration signals are then transmitted to a cloud 
server for analytics and visualization. This modular design 
allows scalability for larger turbines. 

2.2 Strain-to-Load Mathematical Modeling 
The system uses MEMS-FBG optical sensors to detect 
strain through shifts in reflected light wavelengths. 
Temperature compensation is applied to isolate true 
mechanical strain. This strain is converted into internal 
loads using structural models, such as Euler-Bernoulli 
beam theory. Each sensor undergoes calibration to relate 
wavelength shifts to physical loads accurately. Real-time 
data processing enables continuous monitoring of blade 
loads and vibration. The system then assesses load 
consistency and detects faults via SCADA integration. The 
proposed monitoring system utilises the fundamental 
principles of fibre Bragg grating (FBG) sensing to establish 
a mathematical relationship between the measured optical 
parameters. 
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Signals and the actual mechanical loads acting on the wind 
turbine blades. When the blade undergoes strain due to 
aerodynamic or gravitational forces, the embedded FBG 
sensor reflects a shifted wavelength that is linearly 
dependent on the magnitude of the strain and temperature 
change at the sensing location [19]. This wavelength shift 
is the primary measurable quantity from which the entire 
load evaluation process begins. The monitoring system 
interprets optical signals from fiber Bragg grating (FBG) 
sensors to determine mechanical loads on wind turbine 
blades. These sensors detect changes in light wavelength 
caused by structural strain and temperature variations. 
Thermal effects are filtered out to obtain accurate strain 
measurements. Using beam mechanics, the system 
converts this strain into bending forces. A calibration 
model then translates these forces into precise load values 
along the blade. This process supports continuous tracking 
of structural behavior. The data is displayed through the 
turbine’s SCADA interface for real-time analysis and 
maintenance alerts. 

The initial step involves capturing the wavelength shift 
(Δλ) as a function of both strain ε and temperature 
variation ΔT. This is expressed in the Bragg strain shift 
relation as: 

Finally, we link the calibrated wavelength shift vector 𝜆𝜆𝜆to 
actual blade loads in both flapwise and edgewise 
directions using a sensor-specific calibration matrix [C]. 
This matrix is derived through laboratory tests or field 
calibrations where known loads are applied to the blade, 
and the corresponding wavelength shifts are recorded. The 
generalized linear mapping is given as follows: 

𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓/𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = [𝐶𝐶] ⋅ (𝜆𝜆𝜆 − 𝜆𝜆𝜆0) (3) 

In this equation, 𝜆𝜆𝜆 represents the baseline wavelength 
values when no load is applied. Subtracting this baseline 
ensures that only load-induced shifts are considered in the 
analysis. The output 𝐿𝐿𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓/𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 corresponds to the 
reconstructed load vector, giving us real-time insights into 
how each blade section is loaded under operational 
conditions. 

To support these models, the selection of appropriate 
sensors is critical. The following table summarizes the 
specifications of the MEMS-FBG strain sensors deployed 
on the blades: 

Table 1: MEMS-FBG strain sensor 

𝛥𝛥𝛥𝛥 = 𝐾𝐾𝗌𝗌 ⋅ 𝜀𝜀 + 𝐾𝐾𝑇𝑇 ⋅ 𝛥𝛥𝛥𝛥 (1) 
specifications 

Where 𝐾𝐾𝗌𝗌and 𝐾𝐾𝑇𝑇are strain and thermal coefficients, 
respectively. 

Here, 𝐾𝐾𝗌𝗌 and 𝐾𝐾𝑇𝑇 are constants representing the sensitivity 
of the FBG sensor to mechanical strain and temperature, 
respectively. Since the wind turbine operates in a dynamic 
environment with temperature fluctuations, this expression 
is essential to isolate strain-induced wavelength shifts from 
thermal noise, thus ensuring accurate strain recovery. 

Once the strain at various points on the blade is determined, 
we translate it into internal mechanical responses such as 
bending moment. For a slender, linearly elastic blade 
structure, the bending moment M at the root or any section 
is proportional to the curvature κ, which in turn is the 
second derivative of the blade deflection u(x). This 
relation, derived from Euler-Bernoulli beam theory, is 
written as: 

𝑀𝑀 = 𝐸𝐸 ⋅ 𝐼𝐼 ⋅ 𝜅𝜅 = 𝐸𝐸 ⋅ 𝐼𝐼 ⋅ 𝛛𝛛
2𝑢𝑢(𝑥𝑥) (2)
𝛛𝛛𝛛𝛛2 

Where κ is curvature, and u(x) is blade deflection. 

Here, E denotes the Young’s modulus of the blade material, 
and I is the second moment of area for the blade cross-
section. This equation allows us to quantify the amount of 
bending moment induced in the blade under a certain 
strain distribution. 

Table 1 shows that the FDS30-1 sensor, with its higher 
resolution, is primarily used in low-strain regions, such as 
the blade root, where precise detection is essential. In 
contrast, FDS50 sensors are suitable for high-strain zones 
near the blade tip due to their wider measurement range. 
The integration of both sensor types enables 
comprehensive coverage of the blade's structural response 
from root to tip. 

The MEMS-FBG-based wind turbine blade monitoring 
system processes strain and vibration data through a 
structured pipeline. Optical sensors measure strain through 
wavelength shifts, while accelerometers capture vibrations. 
The signals are demodulated, thermally compensated, and 
calibrated to calculate mechanical loads accurately. 
Filtering techniques, including RMS analysis and statistical 
models, are used to remove noise and assess load 
consistency across blades. A consistency index (η) and 
load-vibration correlation help detect imbalances and 
structural issues in real time. Compared to traditional 
sensors, MEMS-FBG sensors show superior noise 
resistance and stability, making the system reliable for 

Model Rang 
e (με) 

Resolution(με 
) 

Center 
Wavelengt 
h 

Temp 
Rang 
e 

FDS30 ±2000 0.1 1525–1565 -40–
-1 nm 70°C
FDS50 ±5000 0.5 1525–1565 -40–

nm 70°C
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Continuous, high-precision blade monitoring and early fault 
detection. 

Collectively, the above modeling framework—rooted in 
optical signal theory, structural mechanics, and sensor 
calibration—establishes a reliable pipeline to transform 
raw optical wavelength data into physically meaningful 
load parameters. This allows the system to perform 
accurate, distributed, and dynamic load monitoring across 
all blades in a wind turbine. 

2.3 Calibration Strategy 

Accurate calibration is the cornerstone of any quantitative 
sensing system. For the MEMS-FBG blade load 
monitoring system, calibration is essential to translate the 
optical wavelength shift measured by each sensor into a 
reliable estimate of the actual mechanical load experienced 
by the blade [20]. The calibration process aims to 
determine the unique coefficients that define this 
relationship for each sensor, accounting for variations in 
bonding, placement, adhesive thickness, and local material 
properties. 

In this work, a hybrid calibration method is adopted that 
combines both theoretical mechanical modeling and 
empirical validation. Specifically, we use two well-
established calibration strategies: Static loading using 
known masses and Self-weight deflection calibration 
through rotor positioning under no-wind conditions. 

Under the assumption that the blade behaves as a 
cantilevered beam, the tip deflection δ\deltaδ due to a 
known applied force F (e.g., from a calibrated mass) can be 
predicted using the classical beam bending equation: 

𝐼𝐼𝐼𝐼 = 𝐹𝐹⋅𝐿𝐿
3 

(4)
3𝐸𝐸𝐸𝐸 

Here, L is the distance from the load point to the blade root, 
EEE is the Young’s modulus of the blade material, and III 
is the second moment of inertia of the blade cross-section. 
This formula provides a theoretical estimate of blade 
deflection for a given load, which can be directly compared 
to the wavelength shifts observed from the FBG sensors to 
establish calibration coefficients. 

To further relate this deflection to internal stress and strain, 
we calculate the curvature κ of the blade using the 
moment-curvature relation from Euler-Bernoulli beam 
theory: 

𝜅𝜅 = 𝑀𝑀 (5)
𝐸𝐸⋅𝐼𝐼 

This expression links the mechanical moment M at a given 
cross-section to its curvature and, by extension, to the strain 
distribution measured by FBG sensors. Since each sensor 
may respond slightly differently due to its local bonding 
environment, it is crucial to empirically determine a 
sensor-specific mapping from wavelength shifts to 
mechanical loads. 

Based on the above theoretical relations and field 
calibration tests, a linear calibration matrix is derived for 
each sensor. The final coefficients capture the response of 
each FBG to loads in both flapwise and edgewise 
directions. These coefficients are summarized in Table 2: 

Table 2: Blade 1 sensor calibration 
coefficients 

Se 
ns 
or 
ID 

Fl 
ap 
C 
oe 
ff. 

E 
dg 
e 
C 
oe 
ff. 

𝜆𝜆0 
(n 
m) 

S1 22 
00 
.5 

- 
45 
00 
.7 

15 
37. 
10 

S2 - 
39 
00 
.3 

- 
25 
00 
.6 

15 
42. 
88 

S3 48 
00 
.0 

29 
00 
.5 

15 
49. 
61 

Table 2 shows that the flap coefficient and edge 
coefficient represent the sensitivity of the sensor to 
bending in the respective directions, expressed in units 
that relate the wavelength shift (in nm) to mechanical load 
(typically in kN). The baseline wavelength 𝜆𝜆0 denotes the 
FBG reflection wavelength under unloaded, ambient 
conditions. 

Each sensor exhibits a unique set of coefficients due to 
variability in installation conditions such as adhesive type, 
curing time, local curvature, and thermal gradient. Hence, 
per-sensor calibration is critical for achieving a high-
fidelity mapping from optical domain measurements to 
mechanical load parameters. 

Ultimately, this calibration strategy ensures that the 
sensing system delivers quantitative, comparable, and 
consistent data across all blades, thereby enabling real-
time load comparison, structural integrity assessment, and 
intelligent fault diagnosis. 
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2.4 Load Consistency Evaluation Algorithm 

In wind turbine operation, one of the key indicators of 
structural  balance  and  aerodynamic  health  is  the 

MEMS accelerometers. The RMS value captures the 
effective magnitude of fluctuating acceleration signals: 

Vibration RMS: 

 

Consistency of loads across multiple blades. Ideally, in 𝐴𝐴 = √1 ∑𝑛𝑛 𝑎𝑎2 (7) 
Uniform wind conditions, all blades of a wind turbine 
should experience similar loading patterns[21]. However, 

𝑟𝑟𝑟𝑟𝑟𝑟 
 

𝑛𝑛  𝑖𝑖=1 𝑖𝑖 

Due to pitch angle deviation, blade ageing, contamination, 
or manufacturing defects, load distribution may become 
asymmetric, potentially leading to mechanical imbalance, 
increased vibration, and long-term fatigue damage. The 
load consistency findings demonstrate that MEMS-FBG 
sensors effectively detect real-time blade load imbalances. 
This model utilises a consistency index (η) to facilitate the 
early identification of aerodynamic or structural issues, 
thereby supporting predictive maintenance and reducing 
downtime, as well as avoiding unnecessary repairs. Fast 
alarm triggering enhances operational safety by allowing 
quick responses to faults. Strong load-vibration 
correlations further improve diagnostic accuracy. The 
integration with SCADA and cloud systems enables 
continuous monitoring and trend analysis. 

To address this, the system introduces a statistical metric— 
the load consistency index η—which quantifies the degree 
of uniformity among the real-time loads of the three blades. 
This index is computed as: 

Load consistency index: 

𝜂𝜂 = 1 − 𝜎𝜎(𝐿𝐿1,𝐿𝐿2,𝐿𝐿3) (6)
𝐿𝐿𝐿 

Where 𝜎𝜎is the standard deviation and 𝐿𝐿𝐿is the mean load. 
Here, 
𝜎𝜎(𝐿𝐿1, 𝐿𝐿2, 𝐿𝐿3) is the standard deviation of the 
instantaneous blade loads 𝐿𝐿1,  𝐿𝐿2, 𝐿𝐿3, and L is their 
mean. When all blades carry nearly equal loads, 
σ→0\sigma \to𝜎𝜎0→0, resulting in η→1\eta \to𝜂𝜂1→1, 
indicating high consistency. Conversely, as inter-blade 
differences increase, ηdecreases, flagging potential 
structural or aerodynamic imbalances. The load 
consistency index (η) is a real-time metric that measures 
how evenly loads are distributed across wind turbine blades 
by comparing the standard deviation of blade loads to their 
mean. Values close to 1 indicate high aerodynamic 
symmetry and structural balance, while lower values reveal 
potential imbalances. This index enables early fault 
detection, alarm triggering, and improved turbine safety 
and efficiency. 

While load consistency evaluates the static equilibrium 
among blades, dynamic behavior is equally important for 
health monitoring. To assess the vibrational stability of 
each blade under operational load, the system calculates the 
root-mean-square (RMS) acceleration from the onboard 

Where aia_iai is the instantaneous acceleration sample at 
time step iii, and nnn is the total number of samples in a 
sliding time window (e.g., 1–5 seconds). This metric is 
used to characterize the vibration energy of each blade, 
which tends to increase under uneven loading or 
aerodynamic excitation. 

To further understand the interplay between mechanical 
loading and vibrational response, the system computes the 
Pearson correlation coefficient RRR between the load 
and the corresponding RMS acceleration: 

Correlation between load and vibration: 

𝑅𝑅 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝐿𝐿,𝐴𝐴) (8)
𝜎𝜎𝐿𝐿⋅𝜎𝜎𝐴𝐴 

Where σ is the standard deviation, and L is the mean load. 

Figure 2: Example of load signal 
trends across blades and their 

respective vibration levels 

Figure 2 shows synchronized data streams from blades 1– 
3. When loads increase (e.g., wind gust at t=12 min), 
vibration amplitudes rise proportionally, confirming strong 
mechanical coupling.

2.5 Communication and Data Management 
A critical component of the proposed MEMS-FBG 
monitoring system is the design of a robust, low-latency, 
and scalable data transmission and visualisation 
framework, capable o  f  supporting real-time load. 
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Diagnostics and decision-making. Given the distributed 
nature of sensor deployments across multiple rotating 
blades and the need for central data fusion, the 
communication infrastructure must ensure high reliability, 
minimal signal degradation, and seamless integration with 
existing turbine Supervisory Control and Data Acquisition 
(SCADA) systems [22]. The system routes and 
synchronises signals from rotating wind turbine blades 
using fibre-optic cables connected to MEMS-FBG strain 
sensors and accelerometers embedded in each blade. These 
signals travel through the rotating hub to a central 
demodulation unit, where they are converted into digital 
data. A local processor synchronises the signals using GPS 
and performs real-time analysis, including load 
consistency and vibration correlation. Processed data is 
being integrated into the SCADA system and cloud 
platform for monitoring, visualisation, and fault detection. 
This setup ensures accurate, real-time tracking of blade 
conditions with fast alarm response and high signal 
stability. 

2.5.1 Data Flow Architecture 

Each blade is equipped with a set of optical fiber sensors 
(strain and temperature) and MEMS-based accelerometers. 
These sensors are routed via ruggedized single-mode 
optical fibres to a hub located within the turbine nacelle. 
To minimize signal attenuation and avoid electromagnetic 
interference, passive optical splitters are used to multiplex 
signals before they are fed into a multi-channel 
wavelength demodulation unit (e.g., FT703E). 

The demodulation unit operates at high speed (e.g., 1 kHz 
per channel) and converts the reflected Bragg wavelengths 
into digital strain and temperature values. Simultaneously, 
analogue acceleration signals from MEMS sensors are 
digitized using a high-resolution ADC module. 

All raw sensor outputs are forwarded to a local Industrial 
PC (IPC) embedded in the turbine's control cabinet. This 
IPC runs a custom real-time data processing software that 
performs Wavelength normalization and thermal 
compensation; Load reconstruction using pre-calibrated 
coefficient matrices; Vibration signal filtering and RMS 
analysis; Consistency index (η\eta) and correlation 
coefficient (RR) computation; Fault detection logic and 
alarm flag generation. 

Processed data packets are then transmitted via industrial 
Ethernet or wireless bridge (e.g., 5G/LoRa) to the 
turbine’s SCADA system and cloud server. For offline 
analysis, all sensor data are logged locally at 10 Hz 
sampling resolution and synchronized using GPS time- 
stamping. 

Figure 3: Dashboard visualization 
for operator interface 

Figure 3 shows how data is presented in the SCADA 
interface. Each blade has a dynamic load graph, vibration 
level, and alert status. Historical data trends support long- 
term performance evaluation. 

2.5.2 Data Fields and Update Rates 

The system continuously generates several key diagnostic 
variables at different update frequencies, as summarized in 
the following Table 3: 

Table 3: Real-time data fields 

Data Field Unit 
s 

Update 
Frequency 
y 

Description 

Blade Load 
(L₁–L₃) 

kN 10 Hz Reconstructe
d 
flap/edgewise 
loads 

RMS 
Acceleration 

m/s² 10 Hz Blade 
vibration 
energy 

Temperatur 
e (T₁–T₃) 

°C 1 Hz FBG 
temperature 
data 

Consistency 
Index (η) 

– 0.1 Hz Multi-blade 
load 
uniformity 

Load- 
Vibration 
Corr. (R) 

– 0.1 Hz Structural 
behavior 
correlation 

Fault Flags – Event-
triggered 

Alarms for 
load deviation 
or imbalance 

2.5.3 Operator Interface and Visualization 

A user-friendly graphical dashboard is deployed using 
Grafana and integrated with the SCADA backend. 
Operators can monitor real-time curves of load, vibration, 
and temperature for each blade, inspect 24-hour historical 
trends, and export customized reports. Dynamic gauges 
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indicate the current health status of each blade via color- 
coded consistency levels: η>0.90\eta > 0.90 – Healthy; 
0.80<η≤0.900.80 < \eta \leq 0.90 – Watch; η≤0.80\eta \leq 
0.80 – Action Required. 

Figure 4: Real-time SCADA 
dashboard showing blade load 
curves, vibration bands, and 

warning messages. 

When abnormal load deviations or high vibration RMS 
values are detected, the system triggers audible and visual 
alarms. Operators can also trace the anomaly timeline 
through historical trend plots, facilitating root-cause 
analysis and early maintenance planning. 

2.5.4 Cloud Integration and Data Security 

For long-term data retention and cross-turbine fleet 
comparison, all metrics are uploaded to a secure cloud 
database using encrypted MQTT or HTTPS protocols. 
Data is anonymized and compressed to reduce bandwidth 
consumption. The cloud platform enables wind farm 
managers to view health status across multiple turbines, 
Schedule blade inspections based on load history, generate 
monthly or seasonal reports on blade performance and 
apply machine learning models for failure prediction. 
Redundant backups and access authentication ensure data 
integrity and security. 

3. Experimental

This section presents the field deployment, data acquisition 
procedures, and analysis results of the proposed MEMS-
FBG-based wind turbine blade load monitoring system. 
Through comprehensive testing on a full-scale turbine 
under real operational conditions, we evaluate the system’s 
accuracy, reliability, and its effectiveness in capturing load 
behavior and detecting inconsistencies across blades[23- 
25]. 

3.1 Experimental Setup and Field 
Deployment 

The experimental validation was carried out on a 2.0 MW 
horizontal-axis wind turbine installed in Jiangsu Province, 
China. The turbine features three fibreglass-reinforced 
epoxy blades, each approximately 45 meters long. MEMS- 
FBG strain sensors and accelerometers were installed on all 
blades at three critical locations: root, mid-span, and near 
the tip. The sensors were embedded using protective epoxy 
channels to ensure signal fidelity and long-term durability. 

Figure 5: Field deployment of 
MEMS-FBG strain and acceleration 

sensors on wind turbine blades. 

Each blade was connected via fibre-optic cables to a 15-
channel FT703E demodulation unit housed inside the 
nacelle. Real-time data was processed through an 
embedded IPC and transmitted to the SCADA system and 
cloud platform. 

3.2 Static Calibration Test Results 

To evaluate baseline accuracy, static loading experiments 
were conducted. Known weights were suspended at 
specific points on each blade, and the resulting Bragg 
wavelength shifts were recorded. 

Table 4: Static calibration test 
results for blade root strain sensors 

Load 
Type 

Ap 
plie 
d 
Lo 
ad 
(kN 
) 

Mea
n 
Sure 
d 
Load 
(kN) 

Flap 
wise 

12. 
5 

12.1 
8 

Edge 
wise 8.0 7.89 

The deviation was consistently within ±3%, indicating high 
reliability of the strain-load conversion. 
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Figure 6: Overlay of measured and 
theoretical strain-to-load calibration 

curves for Blade 1. 

To evaluate the baseline accuracy of the MEMS-FBG 
sensing system, static loading experiments were conducted 
by suspending known weights at key strain locations on the 
turbine blades. The resulting Bragg wavelength shifts were 
compared against theoretical load-strain predictions. As 
shown in Table 4, the measured loads closely matched the 
applied reference values, with only 2.56% deviation in the 
flapwise direction and 1.38% in the edgewise direction, 
well within the ±3% error threshold. These results confirm 
the high fidelity of the strain-to-load calibration and 
demonstrate the stability of the sensor's adhesive bonding 
and optical signal interpretation. Figure 6 further supports 
these findings by displaying an overlay of measured and 
theoretical calibration curves for Blade 1. The curves 
exhibit strong linearity and minimal hysteresis across the 
load range, indicating excellent repeatability and negligible 
drift. The narrow deviation band and close alignment 
between datasets reflect a high calibration quality, 
validating that the MEMS-FBG system is capable of 
reliable strain detection under static loading conditions and 
is thus well-suited for subsequent real-time dynamic 
monitoring applications. The calibration curves in Figure 6 
show a linear relationship with minimal hysteresis, 
verifying the effectiveness of sensor bonding and model 
fitting. 

3.3 Dynamic Load Distribution and 
Consistency Evaluation 

To assess the real-time performance of the proposed 
MEMS-FBG system under dynamic conditions, the turbine 
was monitored continuously over 60 days, encompassing 
a full range of wind speeds (3–17 m/s) and operational 
modes including idle, partial-load, rated-power, and storm 
cut-out states. Hourly load data for each blade were 
collected and used to compute the consistency index η, 
which quantifies the degree of load balance among blades. 
As presented in Table 5, high values of η were 

observed during stable operating periods (e.g., 0.987 
between 00:00 and 01:00), indicating a near-uniform load 
distribution. During moderate conditions (06:00–07:00), η 
slightly decreased to 0.942, reflecting mild asymmetries 
likely induced by transient wind variations or minor pitch 
angle differences. By 13:00–14:00, under more turbulent 
or high-load conditions, the consistency index declined 
further to 0.823, suggesting a notable imbalance among the 
blades, potentially caused by gust-induced asymmetrical 
aerodynamic loading. Figure 7 complements these findings 
by illustrating the 24-hour load fluctuation patterns of all 
three blades alongside the corresponding η index 
trajectory. The results highlight the system’s ability to 
detect subtle changes in load uniformity in real time and 
validate the effectiveness of η as a practical indicator for 
blade load balance monitoring and early anomaly 
detection. 

Figure 7: Load variation across 
blades during 24-hour continuous 

operation. 

Table 5: Load consistency metrics 

T 
i 
m 
e 
W 
i 
n 
d 
o 
w 

L 
1 
L 
_ 
1 
( 
k 
N 
) 

L 
2 
L 
_ 
2 
( 
k 
N 
) 

L 
3 
L 
_ 
3 
( 
k 
N 
) 

η 
\ 
e 
t 
a 

0 
0 
: 
0 
0 
– 
0 
1 
: 
0 
0 

2 
5 
. 
3 

2 
4 
. 
8 

2 
5 
. 
6 

0 
. 
9 
8 
7 
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Thereby validates the use of η as a reliable, real-time 
indicator for turbine health monitoring and imbalance 
prediction under varying environmental and control 
conditions. 

3.4 Vibration Analysis and Load 
Correlation 

Figure 9: RMS acceleration vs. 
blade load scatter plots with 

regression fitting. 

Table 6: Vibration-load correlation 
statistics 

Figure 8: Hourly evolution of load 
consistency index η\eta over 3 

consecutive days. 

Figure 8 illustrates the hourly evolution of the load 
consistency index η over a continuous three-day 
monitoring period, providing insights into the temporal 
stability and aerodynamic balance of the wind turbine 
system. During the first 24 hours, η values remained 
consistently high, typically above 0.95, indicating stable 
load distribution and effective aerodynamic alignment 
among the three blades under low wind speed conditions. 
In the second phase (Day 2), the consistency index began 
to exhibit mild oscillations, with periodic dips toward 0.90, 
likely due to transient wind disturbances and minor control 
fluctuations. On the third day, a significant downward 
trend in η was observed, with values approaching and even 
dropping below the 0.85 threshold during certain intervals. 
These drops correspond to periods of increased wind 
turbulence or partial yaw misalignment, suggesting that 
high-speed gusts and directional wind shifts can induce 
notable aerodynamic imbalance. The gradual degradation 
pattern in the consistency index underscores the system’s 
sensitivity to operational irregularities and its capability to 
flag early signs of blade load asymmetry. The figure 

To investigate the relationship between structural loading 
and dynamic response, RMS acceleration values were 
extracted from each blade’s mid-span MEMS 
accelerometer and analyzed against the corresponding 
mean load levels. As shown in Table 6, all three blades 
exhibited strong positive correlations between vibration 

B 
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e 
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intensity and mechanical loading, with Pearson correlation 
coefficients (R) of 0.89, 0.86, and 0.91 for Blades B1, B2, 
and B3, respectively. These results confirm a clear 
mechanical coupling, where increased aerodynamic or 
gravitational loads lead to elevated vibrational amplitudes. 
Figure 9 provides further visual validation through scatter 
plots of RMS acceleration versus load for each blade, 
overlaid with linear regression fits. The trendlines 
demonstrate near-linear behavior with high coefficients of 
determination, indicating consistent vibrational patterns 
across all operating regimes. Notably, Blade B3 exhibited 
both the highest RMS acceleration and the strongest 
correlation, suggesting that it may be more sensitive to 
load-induced dynamic effects or may have slight structural 
variability. The coherence among all three datasets reflects 
the uniformity and precision of the sensing system. At the 
same time, the strong linearity validates the reliability of 
vibration data as a diagnostic proxy for load monitoring. 

3.5  Fault Simulation and Alarm Triggering 

To test the fault detection system, artificial imbalance was 
induced by modifying the pitch angle on Blade 2 by +2°. 
The system rapidly detected a drop in η\eta below 0.80 
and triggered an alarm within 3 seconds. 

Figure 10: SCADA alert and consistency 
drop visualization from fault simulation. 

Table 7: Fault detection system reaction time 
and thresholds 

Fault Type η\eta 
Drop 

Detection 
Time (s) 

Alarm 
Triggered 

Blade 2 
pitch +2° 

0.812 → 
0.746 

3.2 �� Yes 

Blade 3 
detuning 

0.901 → 
0.879 

5.6 � No 

The system’s response demonstrates effective fault 
sensitivity, distinguishing between major and minor 
asymmetries. 

To validate the responsiveness and fault sensitivity of the 
MEMS-FBG-based monitoring system, controlled 
imbalance scenarios were introduced under operational 
conditions. Specifically, a +2° pitch deviation was applied 
to Blade 2 to simulate asymmetrical aerodynamic loading. 
As shown in Table 7, this induced a rapid drop in the load 
consistency index η from 0.812 to 0.746 within a short time 
window, triggering an alarm just 3.2 seconds after the fault 
was introduced. In contrast, a more subtle detuning of 
Blade 3 resulted in only a marginal decline in η from 0.901 
to 0.879, which did not surpass the predefined alarm 
threshold and hence did not elicit a system warning. Figure 
10 illustrates this behavior clearly, with a distinct η drop 
corresponding to the Blade 2 disturbance and a subsequent 
alert visualization on the SCADA interface. The alarm 
zone below the threshold of 0.80 is shaded, and annotations 
highlight both the imbalance injection point and the alarm 
trigger event. This experiment confirms the system’s 
ability to distinguish between critical and non-critical 
asymmetries, enabling early detection of significant load 
imbalances while avoiding false positives in minor 
deviations. The rapid detection time and high specificity of 
the alarm logic underscore the practical value of the η-
based fault detection algorithm for real-time wind turbine 
monitoring and control optimisation. 

3.6 Signal Stability and Noise Comparison 

The signal-to-noise performance of MEMS-FBG sensors 
was compared to traditional resistance strain gauges. 

Table 8: Sensor noise comparison 

Sensor 
Type 

RMS 
Noise 
(με) 

Drift 
after 

7 
Days 
(με) 

MEMS- 
FBG 1.12 0.06 

Resistance 
Gauge 5.46 1.14 
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Figure 11: 7-day signal drift 
monitoring under idle and 

operational periods. 

The optical system showed superior signal stability and 
near-zero drift, particularly under rotating conditions and 
in high-EMI environments. 

To evaluate the long-term signal fidelity of the proposed 
sensing architecture, a comparative assessment was 
conducted between MEMS-FBG sensors and conventional 
resistance strain gauges in terms of noise characteristics 
and drift performance over seven days. As summarized in 
Table 8, the MEMS-FBG sensors exhibited significantly 
lower root-mean-square (RMS) noise (1.12 με) compared 
to resistance gauges (5.46 με), confirming superior signal 
clarity and reduced susceptibility to environmental 
fluctuations. More importantly, drift after seven days of 
continuous operation was nearly negligible for the FBG 
sensors (0.06 με), while resistance-based sensors 
exhibited over 1 με of signal drift, indicating substantial 
baseline instability. Figure 11 provides a visual 
comparison of drift behavior under both idle and rotating 
conditions. The FBG curves remained tightly bound 
throughout the observation window, while the resistive 
sensor data showed increasingly erratic deviations, 
especially during high-dynamic periods. 
Additionally, shaded zones in the figure mark low-drift 
regions for optical sensors, emphasizing their robustness 
in high-EMI and mechanically active environments. These 
findings confirm that MEMS-FBG sensors offer 
dramatically improved long-term stability, making them 
ideal for continuous monitoring of wind turbine blades in 
real-world operating scenarios where precision and 
resilience are critical. Embedding sensors in composite 
turbine blades gave challenges such as potential structural 
weakening, calibration sensitivity, environmental 
exposure, and maintenance difficulties. Sensors might be 
precisely installed to avoid stress concentrations, with 
thermal and mechanical stability ensured under harsh 
conditions. Signal integrity during rotation, the impact on 
blade dynamics, and the difficulty of repairing embedded 
components further complicate implementation. While 
modern systems improve data reliability and scalability, 
integration costs and complexity remain high, requiring a 
careful balance between performance and durability. 

4. Conclusion

This study demonstrates the effectiveness of a MEMS-
FBG-based sensing and monitoring system for 
comprehensive wind turbine blade load analysis. Through 
a combination of distributed strain and vibration sensing, 
accurate calibration, and real-time analytics, the system 
achieves reliable quantification of blade load consistency 
and structural health. The proposed consistency index (η) 
proved to be a robust and interpretable metric for detecting 

inter-blade aerodynamic imbalance under diverse 
operational scenarios. Static calibration results validated 
the model’s accuracy, with load measurement errors below 
3%. Vibration-load correlation analysis confirmed tight 
coupling between mechanical loads and blade dynamics, 
while fault injection tests showcased the system’s 
sensitivity and low-latency response capabilities. 
Furthermore, long-term signal drift comparisons 
established the superior stability and environmental 
resilience of MEMS-FBG sensors relative to conventional 
gauges. These results collectively affirm the system's 
potential to enhance wind turbine reliability, optimize 
maintenance schedules, and reduce the risks associated 
with unbalanced loading. Future work will explore large-
scale deployment across turbine fleets and integration with 
AI-based fault prognosis algorithms to improve wind farm 
operational efficiency further. 
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