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Abstract 
Introduction: The rapid expansion of energy networks has significantly increased energy consumption, resulting in higher 
electricity costs. Abnormal energy usage in buildings and industries, often caused by system malfunctions, leads to 
substantial energy waste. Detecting such anomalies is essential for cost control and efficient energy management. 
Objectives: This study aims to develop a deep learning-based method to detect anomalies in high-dimensional energy 
metering data, overcoming the limitations of existing techniques that struggle with data complexity and lack effective 
contextual analysis. 
Methods: High-dimensional metering data from a city energy provider is processed using a Convolutional Autoencoder 
(CAE) to extract deep features and reduce dimensionality. These features are then fed into a Cascaded Long Short-Term 
Memory (CLSTM) network, which identifies anomalous patterns in the data. 
Results: The cascaded CLSTM model effectively detects anomalies in the energy consumption data by accurately predicting 
deviations from normal patterns. 
Conclusion: The proposed CAE-CLSTM approach enhances anomaly detection in complex energy datasets, enabling more 
effective monitoring and reducing unnecessary energy waste and costs. 
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Introduction 

High-Dimensional Energy Metering Data 

For scientific and technological development, 
energy is considered an essential component. The energy 
demand is high due to technological and social development. 
Residential and commercial buildings can consume a 
significant amount of energy. The dimension of the metering 

data increases due to frequent energy utilisation. The energy 
meters installed in industries and households measure 
electricity consumption over a short period [1]. The metering 
data available in higher dimensions is referred to as high-
dimensional metering data [3]. In data transmission, 
managing high-dimensional metering data is a complex task. 
This high-dimensional metering data resulted from the 
extensive development of smart metering devices [5]. The 
smart meter system is used to collect data regarding 
electricity consumption in large-scale buildings. Anomaly 
detection in large-scale smart meter data raises key privacy 
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and security concerns. It can reveal sensitive user behaviour, 
posing risks of data misuse or breaches. Misclassification 
may lead to false alarms or invasive monitoring, and the 
models themselves can be vulnerable to cyberattacks. To 
ensure responsible use, strong data protection, transparency, 
and ethical oversight are essential. The quality of the power 
and the electricity consumption of the user can be greatly 
affected by the low-voltage distribution system [8]. The 
metering system is installed on the consumer side to gather a 
huge amount of electricity data. The smart metering system 
has monitored energy usage. The data management system 
receives high-dimensional metering data for the analysis 
process. A huge quantity of metering data is generated by the 
smart meters deployed in various industries, household 
organisations, and other settings. Moreover, the high-
dimensional metering data is heterogeneous. High-
dimensional energy metering data is highly heterogeneous 
due to varying time intervals, diverse sources, different 
measurement types, and user behaviour. This complexity 
presents challenges in preprocessing, including handling 
noise, redundancy, missing data, and the curse of 
dimensionality. Anomaly detection is further complicated by 
unclear definitions of abnormal behaviour and sparsely 
labelled data. Traditional methods struggle in this context, 
while deep learning techniques, such as CAE and CLSTM 
networks, offer effective solutions. The data developed by the 
smart meters are available in high dimensions. Smart meters 
generate complex, high-dimensional data due to their ability 
to record information frequently across multiple 
measurement channels. This data includes various electrical 
parameters such as voltage, power, and frequency, as well as 
temporal and behavioural usage patterns. The inclusion of 
metadata, such as time, location, and device context, adds 
further complexity. To analyse this data effectively, 
particularly for identifying unusual consumption patterns, 
deep learning methods are employed. Convolutional 
autoencoders help reduce the dimensionality by removing 
irrelevant information, while cascaded LSTM networks 
analyze the refined data to detect anomalies over time. 
Additionally, the real-time analysis process is facilitated by 
high-dimensional metering data [7].  The high-dimensional 
metering data falls under the category of big data, consisting 
of several electricity observations [22]. The energy efficiency 
of the industries and residential sector is improved through an 
energy metering system. The energy supplier receives 
information on energy consumption through the energy 
metering system [4]. The metering system is located on the 
consumer side to measure data consumed by the 
corresponding user. The control capabilities, energy 
measurement, and monitoring activity of the energy metering 
system are high. High-dimensional metering data is generated 

due to the extensive deployment of smart meters [7].  By 
using the multi-scale fusion neural network technique from 
Valivarthi and Hemnath (2018) [36], our proposed work 
builds upon their approach by utilizing layered feature 
extraction to high-dimensional energy metering data, which 
improves anomaly recognition and enhance model robustness 
in complex data environments. 

Energy consumption data across residential, commercial, and 
industrial settings presents distinct patterns and challenges. 
Residential data is generally low and routine, but it varies due 
to lifestyle changes, making anomaly detection challenging. 
Commercial settings have structured energy use but face 
issues with overlapping loads and large data volumes. 
Industrial data is the most complex and voluminous, with 
noise and variability complicating anomaly detection. 
Common challenges across all sectors include high-
dimensional data, difficulty in distinguishing between normal 
and abnormal use, and the need for real-time, accurate 
analysis. Advanced deep learning models, such as CAE and 
CLSTM, are essential for effective feature extraction and 
anomaly recognition.  

Anomaly-based Challenges on High-
Dimensional Energy Metering Data 

Higher electricity consumption and energy wastage 
occur due to anomalous power consumption activities. 
Effective electricity utilisation is achieved by identifying 
abnormal power usage. The wastage of energy in the building 
is prevented by identifying the abnormal energy consumption 
[1]. In the current research field, identifying anomalous 
power consumption is a challenging process because the 
distinction between anomalous and normal energy is not 
clearly defined in any existing research work. This makes the 
anomaly detection process a challenging task. Moreover, the 
boundary between abnormal and normal energy is not 
defined. Moreover, the existing techniques do not handle the 
unified metrics of high-dimensional metering data. Due to the 
factors above, anomaly detection in high-dimensional 
metering data is a challenging process. The minimum 
quantity of the ground truth dataset is the major obstacle to 
developing the anomaly detection process. Moreover, the 
labelling process for normal and abnormal energy data is not 
proposed in the existing studies. Energy metering data can be 
categorised into three types: point, contextual, and collective. 
Point anomalies differ significantly from typical values, while 
contextual anomalies are abnormal within a specific context. 
Collective anomalies form unusual patterns over time, 
potentially indicating energy theft or system inefficiency. 
These anomalies are critical as they often reflect long-term 
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operational issues or fraudulent activities. A deep learning 
approach combining CAE and CLSTM networks is effective 
in detecting these complex anomaly types in high-
dimensional energy data. Contextual information helps 
differentiate normal usage from abnormal usage, improving 
detection accuracy and reducing false positives. The existing 
technique does not automatically identify the anomalies in the 
high-dimensional metering data.  Furthermore, the energy 
consumption activity is not effectively classified by the 
traditional model, as it necessitates a huge number of 
parameters. The researcher presents a neural network 
technique to detect anomalies and then evaluates its 
performance in comparison to other techniques. Furthermore, 
a collection of specifications is chosen to evaluate the 
effectiveness of the method. High-dimensional metering data 
analysis raises two significant difficulties. Euclidean distance 
is ineffective for anomaly detection in high-dimensional 
energy data because it loses discriminative power, is 
influenced by irrelevant and sparse features, and becomes 
computationally expensive. It also fails to capture complex 
patterns and temporal dependencies. To overcome these 
limitations, deep learning models such as Cascaded LSTMs 
and Convolutional Autoencoders are used to extract 
meaningful features and accurately detect anomalies. The 
first problem arises because of the Euclidean distance. It is 
used to gauge the similarity between two identical instances 
of data in low-dimensional space, but it provides poor results 
in high-dimensional spaces. Some of the classical anomaly 
detection techniques become less successful as 
dimensionality increases. When analysing high-dimensional 
metering data, the data takes on a sparse nature, and noise 
effects obscure the actual features in the high-dimensional 
metering data. Additionally, the quantity of processes 
required for the analysis and processing of these data 
increases rapidly, and the expense associated with these 
computations also rises exponentially. Certain difficulties 
arise when identifying anomalies in high-dimensional data, 
which are discussed in the following points. The attributes 
irrelevant to anomalous data usually appear in high-
dimensional metering data. These unnecessary attributes 
create an impact on high-dimensional metering data anomaly 
detection. Irrelevant features in high-dimensional energy 
metering data introduce noise, increase computational costs, 
and increase the risk of overfitting, thereby weakening 
anomaly detection performance. The proposed CAE-CLSTM 
model addresses this by using a Convolutional Autoencoder 
to extract essential features and reduce dimensionality, 
followed by a Cascaded LSTM network that further refines 
the data for accurate anomaly detection. This approach 
enhances signal clarity and detection accuracy, outperforming 
traditional methods like PCA and AE across key performance 

metrics. Furthermore, the utilization of classical anomaly 
detection techniques relies on distance, volume, and other 
factors, which increase the complexity of the anomaly 
detection process [3]. Anomaly detection in high-dimensional 
energy metering data is challenging due to the large number 
of features, data heterogeneity, sparsity, and noise. The 
absence of labelled data and clear boundaries between normal 
and abnormal behaviour further complicates detection. 
Temporal dependencies in the data necessitate models that 
can capture sequential patterns, while redundant features 
further complicate the analysis. Additionally, high 
computational costs make real-time analysis difficult. These 
challenges highlight the need for advanced deep learning 
techniques, such as Cascaded LSTM and Convolutional 
Autoencoder networks, to effectively extract features and 
detect anomalies. 

All the components of the data are often employed 
in the process of anomaly identification using conventional 
methods; however, these data consist of numerous 
insignificant features, which can affect the results of 
anomalous data detection. Moreover, redundant features in 
the high dimensional metering data could lower the success 
rate of anomaly detection. There are several techniques 
available to identify anomalies in high-dimensional metering 
data, including linear frameworks, nearest-neighbour-based 
approaches, and statistical models. Nevertheless, 
implementing the detection of anomalies on high-
dimensional metering data is very expensive, and their 
performance in identifying the anomaly effect of high-
dimensional data is not very good. Consequently, these 
methods are not directly applied to anomaly detection on 
high-dimensional metering data. High-dimensional energy 
metering data is generated by smart meters and includes 
numerous features collected at high frequency across many 
locations, making it complex, large-scale, and often noisy. 
This complexity poses challenges for anomaly detection, as 
traditional methods struggle with irrelevant features, sparse 
data, and computational demands. Deep learning approaches, 
such as Convolutional Autoencoders for feature extraction 
and Cascaded LSTM networks for temporal analysis, provide 
effective solutions by capturing intricate patterns and 
enhancing anomaly detection accuracy in these datasets.  The 
efficiency and detection impact of anomaly detection can be 
greatly increased by eliminating unnecessary features. The 
complicated interaction between characteristics makes 
feature extraction a challenging process [3]. High-
dimensional metering data analysis technologies and 
electricity usage data acquired by smart meters are used to 
characterise consumers' electricity consumption. However, in 
the anomalous usage of electricity, the system is unable to 
manage the user energy data. In marketing and grid 
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companies, the timely identification of anomalous activity is 
necessary [8]. 

Importance of Deep Learning in Anomaly 
Recognition 

The fundamental goal of detecting anomalies in 
industrial energy applications is to identify irregularities in 
energy usage. Detecting anomalies in energy consumption 
helps improve efficiency and reduce costs by identifying 
irregular usage caused by theft, faults, or inefficiencies. Early 
detection prevents unnecessary expenses, enables data-driven 
energy planning and supports predictive maintenance. 
Advanced models, such as CAE-CLSTM, enhance this 
process by accurately identifying anomalies in complex 
energy data, leading to improved monitoring and reduced 
energy waste.   The abnormalities in energy usage must be 
found to perform maintenance or shut down systems [13]. 
Basani et al. (2024) [31] proposed a Deep Multi-Scale Fusion 
Neural Network that integrates data fusion with multi-scale 
feature extraction to improve fault diagnosis in IoT systems. 
Our proposed work adopts this technique to enhance feature 
extraction and anomaly recognition in high-dimensional 
energy metering data. Deep learning approaches automate the 
entire anomaly detection pipeline; additionally, they are 
designed to learn the representation for anomaly detection. At 
the same time, conventional approaches lack these qualities. 
Specifically, deep learning techniques significantly diminish 
the requirement for labelled data. To increase the recall rate 
of the anomaly detection process, deep learning techniques 
are necessary. In the context of anomaly detection in high-
dimensional data, deep learning techniques, including black-
box models, consolidate anomaly detection and interpretation 
into a single structure, leading to the effective interpretation 
of anomalies identified in high-dimensional metering data. 
Intricate patterns and relations can be learned from high-
dimensional metering data using deep learning techniques. 

Furthermore, the deep learning methods acquire 
unified representations of high-dimensional metering data. 
This enables the deep models to identify both the complex 
anomalies and the differences between the usual and 
abnormal metering data. Although existing strategies do not 
handle those complicated data, they are usually less adaptive 
and much weaker than deep learning techniques [23]. 

In recent years, interest in deep learning has 
increased significantly. Without assuming underlying 
patterns in the data, deep learning techniques discover the 
complex structure present in the high-dimensional metering 
data. For example, the Stationary Wavelet Transform (SWT) 
combined with ensemble Long Short-Term Memory (LSTM) 
neural networks enables the identification of long-term 

patterns in high-dimensional data to forecast energy 
consumption. The anomaly detection system utilises deep 
learning to analyse high-dimensional energy data by 
combining three key techniques: hierarchical feature learning 
through a CAE to extract and compress important features, 
temporal dependency modelling using a CLSTM network to 
capture patterns over time, and nonlinear mapping 
capabilities to detect complex relationships within the data. 
The test findings demonstrated that the proposed deep-
learning approach outperforms traditional algorithms. The 
deep learning-based anomaly detection techniques provide an 
outline of the features in high-dimensional data. These 
models establish the relationships between variables and 
provide the temporal context, as well as identify 
abnormalities in high-dimensional data [24]. Our proposed 
deep learning model for anomaly recognition in energy 
metering data leverages the VAE-GAN with a CNN-based 
feature extraction strategy, as emphasised by Gudivaka et al. 
(2024) [29], to enhance high-dimensional pattern learning, 
improve anomaly detection accuracy, and effectively handle 
imbalanced data in smart energy systems. Numerous deep 
learning and statistical methods are adopted for the anomaly 
detection process in high-dimensional metering data, as the 
generalizability of this model is high. However, these 
techniques are not performed well due to the computing delay 
and lower recognition rate [11].  

Contribution 

The crucial contributions of the proposed deep 
learning-based anomaly detection are listed below.   
• To implement an anomaly recognition model in
High-Dimensional Energy Metering Data using deep learning
techniques.
• To perform an efficient feature extraction process
with the utilization of a convolutional autoencoder for
enhancing the performance of anomaly recognition.
• To develop a deep learning model by cascading the
LSTM network for analyzing the deep features of energy
metering data to find anomalies in it.
• To analyze the model performance on anomaly
recognition by comparing it with the existing techniques
based on various measures.

Review 

The anomalous energy consumption in the building 
and industrial sectors can be identified to enhance the energy 
efficiency of buildings and industries. The pattern of 
anomalies in high-dimensional energy metering data is 
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analysed using deep learning-based anomaly detection 
techniques [15]. Several existing techniques for feature 
extraction and anomaly detection in high-dimensional 
metering data are described as follows. 

Chiosa et al. [2] have proposed an Anomaly 
Detection and Diagnosis (ADD) approach for identifying 
anomalous behaviour in meter-level building data. This 
model could identify the anomalous pattern of the data. Hopf 
et al. [4] have explored a supervised machine-learning model 
for extracting features from smart electricity meter data. It 
was used to lower the dimension of the large-scale metering 
data. Chahine et al. [9] have suggested a feature extraction 
approach for the load disaggregation process. The obtained 
features could be used to form a database, which was then 
used for the load classification process. Yuan and Jia [11] 
have developed a deep learning technique for the distributed 
anomaly detection process. 

The stacked sparse autoencoder retrieved the 
features from the smart meter network data. Finally, the 
anomaly in the data was identified by the softmax. Liu et al. 
[12] have developed a data mining-based framework for
retrieving the electronic load pattern in the data. This model
could identify the anomalous load profiles in the data. It
performed both pattern examination and anomaly detection
on the electricity data. Hock et al. [14] have recommended a
multidimensional anomaly detection approach for the
electricity data. The outliers were created as a result of the
electricity theft detection process. Xu and Chen [16] have
recommended a recurrent neural network-based anomaly
detection process on the building's electricity consumption
data. It could effectively determine the abnormal energy
consumption in the building. Himeur et al. [17] have
suggested rule-based techniques for detecting anomalies in
data by extracting micro-moment features. This feature
extraction process is used for performing anomaly detection
on high-dimensional energy consumption data. Fan et al. [19]
have proposed an autoencoder structure for detecting
anomalies in energy metering data. The autoencoder could
effectively learn the features in the metering data using its
unique feature learning mechanism. Granell et al. [20] have
recommended a system for retrieving the features in the
electricity load profile. Here, the load profile could be
effectively represented because it simplified the features in
the electricity load profile.

In the power system, metering data from the electric 
energy meter is considered a crucial process, and electricity 
usage can be measured by the energy meters. The 
measurement of high-dimensional metering data is abnormal 
due to the occurrence of manual errors [26]. The conventional 

techniques for detecting anomalies in high-dimensional smart 
metering data are quite challenging. The high-dimensional 
smart metering data consists of noise and distinct patterns that 
the existing techniques cannot handle. During the training 
process, existing techniques automatically shrink, which 
affects the quality of the anomaly detection process [27]. 
Therefore, the cascaded LSTM structure is suggested for 
performing anomaly detection on high-dimensional metering 
data, as it fixes the threshold value to analyse the pattern in 
the data, allowing anomalies to be effectively identified.  

Methodology 

Description of the proposed model 

Deep learning-based anomaly detection techniques 
are developed to identify anomalous activity in high-
dimensional energy metering data, thereby preventing higher 
electricity consumption by detecting anomalous energy 
consumption. Moreover, the efficient utilisation of energy is 
also achieved through the proposed anomaly detection model. 
In this process, high-dimensional energy metering data is 
utilised for anomaly detection. Deep learning models, such as 
CAEs and LSTM networks, are well-suited for detecting 
anomalies in high-dimensional energy metering data. CAEs 
extract meaningful spatial features by reducing data 
dimensionality and noise, while LSTMs capture temporal 
patterns and long-term dependencies. The combination of 
these models enables accurate, scalable anomaly detection by 
effectively handling complex, noisy, and time-dependent 
data. The high-dimensional energy metering data consists of 
some unwanted information, and this unnecessary data must 
be removed from the high-dimensional energy metering data. 
For retrieving deep features from high-dimensional data, a 
CAE is used. The CAE structure is composed of a 
combination of AE and CNN. The characteristics of high-
dimensional energy metering data are considered by the CAE 
[5]. Additionally, the CAE model produces a minimum 
reconstruction error when compressing the dimensional space 
into lower-dimensional data. 

Finally, the deep features extracted using the CAE 
are passed to the CLSTM (Cascaded Long Short-Term 
Memory). The cascade LSTM structure is formed by 
continuously cascading the standard LSTM structure. Here, 
the output produced by the first LSTM structure is passed to 
the next LSTM to get the outcome. Here, three LSTM 
structures are continuously cascaded in the CLSTM structure. 
The initial LSTM structure takes a huge amount of deep 
features extracted by the CAE. It processes a huge amount of 
data, so its accuracy level in the anomaly detection process is 
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slightly low. In the second LSTM structure, the amount of 
data is considerably reduced, as it only considers the features 
that the first LSTM structure has identified. The final LSTM 
in the cascaded network determines the presence of an 
anomaly in the high dimensional metering data. Finally, the 
results of the developed model are compared with those of 
existing techniques to verify the reliability of the proposed 
anomaly detection model. Feature extraction is essential for 
effective anomaly detection in high-dimensional energy 
metering data. It reduces complexity by eliminating noise and 
redundant information, making data easier to process. 
Techniques like CAE compress data with minimal loss, 
improving signal clarity and enabling models like CLSTM to 
detect anomalies more accurately. This approach not only 
improves detection accuracy but also addresses the 
challenges of the “curse of dimensionality,” making real-
time, scalable anomaly detection feasible and efficient. The 
diagrammatic representation of deep learning-based feature 
extraction and anomaly detection in high-dimensional 
metering data is specified in Figure 1. 

Figure 1: Diagrammatic representation of deep 
learning-based anomaly detection 

Energy Metering Data Collection 

The total amount of energy consumed in a particular 
time interval is identified by the energy meter. The metering 
systems measure the power consumption in households, as 
well as in other industries, and provide the corresponding 
readings for the power consumption [25]. The distribution 
and the generation of electricity to the user are managed by 
the energy meter. The consumer can be adequately aware of 
their electricity consumption, as the energy meter effectively 
records electricity consumption in the form of data [10]. The 
energy metering data collection is the first step in the anomaly 

detection process. For performing anomaly detection on high-
dimensional metering data, there is no publicly accessible 
dataset. Here, the data from several sources are integrated to 
perform the anomaly detection process. Numerous laws are 
available for protecting high-dimensional metering data at the 
neighbourhood level [6]. The energy provider in the city 
provides high-dimensional energy metering data for the 
anomaly detection process [6]. 

Deep Feature Extraction with Convolutional 
Autoencoder 

The obtained high-dimensional metering data 
consists of a high-dimensional vector, making it difficult to 
perform anomaly detection on the high-dimensional metering 
data. In this case, the CAE is suggested to retrieve the deep 
features from the high-dimensional metering data. Therefore, 
the dimension of the metering data is greatly minimized [5]. 
The CAE can consider the characteristics of high-
dimensional metering data. The high-dimensional vector of 
energy metering data is converted into a lower-dimensional 
vector using the CAE, and it produces a very small amount of 
reconstruction error during the dimension reduction process 
[5].  Cascading three LSTM layers in the CLSTM architecture 
enhances its ability to process high-dimensional energy 
metering data and detect anomalies with greater accuracy. 
The first LSTM layer handles a large amount of raw data, 
albeit with lower accuracy, while the second layer refines the 
data flagged by the first, thereby improving precision. The 
third layer fine-tunes the analysis, further increasing 
accuracy. This cascading approach helps manage complex, 
noisy data by progressively reducing its volume, allowing the 
model to focus on relevant patterns and improving anomaly 
detection. The use of three layers strikes a balance between 
data refinement and complexity, ensuring effective anomaly 
detection in high-dimensional data. 

Convolutional Autoencoder [5]:  The CNN and the AE are 
connected to form the CAE. The encoder and decoder parts 
are available in the AE, as it is a type of artificial neural 
network. The input data y is passed to the encoder of the AE 
via the multiple fully connected layers. As a result of this 
transformation process, the input data y  is converted into an 
encoded vector a . The decoder of the CAE gives the 
reconstruction 'y  from the encoded vector a . The 
autoencoder’s encoding and decoding action is described in 
Eq. (1). 

( )encoderencoder cyXa += γ  (1) 
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Here, the input data is represented as ey ε∈ , and the 

encoded data is represented as 'ey ε∈ , the nonlinear 

activation function is represented as '': ee SS →γ , the weight 

of the hidden layer is represented as ee
encoderX ×∈ 'ε . The bias 

of the hidden layer is expressed as ee
encoderc ×∈ 'ε . The 

outcome from the autoencoder is represented in Eq. (2). 

( )decoderdecoder cyXy += γ'  (2) 

The value of decoderX and T
decoderX  is the same if the 

weight of the autoencoder is tangled together. The parameters 
of the AE are partially compressed because of the tangling 
action. The tied weight and multiple hidden layers are 
available in the AE. By utilising the backpropagation 
algorithm, the weight value is updated, thereby eliminating 
the reconstruction error 2||'|| yy − in the AE. The CAE serves 
as an essential component in processing high-dimensional 
energy metering data by simultaneously extracting deep, 
meaningful features and reducing data dimensionality. It 
combines Convolutional Neural Networks with 
Autoencoders to highlight critical patterns, eliminate noise, 
and retain key information while minimizing reconstruction 
loss. This compact, informative representation is then passed 
to the Cascaded LSTM for effective anomaly detection. The 
CNN in the CAE is used to obtain the nonlinear 
transformation in the CAE. The convolutional and pooling 
layers are two distinct layers of the CNN. Between the 
learnable filter and the input matrix, the convolution 
operation is performed to generate the feature map in the 
convolutional layer. For the matrix S D , the convolutional 
operator is identified using Eq. (3). 

( ) ( ) ( ) ( )2,12,1,,
1 2

ssDsksjSkjDkjS
s s
∑ ∑
−∞

−∞=

∞

−∞=
−−=•  (3) 

Here, the row and column indices are represented as
j  r and c, k respectively. In the CAE, the filter and the 

feature map are substituted for each other, not instead of S D
. For the layer m , the thl feature map and filter are represented 

as mm ixl
mG ×∈ε , and mm ixl

lX ''
'

×∈ε  respectively. The prior layer
'l

mG  is convoluted with the feature map 'l . In the layer m , the 

width and height of the filter are represented a '
mx nd '

mi

corresponded accordingly. The value l
mG is identified using 

Eq. (4). 







 +•= ∑

−

=
−

1

1'

'
1' ),(),(),(

me

l
l

l
m

l
l

l
m ckjGkjXkjG γ  (4) 

Thus, the activation function is signified as γ . The 
CNN learns the features in the convolutional layers. The 
value in the predetermined spatial unit is retrieved for 
minimizing the height of the pooling layer. The decoder of 
the CAE requires a dimensionality expansion process, which 
includes an unpooling layer and an inverse convolutional 
layer. The working process of both layers is opposite to that 
of the pooling and convolutional layers. Based on the feature 
map, the filter values are reset using the inverse convolution 
layer. In the pooling layer, the discarded location information 
is restored by the unpooling layer [5]. The structural view of 
the CAE is signified in Figure 2.  

Figure 2: Structural view of the convolutional 
autoencoder 

Anomaly Recognition with Cascaded LSTM 

The cascaded LSTM is used to identify anomalies in 
high-dimensional metering data. The cascaded structure 
consists of two or more LSTMs and can be used to maintain 
the nonlinear relationship between high-dimensional 
metering data, yielding accurate detection results. The 
cascaded structure is formed by connecting the three LSTM 
structures. The initial structure can have the ability to process 
the huge dimensional data, but it gives less accurate results. 
The first LSTM can flag the data and then be processed by 
the second LSTM, yielding an outcome that is comparatively 
better than that of the first LSTM structure. The final LSTM 
structure in the LSTM can predict the presence of an anomaly 
in high-dimensional metering data. The cascaded LSTM 
(CLSTM) architecture enhances anomaly detection in high-
dimensional energy data through a three-stage refinement 
process. First, a convolutional autoencoder extracts deep 
features from the raw data. The first LSTM processes all 
features and flags suspicious ones based on prediction errors. 
The second LSTM analyzes only the flagged features for 
more precise assessment. Finally, the third LSTM evaluates 
refined anomaly scores to make the final decision regarding 
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anomaly detection. This layered approach improves accuracy 
by progressively narrowing the focus from general patterns to 
specific anomalies.  The cascaded structure is primarily 
adopted to process high-dimensional metering data because it 
consists of three LSTM structures, which provide accurate 
results [21].  

Cascaded LSTM: The cascaded LSTM consists of an 
additional LSTM structure; here, the output of one structure 
is given as the input of the subsequent LSTM. The basic 
LSTM model is continuously cascaded to form the cascaded 
LTSM. Here, the states of the memory cell in the cascaded 
network are controlled using the standard LSTM. Every 
individual block of the cascaded LSTM detects the anomalies 
in the data. The learning capacity of the cascading LSTM is 
superior to that of the standard model. The cascaded LSTM 
structure can eliminate feature redundancy.  

Cascading LSTM layers are a method used to refine temporal 
representations and isolate anomalous patterns with higher 
accuracy. Each layer plays a distinct role in a hierarchical 
refinement process. The first layer captures broad temporal 
dependencies and flags potentially anomalous segments 
within high-dimensional features, ensuring significant 
patterns are not missed. The second layer operates on a 
reduced and filtered feature space, detecting subtle temporal 
relationships and eliminating false positives. The third layer 
makes a definitive prediction regarding the presence of 
anomalies by evaluating residual uncertainties and 
consolidating refined information from earlier layers. This 
layered processing approach is effective in handling noisy 
and complex high-dimensional data. Unlike single-layer or 
parallel architectures, cascading distributes learning across 
multiple stages, mitigating the vanishing gradient problem 
and enhancing model stability and generalization.  

Cascading Long Short-Term Memory (CLSTM) networks 
enhance traditional LSTMs by stacking multiple layers that 
progressively refine and process high-dimensional data, 
improving anomaly detection. The first layer flags relevant 
features, the second refines them, and the final layer detects 
anomalies. This structure efficiently handles complex data, 
reduces redundancy, and captures nonlinear relationships. 
CLSTMs outperform traditional models, such as LSTM-AE, 
in terms of accuracy and performance, making them ideal for 
tasks like energy consumption monitoring, where detecting 
subtle anomalies is crucial. 

Convolutional Autoencoders offer significant advantages 
over traditional methods, such as LDA and PCA, for feature 
extraction in high-dimensional energy metering data. They 
effectively capture nonlinear and hierarchical patterns, are 

robust to noise, and preserve important information with 
lower reconstruction errors. CAEs also enhance the 
performance of downstream models, such as cascaded 
LSTMs, and support automated, scalable feature learning, 
making them more suitable for complex energy datasets.  

Long Short-Term Memory (LSTM) [18]: The LSTM model 
falls under the category of recurrent neural networks. The 
LSTM structure is trained using backpropagation through 
time. This training process greatly fathoms the vanishing 
gradient issues. Several memory blocks are available in the 
LSTM, and the layers are used to connect these memory 
blocks. The output and the state of the block are used to 
manage the gates available in each block. In the LSTM unit, 
three gates are situated. The forget gate determines the flow 
of information towards the LSTM block. The memory state 
is updated by the input value, which is determined by the 
input gate. The output gate decides the flow of output from 
the memory gate. During the training process, the weights 
present in the gate are precisely learned. The sigmoid layer is 
the initial step in the LSTM, and another name for this layer 
is the forget gate.  The terms 1−ui  uy are the input values of the 
LSTM. The bias vector is represented as c , and the attribute 
indices are represented as X . The forget gate of the LSTM 
model is elucidated in Eq. (5). 

[ ]( )guugu cyiXg +•Κ= −1  (5)      

The value to be upgraded can be determined by the 
input gate, as represented in Eq. (6). 

[ ]( )juuju cyiXj +•Κ= −1          (6) 

The new candidate vector value uD̂ is developed by

the htan layer and is defined in Eq. (7). 

[ ]( )DuuDu cyiXhD +•= − ,tanˆ
1     (7)      

The longstanding cell state 1−uD  is upgraded into an 

innovative cell gate uD  using Eq. (8). 

uuuuu DjDgD


•+•= −1 (8)    

The cell state can be used to decide the final result 
value. The output value is obtained by the sigmoid layer, as 
denoted in Eq. (9). Finally, htan it is multiplied by the result 
of the sigmoid gate to find the cell state value, as expressed 
in Eq. (10). 
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[ ]( )ouupu cyyXp +•Κ= − ,1

( )uuu Dhpi tan•= (10)   (9)   

Here, the output gate is represented as up  , and the 

cell state is represented as uD . 

An observable pattern and the presumption that it 
will recur in the future serve as a basis for estimating 
anomalies. The expected values could significantly differ 
from the observed ones if this presumption is invalid. This 
suggests that the outcomes might include anomalous data. 
The divergence between the observed and predicted values is 
determined by analysing every point in the data. The 
anomalous behaviour of the data is attributed to the difference 
between the predicted and observed values. The average 
deviation in the anomalous score identifies the possibility of 
the anomaly. The anomaly in the data is confirmed if the 
uninterrupted outliers are present in the data. The anomalous 
score can be identified using Eq. (11). The obtained 
anomalous score is then transferred to the range of ]1,0[  0 to 
1 due to the application of the min-max normalisation 
process. 

( )uu

uu
u opAverage

op
p

−
−

=  (11)                                             

)min()max(
)min(~
TT

Tpp u
u −

−
=    (12)                                                                           

The threshold value 1ρ  is fixed after identifying the 
abnormal point in the data. If the anomaly score is greater 
than the 1ρ , then the same threshold is used to mark the 
anomaly in the data. The abnormality of the data is also 
identified by fixing the threshold 2ρ and the wind size X . If 
the threshold value 2ρ  is less than the number of points in the 
window size of the given data, it is proven that an anomaly is 
present in the energy metering data. This action confirms that 
the suspected user has stolen a certain amount of electricity. 
The diagrammatic illustration of the cascaded LSTM is given 
in Figure 3. 

  

Results 

The performance of the dedicated system for 
anomaly detection, based on feature extraction in high-
dimensional metering data, is analysed in the experimental 
process. Here, the developed cascaded LSTM model is 
experimented with numerous existing techniques, such as 
GCN-BiLSTM [28], LSTM [18], LSTM-AE [32], and 
BiLSTM-AE [30], using several parameters. Similarly, the 
proposed CAE-based feature extraction approach is 
compared with existing techniques, such as Principal 
Component Analysis (PCA) [33], Linear Discriminant 
Analysis (LDA) [34], Restricted Boltzmann Machine (RBM) 
[35], and Autoencoder (AE) [19]. The performance of the 
developed model, in terms of Threat Score (TS), Negative 
Predictive Value (NPV), kappa, Area under the Curve 
(AUC), accuracy, and Positive Likelihood Ratio (PLR), is 
briefly emphasised in this section. 

JKL
LTS
++

= (13) 

JP
LNPV
+

=  (14) 

))(())((
)(2

PJJLPKKL
JKPLkappa

+++++
∗−∗

=         (15) 

JKPL
PLaccuracy
+++

+
=          (16) 

KR
LRPLHR =  (17)      

Here, the true positive and true negative are 
represented as L , and P respectively, the false positive and 
false negative are represented as K , and J correspondingly, 
the true positive rate and the false positive rate are expressed 
as LR , and KR respectively.  

The proposed deep learning model, which uses a 
CAE and a CLSTM network, effectively detects anomalies in 
high-dimensional energy metering data. Its high accuracy rate 
of 96.36% is impressive, but it faces issues with false 
negatives and false positives. False positives occur when 
normal energy usage is incorrectly identified as anomalous, 
resulting in unnecessary investigations and operational 
inefficiencies. False negatives occur when the model fails to 
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identify actual anomalies, such as system faults or energy 
theft, resulting in significant losses. The study suggests 
improvements like dynamic threshold settings, ensemble 
learning strategies, human feedback, and contextual 
information. 

Comparison of the Suggested Feature 
Extraction Techniques  

The performance of the developed anomaly 
detection model, utilising various feature extraction 
techniques, is illustrated in Figure 4. In this graphical 
illustration, the black colour chart represents the suggested 
model for the anomaly detection process. As mentioned in 
Figure 4(a), when utilising the CAE for the feature extraction 
process, the accuracy of the cascaded LSTM surpassed that 
of the existing GCN-BiLSTM, LSTM-AE, BiLSTM-AE, and 
LSTM. The accuracy of the cascaded LSTM structure is 
minimised when the PCA approach is used for feature 
extraction. Figure 4 (d) shows the NPV comparison of the 
suggested model. Here, the CAE-based feature extraction 
process yields a lower NPV value since it achieves a lower 
reconstruction error during the feature extraction process. 
However, the PCA-based feature extraction process achieves 
a higher NPV value for the cascaded LSTM in the anomaly 
detection process. In Figure 4(b), the developed model 
achieves a higher AUC value during the anomaly detection 
process when employing the CAE-based feature extraction. 
The AUC value of the cascaded LSTM is slightly decreased 
when performing the feature extraction using the AE. 
However, the cascaded LSTM value achieves lower kappa, 
PLHR, and NPV values when the PCA-based feature 
extraction process is taken into account. Thus, the graphical 
illustration proved that the feature extraction capability of the 
CAE is better than that of the existing model, as the CAE 
requires a significantly smaller number of parameters for the 
feature extraction process compared to PCA. Additionally, 
the compression ratio of the CAE is enhanced than the PCA 
and LDA, so it is used for the feature extraction process.   

(a) 
(b) 

(c) 
(d) 

(e) 
(f) 

Figure 4: Performance comparison of the 
recommended feature extraction model in terms of (a) 
Accuracy, (b) AUC, (c) Kappa, (d) NPV, (e) PLHR, (f) 

TS 

Comparison of the suggested anomaly 
recognition techniques  

The anomaly detection performance of the cascaded 
LSTM is identified by varying the learning percentage. This 
analysis process is carried out using the Accuracy, AUC, 
Kappa, NPV, PLHR, and TS metrics.  

Accuracy analysis of the anomaly detection 
process: The accuracy of the anomaly detection process, 
among various techniques, is identified by varying the 
learning percentage, as shown in Figure 5. At the 85th learning 
percentage, the recommended cascaded LSTM model 
achieves a higher accuracy value compared to previously 
developed techniques. However, the developed cascaded 
LSTM model attains a lower accuracy value in the 35th 
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learning percentage. In all learning percentages, the GCN-
BiLSTM model achieves a lower accuracy value. Similarly, 
the accuracy of the suggested cascaded LSTM is comparable 
to that of the sigmoid and tanh activation functions, and this 
value is higher than those of previous techniques, such as 
LSTM and LSTM-AE, respectively.  This proved that the 
developed cascaded LSTM model outperforms the existing 
techniques by achieving the highest accuracy value.   

 

 

 

(a) (b) 

Figure 5: Accuracy examination of the recommended 
anomaly detection process by varying (a)Learning 

percentage, (b) Activation function 

AUC analysis of the anomaly detection process: 
Figure 6 provides the AUC curve assessment of the 
developed cascaded LSTM model. The AUC of the cascaded 
LSTM model is analysed to determine the model's effect on 
the anomaly detection process. At a 75th learning percentage, 
the cascaded LSTM model achieves a higher accuracy value; 
however, this value is slightly lower when the learning 
percentage is set to 85. Likewise, the AUC value is slightly 
minimised for the cascaded LSTM at the 35th learning 
percentage point. The AUC metric for the suggested cascaded 
LSTM model is compared with various techniques, as 
illustrated in Figure 6(b). Here, the cascaded LSTM has a 
higher AUC value, which is greater than that of GCN-
BiLSTM, LSTM-AE, BiLSTM-AE, and LSTM. , Therefore, 
it provides higher anomaly detection compared to other 
techniques.  This confirmed that cascaded LSTM gives the 
best results in the anomaly detection process. 

 

 
 

(a) (b) 

Figure 6: AUCexamination of the recommended 
anomaly detection by varying (a) Learning percentage, 

(b) Activation function  

Kappa analysis of the anomaly detection process: 
The kappa coefficient of the developed cascaded LSTM for 
the anomaly detection process is illustrated in Figure 7. The 
developed cascaded LSTM model achieves a higher kappa 
coefficient at the 85th learning percentage, and the value of 
the kappa coefficient decreases considerably in the remaining 
learning percentages. According to Figure 7 (b), the kappa 
value of the cascaded LSTM is higher than the GCN-
BiLSTM, LSTM-AE, BiLSTM-AE, and LSTM. Suddenly, 
the kappa value of the cascaded LSTM increases with the 
ReLU activation function, but in the leaky ReLU activation 
function, the kappa of the cascaded LSTM is slightly lowered. 
This same scenario occurs with the tanh activation function. 
However, the suggested model makes a higher value of kappa 
in the sigmoid and softmax activation functions. The 
simulated results showed that the cascaded LSTM structure 
offers higher performance than the GCN-BiLSTM, LSTM-
AE, BiLSTM-AE, and LSTM for all learning percentages.  

 

  

(a) (b) 

Figure 7: Kappa examination of the recommended 
anomaly detection process varying (a) Learning 

percentage, (b) Activation function 
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NPV analysis of the anomaly detection process: 
The NPV of the proposed cascaded LSTM model is compared 
with that of existing techniques and is presented in Figure 8. 
Compared to other techniques, such as GCN-BiLSTM, 
LSTM-AE, BiLSTM-AE, and LSTM, the proposed cascaded 
LSTM achieved a better NPV value in all learning 
percentages. In Figure 8(b), the activation functions, 
including linear, ReLU, leaky ReLU, tanh, sigmoid, and 
softmax activation functions, are used to evaluate the 
performance of the cascaded LSTM in the anomaly detection 
process. This activation function identifies the coordination 
between the input and the output data. Here, the NPV value 
is high for the cascaded LSTM in the ReLU activation 
function. Yet, this value is slightly decreased in the leaky 
ReLU activation function and further lowered in the tanh 
activation function. Anyways, the cascaded LSTM model 
attains its initial state in the sigmoid as well as the softmax 
activation function. Therefore, the developed cascaded 
LSTM model offers a significant advantage in the anomaly 
detection process.  

 

  

(a) (b) 

Figure 8: NPV examination of the recommended 
anomaly detection process by varying (a) Learning 

percentage, (b) Activation function 

PLHR analysis of the anomaly detection process: 
Figure 9 offers the PLHR analysis of the cascaded LSTM 
model. The PLHR of the proposed cascaded LSTM model is 
compared with that of GCN-BiLSTM, LSTM-AE, BiLSTM-
AE, and LSTM to assess its reliability in the anomaly 
detection process. It is demonstrated that the cascaded LSTM 
model effectively identifies anomalies in high-dimensional 
metering data, as its PLHR value is significantly higher than 
that of the existing GCN-BiLSTM, LSTM-AE, BiLSTM-AE, 
and LSTM models, considering a learning percentage of 
85%. Likewise, the prediction performance of the cascaded 
LSTM is not affected because its PLHR value remains high 
at the 35th, 45th, 55th, and 65th learning percentages. The 
cascaded LSTM model is a powerful technique for detecting 
anomalies in high-dimensional metering data, as it achieves a 

higher PLHR value, as visualised in Figure 9(b). Here, the 
experimentation evaluation is conducted using the activation 
function in terms of PLHR. The performance of the cascaded 
LSTM is hindered in the linear activation action. On the 
contrary, the cascaded LSTM achieves peak PLHR value in 
the ReLU activation function. It has been confirmed that the 
cascaded LSTM outperforms previously developed 
techniques in identifying anomalies in high-dimensional 
metering data.  

 

  

(a) (b) 

Figure 9: PLHR examination of the recommended 
anomaly detection process by varying (a) Learning 

percentage, (b) Activation function 

Time Series (TS) analysis of the anomaly detection 
process: The performance of the cascaded LSTM model is 
evaluated using the TS metric shown in Figure 10. Here, the 
suggested cascaded model also achieves satisfactory 
performance with a high TS value at the 85th learning 
percentage. However, the cascaded LSTM has a lower TS 
value in the 35th learning percentage. However, the TS value 
of the LSTM is slightly higher than the cascaded LSTM in 
the same learning percentage. When the learning percentage 
is set to 75, the TS value of the cascaded LSTM decreases 
slightly, but this value is higher than those of GCN-BiLSTM, 
LSTM-AE, BiLSTM-AE, and LSTM. As mentioned in 
Figure 10(b), our cascaded LSTM model achieves an 
enhanced TS value using the ReLU activation function, and 
this value is consistently maintained in the sigmoid and 
softmax activation functions. It can be justified that the 
developed cascaded LSTM is effectively suited for the 
anomaly detection process. 

 

EAI Endorsed Transactions on 
Energy Web 

| Volume 12 | 2025 | 



 Deep Learning Model for Feature Extraction and Anomaly Recognition in High-Dimensional Energy Metering 
Data 

 
 

13 

  

(a) (b) 

Figure 10: TS examination of the recommended 
anomaly detection process by varying (a) Learning 

percentage, (b) Activation function 

Receiver Operating Characteristic (ROC) analysis 
of the anomaly detection process:  The ROC curve analysis 
of the cascaded LSTM model is illustrated in Figure 11. The 
ROC identifies the information about the entire anomaly 
detection performance of the model. As shown in Figure 11, 
the ROC curve of the cascaded LSTM model is larger than 
the GCN-BiLSTM, LSTM-AE, BiLSTM-AE, and LSTM. 
The detection accuracy of the model is decided based on the 
ROC curve. Here, the cascaded LSTM has a large ROC, 
indicating that its anomaly detection accuracy is better than 
that of existing techniques. Hence, the anomaly detection 
performance of the cascaded LSTM outperforms that of 
existing techniques.  

Figure 11: ROC examination of the recommended 
anomaly detection process 

Numerical Analysis of the Anomaly Detection 
Process: The numerical analysis of the developed cascaded 
LSTM model for the anomaly detection process is presented 
in Table 1. Here, the accuracy of the cascaded LSTM is 

96.36%, which is significantly better than that of existing 
techniques. In terms of all performance metrics, the 
developed cascaded LSTM model attains better values. 
Therefore, it is demonstrated that the developed model 
accurately predicts anomalies in high-dimensional metering 
data. 

 
Table 1: Numerical assessment of anomaly detection 

process among various techniques 
 

TERMS 

GCN-
BiLST

M 
[28] 

BiLST
M-AE 
[30] 

LSTM
-AE 
[32] 

LSTM 
[18] 

Casca
ded 

LSTM 

Learning rate 

Accurac
y 90.52 92.24 91.88 94.24 96.36 

NPV 
9.5084

61 
7.9454

25 
8.2059

53 
5.8681

67 3.7751 

Markedn
ess 

(MK) 
80.966

73 
84.775

29 
83.832

95 
88.630

55 
92.951

35 

PLHR 
9.4579

9 
12.044

83 
11.299

97 
16.477

87 
27.172

68 

Prevalen
ce 

52.812
76 

52.394
84 

52.460
38 

51.833
54 

51.284
14 

TS 
82.788

67 
85.661

49 
85.062

55 
89.164

79 
93.010

75 

AUC 
90.519

8 
92.239

41 
91.879

52 
94.239

48 
96.359

46 

Kappa 
81.039

13 
84.479

68 
83.759

42 
88.479

65 
92.719

81 

Activation function 

Accurac
y 88.36 90.76 88.16 92.08 94.04 

NPV 
88.405

8 
90.821

26 
88.244

77 
92.028

99 
94.041

87 
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PLHR 
7.6171

5 
9.8814

74 
7.4925

19 
11.558

17 
15.783

16 

TS 
79.243

94 
83.163

27 
78.917

38 
85.408

99 
88.813

81 

AUC 
88.359

33 
90.759

37 
88.159

37 
92.079

68 
94.039

59 

Kappa 
76.719

4 
81.519

53 
76.319

52 
84.159

35 
88.079

57 

Epoch 

Accurac
y 90.4 91.2 93.8 94.24 95.76 

NPV 
90.418

68 
91.143

32 
93.880

84 
94.202

9 
95.732

69 

PLHR 9.4331 
10.303

63 
15.315

85 
16.262

72 
22.446

68 

TS 
82.570

81 
83.918

13 
88.380

81 
89.172

93 
91.914

57 

AUC 
90.399

39 
91.199

64 
93.799

42 
94.239

76 
95.759

83 

Kappa 
80.799

41 
82.399

28 
87.599

68 
88.479

53 
91.519

65 

Conclusion  

A deep learning-based cascaded framework was 
developed in this work to detect anomalies in high-
dimensional energy metering data. Initially, the high-
dimensional energy metering data underwent a deep feature 
extraction process using the CAE structure. This process 
helped eliminate redundant information from the high-
dimensional energy metering data. After the feature 
extraction process, a cascaded LSTM was suggested to detect 
anomalies in high-dimensional energy metering data. The 
cascaded LSTM was formed by cascading the three basic 
LSTM structures; here, the output from the previous structure 
was passed to the next structure to get the outcome. In the 
cascaded LSTM, the first LSTM structure analysed the huge 
dataset and yielded less accurate results. The second LSTM 
takes a significantly smaller amount of data compared to the 
first structure, as it has already processed the data flagged by 

the first LSTM. The final LSTM structure in the cascaded 
network identified the anomaly in the data by fixing the 
threshold value. The proposed deep learning-based anomaly 
detection model enhances energy management systems by 
accurately identifying abnormal energy usage in complex, 
high-dimensional data. Using a CAE and Cascaded LSTM 
network enables early fault detection, reduces energy waste, 
supports real-time monitoring, and improves decision-
making. Its scalability and adaptability make it ideal for 
diverse energy environments, contributing to more efficient 
and cost-effective energy management.  Finally, the 
suggested model was compared with previously developed 
technique to confirm its efficacy in the anomaly detection 
process. The results showed that the anomaly detection 
efficacy of the developed cascaded LSTM on high-
dimensional metering data was superior to that of previously 
developed techniques.    
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