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Abstract 

The integration of high-penetration distributed resources has led to increased complexity and uncertainty in the 

unconventional risks of distribution networks, posing higher demands on the risk assessment of distribution networks. This 

paper proposes an unconventional risk assessment method for flexible distribution system based on cloud model. Firstly, an 

unconventional risk assessment system for distribution networks is constructed by considering the probability of 

unconventional risk occurrence and the severe consequences, and an improved AHP-entropy weight method for index 

weighting is proposed. Then, the cloud model for risk assessment is used to quantitatively evaluate the risk level of the 

distribution system. The variable weight cloud model is employed to replace the traditional cloud model to provide risk 

indicator evaluation information. The inverse cloud generator is used to infer and correct the risk cloud model parameters, 

and the assessment is completed by comparing with the digital characteristics of the standard cloud model. Finally, the 

effectiveness of the proposed assessment method is verified through an example analysis of a certain region in China. 
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1. Introduction

As the deployment of distributed energy resources accelerates 

on a large scale, the penetration of renewable energy sources 

becomes significant, demanding a more adaptable system to 

manage the inherent variability and randomness. In response 

to this challenge, the integration of flexible distribution 

systems has been necessitated to maintain equilibrium in the 

face of widespread stochasticity. The flexible distribution 

system faces higher levels of uncertainty risks during 

operation, primarily manifesting in equipment failures and 

transmission line short circuits. Given the numerous 

uncertainties and potential risks inherent in the flexible 

distribution system, conducting an in-depth risk assessment 

is essential and urgent. As the flexible distribution system 

continues to evolve, traditional power system risk assessment 

*Corresponding author. Email: yepeng_126@sina.com 

methods are no longer fully applicable to the flexible 

distribution system. How to quantitatively assess the 

unconventional risks of the flexible distribution system under 

high-penetration distributed generation is becoming a 

research focus in the field of distribution network risk 

assessment. 

Research on unconventional risk assessment for flexible 

distribution systems incorporating distributed resources has 

received considerable attention and interest from many 

scholars. [1] analyzed and established a theoretical system 

and risk assessment method suitable for risk assessment of 

distribution systems with high-penetration distributed 

sources. It characterized multi-source risk factors in the state 

generation stage and calculated multi-level risk indicators in 

the state analysis stage. The study also investigated a system 

vulnerability identification method that is organically 

integrated with risk assessment, providing a quantitative basis 

for risk pre-control decisions. [2] modeled the uncertain 
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factors that cause protection misoperations, and based on this, 

established risk indicators for cascading faults in flexible 

interconnected distribution networks. A probability index 

based on Monte Carlo method and a calculation method based 

on optimal load shedding fault consequences were proposed. 

[3] analyzed the impact of distributed power penetration rate

and SNOP (Soft Normally Open Points, SNOP) single-end

capacity/line capacity on optimization strategies, and

established a two-stage fault recovery model. The first stage

used the minimization of load loss risk as the objective

function, while the second stage introduced interval numbers

to describe the uncertainty in distributed generation and load

forecasting. Robust optimization was applied to optimize the

operating state during fault recovery, and topology

adjustments were made for cases that did not meet the

constraints. [4] established a reliability evaluation model for

flexible multistate switches, designed a load recovery method

for the lost side, and extracted the factors that affect system

reliability. To balance the speed and accuracy of reliability

assessment, a reliability assessment method based on

sequential sampling and decoupled fault analysis was

proposed. Additionally, the impact of different access

strategies for flexible multi state switches on system

reliability was quantitatively analyzed. [5] effectively

combined Monte Carlo simulation method and Latin

hypercube sampling method to complete typical state

sampling of distributed resources, considering the risk

assessment of distribution networks with multiple distributed

power sources. However, the risk assessment in the article did

not consider multiple factors and cannot encompass all

aspects of the distribution system. [6] proposed a joint

planning model for multi-energy networks and energy hubs.

Taking a multi-energy system with a high proportion of

renewable energy installed capacity as an example, the

impact of the proportion of renewable energy and load

conditions on planning outcomes was analyzed. Utility theory

has played a significant role in analyzing the severity of

system failure consequences [7], [8]. [9] used regional control

deviation as the antecedent of the cloud model generator, and

simulated load disturbances under different conditions from

both frequency and time domains. The cloud model controller

is used to self-adjust the parameters of the PI controller,

achieving load frequency control in the power system. [10]

constructed a coupling model between the transportation

network and the distribution network, utilizing the Monte

Carlo sampling method to generate traffic flow distributions

in multiple scenarios. [11] studied the stochastic fuzzy theory

and stochastic fuzzy models in multi-energy systems, and

proposed a stochastic fuzzy power flow model for multi-

energy systems along with its computational method. The

model considers the interconnection relationships between

different systems. [12] considered the continuous increase of

flexible resources within the new distribution system and the

inability of traditional assessment methods to align with the

development reality of the new distribution system, and

constructs a novel framework for evaluating the flexibility of

the new distribution system based on the cloud model. [13]

considered the uncertainty of source and load, and established

a two-stage distribution system fault model using the interval

power flow method. On this basis, [14] used a dynamic 

rotation angle strategy to update the quantum gate and 

utilized a chaotic optimization method with Tent mapping to 

escape local optima. However, this literature only used 

reliability as an important indicator, which may not 

adequately reflect the influence of other factors on 

unconventional risks. 

In summary, for distribution systems with high-

penetration distributed energy resources, current research 

often considers risk assessment indicators from only a single 

aspect, and there is limited research on comprehensive risk 

assessment methods that consider multiple aspects. 

Furthermore, many studies focus on quantitative 

representation through the construction of operational 

stability indicators for power systems, without fully 

considering the interconnections between indicators and their 

comprehensive evaluation of the system’s operational state. 

Aiming at the above problems, we first construct an 

unconventional risk assessment system for distribution 

networks that includes five key indicators: resilience, 

coordination, security, adequacy, and economy. An improved 

AHP-entropy (Analytic Hierarchy Process, AHP) weight 

method for index weighting is proposed. Subsequently, the 

risk assessment cloud model is employed to quantitatively 

evaluate the risk level of the distribution system. The variable 

weight cloud model is used to assign risk indicator evaluation 

information, and the inverse cloud generator is applied to 

deduce and modify the risk cloud model parameters. The 

assessment is completed by comparing the inferred 

parameters with the digital characteristics of the standard 

cloud model. Finally, the effectiveness of the proposed 

assessment method is verified through a case study analysis 

in a certain region of China. 

2. Construction of the unconventional risk
assessment system for flexible
distribution systems

The risk assessment of the power distribution system aims to 

conduct a qualitative analysis of the uncertain risks that may 

be encountered during its operation. In this paper, the risk 

assessment of the distribution system is defined as the product 

of the probability of unconventional risks occurring in the 

power distribution network and the severity of the 

consequences they cause over a period of time, and its 

formula is given by 

( ) ( ) ( )• |Ft ex x t
i

Risk X P E S E X=   (1) 

where tX denotes the operational state of the distribution 

system at time t. xE denotes the x-th unconventional risk. 

( )F xP E denotes the probability of unconventional risk xE

occurring. ( )e x tS E X ∣ denotes the severity of the harm 

caused by unconventional risk tX under operational state xE .
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( )tRisk X denotes the assessment value of the 

unconventional risk for the distribution system under 

operational state tX . 

With the large-scale integration of high-penetration 

distributed energy resources today, the determination of 

( )F xP E has become more complex. Addressing this issue, 

this paper employs Latin hypercube sampling to obtain 

typical scenarios of a power distribution system in a certain 

region, followed by using the equal dispersion sampling 

method to extract scenarios where components are in the 

failure interval from these typical scenarios. The 

corresponding severity of limit violations is calculated, and 

based on this severity, a determination is made as to whether 

a component has failed. This approach is used to 

comprehensively calculate the probability of unconventional 

risks occurring. For ( )e x tS E X ∣ , this paper considers five 

indicators that affect the unconventional risks of power 

distribution systems: resilience, coordination, security, 

adequacy, and economy, and constructs a risk assessment 

system, as shown in Figure 1. It should be noted that since the 

measurement of distribution system risk assessment depends 

on the current operational state of the system, the indicators 

for distribution system risk assessment require the 

establishment of a unified time scale as a prerequisite before 

calculation. The choice of time scale will determine the 

accuracy and complexity of the calculations. 

Figure 1. Unconventional risk assessment system for 
flexible distribution networks 

The calculation methods for the five risk assessment 

indicators are as follows.  

2.1 Calculation method for resilience 

The resilience indicator of the flexible distribution network 

primarily considers the network’s capacity to withstand risks, 

hence the definition of the third-level indicator as the load 

loss rate, and its formula is given by 

 11
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w
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=  (2) 

where lossP , 
reP , 

mttrP  and 
wP denote the load loss during a 

risk event, the load amount managed by regional autonomy 

and intelligent self-healing control, the supplementary load 

amount provided by the system’s flexible interconnection, 

and the total power supply load of the grid, respectively. 

2.2 Calculation method for coordination 

The coordination indicator of the flexible distribution 

network primarily considers the ability of the various devices 

within the distribution system to coordinate with each other. 

Therefore, the third-level indicators are defined as the 

variable capacitor load ratio, the line overload ratio, and the 

coverage rate of flexible resources, and its formula is given 

by  
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where ( )eiS t , max ( )S t , rem , rim , ( )REP t and ( )FRP t denote 

the total capacity of grid transformers, the maximum installed 

capacity of the grid, the number of overloaded lines in the 

grid, the total number of all transmission lines in the grid, the 

total power of flexible resource loads, and the maximum 

power of the grid, respectively. 

2.3 Calculation method for security 

The security indicator of the flexible distribution network 

primarily considers the node voltage and power flow limit 

violation indicators within the distribution system. Therefore, 

the third-level indicators are defined as the extreme difference 

in node voltage of the distribution network, the extreme 

difference in line power, the extreme difference in equipment 

capacity, the penetration rate of new energy, and the load rate 

of new energy, and its formula is given by 
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where  U , ( )U t , U , max

ijP , ( )P t , min

ijP , ( )EP t and 
BP  

denote the upper operational limit for node voltage, the node 

voltage during the distribution network’s operation, the lower 

operational limit for node voltage, the maximum power 

transmission capacity of the grid’s lines, the power 

transmission through lines during the distribution network’s 

operation, the minimum power transmission capacity of the 

grid’s lines, and the actual total operational load of the grid, 

respectively. 

2.4 Calculation method for adequacy 

The adequacy indicator of the flexible distribution network 

primarily considers the ability of the various devices within 

the distribution system to coordinate with each other. 

Therefore, the third-level indicators are defined as the 

extreme voltage difference in the distribution network, the 

extreme power difference in distribution network lines, the 

extreme capacity difference in distribution network 

equipment, the penetration rate of new energy, and the load 

rate of new energy, and its formula is given by 
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where max ( )DP t , min ( )DP t  denote the maximum and 

minimum power transmission capacities of the grid’s lines, 

respectively. 

2.5 Calculation method for economy 

The economic indicator of the flexible distribution network 

primarily considers the operational costs and benefits of the 

distribution network. Therefore, the third-level indicators are 

defined as the carbon cycle rate and the rate of damage to 

distribution equipment, and its formula is given by 
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where 
2 ( )COc t , ( )PVP t , ( )LOSSS t  and 

tS  denote the carbon 

emission cost per unit of power supply, the power output of 

photovoltaic sources, the number of damaged devices in the 

system, and the total number of devices in the system, 

respectively. 

3. Risk assessment system weighting 
based on improved AHP-entropy weight 
method 

AHP relies on expert opinions and experience to determine 

the relative importance of indicators, while entropy weighting 

starts from the data itself, quantifying the correlation and 

information content between indicators through the 

calculation of entropy. Both AHP and entropy weighting can 

consider the interrelationships between indicators, with 

entropy weighting being more objective and comprehensive 

in reflecting the importance of each indicator. However, the 

consistency test for entropy weighting is too complex, and the 

computational effort is excessive. In light of these issues, this 

paper proposes an improved AHP-entropy weighting method. 

This method not only maximizes the advantages of both 

methods but also enhances the accuracy and credibility of the 

evaluation results, simplifies the calculation process, and is 

suitable for the weighting of risks in high-penetration 

distributed generation distribution networks. The specific 

steps for weighting are as follows: 

Step 1: After obtaining the original data of typical scenario 

operational states through sampling, AHP determines the 

weights of indicators at various levels through multiple 

rounds of collection of expert opinions. 

Step 2: Establish a first level indicator judgment matrix A 

using the BWM proportional matrix method: 
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Where ija  is given by 
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Step 3: Determine the optimal transmission matrix for 

matrix A as 
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Where ijB  is given by 
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Step 4: Determine the optimal consistency matrix for 

matrix B as 
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where ijc  is given by 

 

exp( )ij ijc b=                         (12) 

 

Step 5: Determine weights 1v , 2v and 3v  based on the 

optimal consistency matrix: 
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2 max 2vAv =                                   (14) 
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where   denotes the maximum eigenvector of the matrix. 

Step 6: Based on the structure of the indicator system and 

the raw data, the entropy weight method is used to assign 

weights to the secondary indicators in the risk assessment 

system. 

4. Unconventional risk assessment 
method for power distribution system 
based on cloud model 

This paper uses the cloud model algorithm for qualitative 

evaluation of the quantitative indicators of unconventional 

risk levels in distribution systems. 

4.1 Definition of Cloud Model 

The cloud model is an uncertainty conversion model that 

combines probability with fuzzy mathematics. It represents 

the mapping relationship between qualitative concepts and 

quantitative values through the probability distribution of 

linguistic values. Let U denote the universe of discourse, 

which is the set of all possible values. For any element x in U, 

there exists a stable random variable Ex  that represents the 

membership degree of x. If the elements in U are simply 

ordered, they can be considered as basic variables. If the 

elements in U are not simply ordered, they can be mapped to 

another ordered universe of discourse V through a mapping 

function f, such that each x has a unique corresponding v in 

V . The membership degree Ex  then forms a membership 

cloud distribution on V , with each membership degree being 

referred to as a cloud droplet. 

The cloud model describes the uncertain mapping 

relationship between qualitative concepts and quantitative 

values through membership cloud distribution. Its digital 

characteristics are composed of three parameters: expectation

Ex , entropy Ex , and hyper entropy EH . The relationship 

between the digital characteristics and the membership cloud 

is illustrated in Figure 2. Ex  represents the expected 

distribution of cloud droplets on the quantified universe of 

discourse, reflecting the typical value of the quantified 

qualitative concept. En  represents the uncertainty of the 

qualitative concept, which is determined by the randomness 

and ambiguity of the concept itself. He  represents the overall 

uncertainty level of the cloud model. 

 

Figure 2. Cloud Model Digital Features and 
Membership Cloud Relationship Diagram 

EAI Endorsed Transactions 
 on Energy Web | 

| Volume 12 | 2025 |



 
Shaotao Guo et al. 

6 

The cloud generator is a tool for achieving the mutual 

transformation between qualitative concepts and quantitative 

values. The generation algorithms for inverse clouds mainly 

fall into two categories: inverse cloud generation algorithms 

with certainty information and inverse cloud generation 

algorithms without certainty information. The inverse cloud 

generator employed in this paper is established on the basis 

of no certainty information, and its specific algorithm is as 

follows: 

Step 1: The original data sample mean 
1
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−

 obtained by 

calculating the sampling from cloud droplet ix . 

Step 2: Based on step 1, we can get 
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2 2He S En= −                        (18) 

4.2 Operation status of variable weight 
integrated power distribution system 

To more accurately reflect the operational state of the 

distribution system, the variable weight theory is introduced 

into the cloud model [15], we can get 
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where x , 0

x and x  are the variable weight, constant 

weight, and evaluation quantification values of the 

unconventional risk x, respectively. x  is obtained by 

weighted fusion of the quantification values of each indicator 

in the unconventional risk x and the corresponding indicator 

weights. And   is the equilibrium function, whose value 

determines the impact of each unconventional risk on the 

evaluation result. When 1 = , it is equivalent to the fixed 

weight mode. when 0.5 1  , it indicates that the 

requirement for balance is not high. when 0.5  , it 

indicates that certain risks must be considered due to their 

severe consequences. Considering that any unconventional 

risk in the distribution system will affect system stability, 

according to the actual situation,  is set to -1 and 0
xw is set 

to 1 5⁄ . Using the variable weight fusion to obtain the risk 

assessment score, the comprehensive evaluation result is 

determined by the overall state of the distribution system 

based on the risk assessment levels. 

4.3 Cloud evaluation method 

This paper uses an inverse cloud generator to calculate the 

characteristic parameters of the cloud model according to the 

previously established unconventional risk evaluation 

indicators, thereby obtaining the risk assessment results based 

on the cloud model. The specific assessment process is as 

follows. 

Step 1: Based on theoretical knowledge and expert 

decision-making, this study establishes unconventional risk 

rating standards and classifies risk status levels according to 

the four-level scale method. The standard risk cloud models 

for different risk levels are illustrated in Figure 3. The method 

of dividing the evaluation interval is shown in Table 1. 

Table 1. Standard cloud parameters 

Evaluation level Interval division 
Standard cloud 

parameters 

High-risk [0,30) (15,12.7,0.6) 

Medium-risk [30,60) (45,12.7,0.6) 

Low-risk [60,80) (70,8.5,0.6) 

Risk free [80,100) (90,5.85,0.6) 

 

Figure 3. Risk assessment criteria cloud map 

Step 2: Delving into each aspect of the power distribution 

system, this study collects actual operational data, filters and 

processes the data, and accurately calculates the digital 

characteristics of factors influencing risks. The calculation 

method is as follows:          
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Step 3: Using a reverse cloud generator, the risk cloud 

model parameters are deduced based on actual data, and the 

calculation method is as follows:       
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Step 4: Based on theoretical knowledge and experience, 

the cloud model parameters are modified, and the variable 

weighting method is used to weight the risk factors, resulting 

in a quantitative description of the current risk level in the 

variable weighting cloud model, and the calculation method 

is as follows:          
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where wj denotes the combined weight of the indicators. 

Step 5: By comparing the characteristics of the risk cloud 

model obtained with the digital characteristics of the standard 

cloud model, the level of risk is determined, and the 

unconventional risks of the distribution system are 

completed.  

The unconventional risk assessment process flowchart for 

the power distribution system in this paper is shown in Figure 

4.  

 

Figure 4. Flowchart of unconventional risk assessment 
for distribution systems 

4.4 Unconventional risk probability estimation 
based on equal dispersion sampling method 

The equal dispersion sampling method can improve the 

efficiency of unconventional risk assessment. It can reduce 

the number of sampling times while maintaining the same 

calculation accuracy. This method uses random numbers 

generated by sampling to simulate the fault state of the 

system, thereby improving computational efficiency. Due to 

its simplicity and feasibility, it is often applied in risk 

assessment systems. In the field of power grid, due to the low 

failure rate of power grid components, when using 

conventional sampling methods, the system status is usually 

normal or low fault state. This article uses the equal 

dispersion sampling method to generate more scenarios of 

system fault states, thereby accelerating convergence speed 

and improving simulation accuracy [16].  

Step 1: According to the maximum outage rate of the 

system in the region, divide [0,1] into h sub intervals, and the 

length of the sub intervals satisfies 

 

   1 21 / max , , , mh                       (23) 

 

where 1 2, , , m    denote the maximum outage rate of the 

system. Generating m random numbers represents m 

sampling iterations. 

Step 2: Random numbers are drawn from the interval [0,1]. 

Based on the interval where the random number lies, it is 

determined whether the system is in a fault interval. If the 

system is in a fault interval, the severity of the node voltage 

and branch flow limit violations is calculated to determine 

whether the system is faulty. Otherwise, the system is in 

normal operation. 

Step 3: Each sampling iteration corresponds to the fault 

state function of the flexible distribution system, as shown in 

Equation (24). The new state function is the average value of 

the fault state function of the flexible distribution system 

corresponding to a single sampling iteration. 

 

  ( ) ( )
1

/
h

k

k

F X F X h

=

=                   (24) 

 

where ( )kF X  denotes a regular sampling function, and its 

corresponding partition interval is  ( 1) / , / ]k h k h− . 

Step 4: Using the new experimental function of the system 

to calculate the mathematical expectation is the probability of 

the system experiencing unconventional risk. 

 

  ( )
1

ˆ ( ) /
m

i
i

E F F X m 

=

=                    (25) 
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where iF 
 denotes the experimental function of the i-th 

sampling system. 

5. Simulation analysis 

A topology diagram was established based on the actual 

situation in a certain region of our country, as shown in Figure 

5. This paper combines the measured data of the distribution 

network in this region for modeling and analysis. The model 

was developed using the YALMIP toolbox in MATLAB20, 

and the model was solved using the CPLEX solver.  
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Figure 5. Topological structure of distribution network 
on a map in China 

According to the construction situation of the distribution 

network in this region, the system’s new energy penetration 

rate is 22.37%, with photovoltaic power stations located at 

nodes 16, 20, 26, and 32, and wind turbines located at node 

16. The system also includes an energy storage station with a 

rated power of 1W and a capacity of 2Wh, located at node 16, 

with a charging and discharging efficiency of 92%. 

Additionally, there is a gas turbine unit with an installed 

capacity of 1W located at node 15, which operates at its 

minimum running power of 0…u. and maintains a normal 

startup status. Flexible loads can be dispatched with a 

capacity that accounts for 5% of the load capacity at the 

connected nodes, with 3% being movable loads located at 

node 22 and 2% being interruptible loads located at node 24. 

Moreover, SVC (Static Var Compensator) is connected at 

node 21 with a maxi-mum adjustable reactive power of 4var, 

and a reactive capacitor bank with a total of 4var is connected 

at node 18. The system allows voltage fluctuations within the 

range of 0…u. to 1…u. 

 

5.1 Determination of weights for risk 
assessment system indicators 

This paper uses the aforementioned improved AHP-entropy 

weighting method to determine the weights of the indicators 

in the risk assessment evaluation system. Through multiple 

rounds of collection of expert opinions, indicator 

transformation, and variable weight calculation, the weights 

of the indicators in the risk assessment evaluation system are 

obtained as shown in Table 2. 

Table 2. Weights of risk assessment system indicators 

Index 
Subjective 

weight 

Objective 

weight 

Combined 

weight 

v11 0.0617 0.0372 0.0382 

v21 0.0463 0.0479 0.0252 

v22 0.0728 0.0452 0.0484 

v23 0.0676 0.0342 0.0135 

v31 0.081 0.0822 0.0751 

v32 0.0879 0.1413 0.1096 

v33 0.0804 0.0937 0.0877 

v41 0.0824 0.0535 0.0663 

v42 0.0368 0.0443 0.0404 

v43 0.0714 0.0500 0.0773 

v44 0.0726 0.1328 0.1543 

v45 0.0905 0.1442 0.1244 

v51 0.0894 0.0689 0.0638 

v52 0.0529 0.0729 0.0993 

5.2 Analysis of system risk assessment 
results 

According to the current status and future vision of the 

distribution system in this region, the study first generates 

typical scenarios using the aforementioned method. Then, it 

employs the equal dispersion sampling method to extract line 

fault scenarios and deter-mines whether they are faults based 

on their severity of limit violations. Subsequently, the line 

fault probability for this region is calculated. Figure 6 

presents the risk of node voltage and branch flow limit 

violations for four randomly selected typical scenarios, and 

Figure 7 shows the probability of line faults obtained through 

sampling. The final calculation results in a line fault 

probability of 0.27% for this region. 

Twelve representative line fault scenarios are randomly 

selected from a diverse sample set for risk assessment, 

ensuring that the selected scenarios encompass a wide range 

of potential risk scenarios. Subsequently, the risk assessment 

outcomes of each line fault scenario are analyzed, and the 

severity of the risk levels within the distribution system is 

compared. This analysis validates the feasibility of the 

proposed method in this paper, offering insights for the 

planning and operation of the distribution system in this 

region. The risk assessment results for scenarios 1 through 12 

are depicted in Figure 8 to Figure 10. 
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Figure 6. Risk maps of four typical scenarios exceeding limits 

 

Figure 7. Sampling method for obtaining the 
probability of broken lines 

 

 

Figure 8. Scenarios 1-4 risk assessment results 
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Figure 9. Scenarios 5-8 risk assessment results 

 

Figure 10. Scenarios 9-12 risk assessment results 

Due to the concentration of the cloud model generation 

results, it is considered that the evaluation results are 

relatively stable. As depicted in the figures, the cloud droplets 

generated by the cloud models constructed from scenarios 3, 

5, 9, and 11 primarily fall within the risk interval [0, 30]. The 

expected values for these four scenarios are 29, 23, 13, and 

29, respectively, aligning most closely with the “High-risk” 

cloud in the standard cloud model. This indicates that these 

three scenarios are categorized as “High-risk.” The cloud 

droplets generated by the cloud models constructed from 

scenarios 1, 2, 6, 7, and 10 primarily fall within the risk 

interval [30, 60]. The expected values for these five scenarios 

are 59, 46, 39, 43, and 45, respectively, aligning most closely 

with the “Medium-risk” cloud in the standard cloud model, 

indicating that these five scenarios are categorized as 

“Medium-risk.” The cloud droplets generated by the cloud 

models constructed from scenarios 4, 8, and 12 primarily fall 

within the risk interval [60, 80]. The expected values for these 

three scenarios are 70, 78, and 68, respectively, aligning most 

closely with the “Low-risk” cloud in the standard cloud 

model, indicating that these three scenarios are categorized as 

“Low-risk”. To analyze the data more intuitively, the results 

are summarized and compared with the standard cloud 

parameters in Figure 11 and Figure 12. 

 

Figure 11. Summary of risk assessment results for 
scene 1-12 

 

Figure 12. Comparison between evaluation results 
and standard cloud parameters 

From the overall perspective of the power distribution 

network, the unconventional risk in this region is roughly at 

a moderate to high level. For high-risk scenarios, the 

integration of high penetration new energy may involve 

complex and variable factors, leading to increased system 

instability and potential problems. This high-risk 

characteristic may involve multiple levels, including 

challenges in technology, environment, and management. For 

medium risk scenarios, there is a certain degree of stability 

after timely regulation, but cautious management and 

monitoring are still needed. These scenarios may be 

challenging in some aspects, but they can relatively robustly 

address the uncertainty and potential issues of new energy 

access. For these scenarios, it is recommended to adopt more 

flexible management strategies in order to respond promptly 

to possible changes and challenges. The system in low-risk 

scenarios is relatively stable and the risk is controlled. This 

may reflect that effective management and control measures 

have been taken in these scenarios, and further optimization 

of management strategies can be considered to improve 

system performance. It is worth noting that no risk-free 

scenarios were found in this study, indicating that there are 

still potential risks in all scenarios after a disconnection 

occurs. Any control measures and means can only reduce the 
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risk of the distribution system and cannot completely 

eliminate it. 

The results indicate that the unconventional risk 

assessment method proposed in this paper can provide 

profound insights for risk assessment in the region, which 

aids in the formulation of comprehensive risk management 

strategies to ensure system stability and sustainability. 

6. Conclusion 

The integration of high-penetration distributed resources has 

increased the complexity and uncertainty of unconventional 

risks in power distribution networks, thereby raising the 

requirements for risk assessment in these networks. This 

paper proposes an unconventional risk assessment method for 

flexible distribution systems based on the cloud model. 

Initially, an unconventional risk assessment framework for 

power distribution networks is constructed by considering the 

probability of unconventional risk occurrence and the 

severity of its consequences, and an improved AHP-entropy 

weight method for index weighting is introduced. 

Subsequently, the risk assessment cloud model is employed 

to quantitatively evaluate the risk level of the distribution 

system. The variable weight cloud model is used in place of 

the traditional cloud model to assign evaluation information 

to risk indicators. The inverse cloud generator is applied to 

infer and correct the parameters of the risk cloud model, and 

the assessment is completed by comparing these parameters 

with the digital characteristics of the standard cloud model. 

Finally, a case study in a certain region of China is conducted, 

where 12 scenarios are randomly selected for risk assessment. 

The simulation results indicate that the unconventional risks 

in the region are at a moderate to high level, and the method 

proposed in this paper can provide accurate results for risk 

assessment in the region. We will further investigate multi-

level probabilistic risk assessment, conducting 

comprehensive evaluations from the micro to the macro level 

to ensure that risk factors at all levels are fully considered. 
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