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Abstract 

To improve the response ability of the virtual power plant during operation and the adjustment ability when the load 

fluctuates, and ensure its stable operation, a virtual power plant distributed energy storage hierarchical partition dispatch 

control method based on the SaDE-BBO algorithm is proposed. This method is based on the operation structure of the virtual 

power plant, analyzes the operating characteristics of the distributed energy storage system and the output of uncertainty 

factors, considers the grid load, renewable energy and distributed energy storage on the time scale, and constructs 

hierarchical partitions of the virtual power plant. The dispatch model determines the day-ahead and day-in-day hierarchical 

partition dispatch control objective functions, and sets corresponding constraints; the dispatch control model based on the 

solution of the SaDE-BBO algorithm outputs the virtual power plant distributed energy storage hierarchical partition dispatch 

control optimization plan. The test results show that the maximum load peak value after dispatch control through this method 

is 40.9 MW; the active power loss results are all below 10 MW, real-time response to control instructions ensures the safety 

and stability of the voltage of the virtual power plant under the access of renewable energy, and the nodal voltage fluctuated 

within the permissible range of 0.95 to 1.05 p.u. 
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1. Introduction

A Virtual Power Plant (VPP) is a power supply coordination 

management system that uses advanced communication 

technology and software architecture to realize the 

aggregation and coordination optimization of various 

geographically dispersed distributed energy sources, thereby 

participating in the power market and grid operation as a 

special power plant. There are many types of VPP resources 

in the power grid, their internal resource aggregation methods 

are different, and the response characteristics of different 

resources are different [1]. Some response resources are 

seasonal, with different seasons and different response 
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capabilities; some response resources are productive, with 

different production needs and different response 

capabilities; some response resources span different time and 

space regions. Therefore, demand resource indicators exhibit 

the characteristics of dynamic changes in space and time [2]. 

VPPs with different spatiotemporal characteristics in 

response to resource aggregation also exhibit different 

response characteristics to the power grid, and have an impact 

on regional power grids in different spatiotemporal contexts, 

resulting in impacts on grid stability, resource utilization 

levels, and operating costs [3]. In the scheduling control 

process of VPP, owing to the high degree of dispersion and 

heterogeneity of distributed resources, it significantly 

increases the difficulty of resource aggregation and 
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scheduling. Moreover, there are significant differences in 

geographical location, equipment type, and operational 

characteristics among different resources, which makes it 

difficult for virtual power plants to perceive and interact with 

these resources [4], limiting the adjustment ability of VPP in 

response to grid load fluctuations. To ensure the effective 

dispatch of the power grid, Barala et al. proposed a two-stage 

hierarchical method. This method regards the total demand of 

the controlled load as a virtual energy storage system, divides 

the power grid into a distribution system and a transmission 

system, and uses virtual energy storage to collaboratively 

divide thr coordinated control of the two systems, enabling 

the power system to quickly respond to energy storage needs 

and improve system flexibility by maintaining a balance in 

power generation demand. During the application process of 

this method, it is necessary to ensure close coordination 

between different levels, that is, the power distribution 

system and transmission system can adapt to changes in grid 

operation and achieve effective coordination between the 

two. However, the high complexity and uncertainty of the 

grid operation will lead to instability in the response and 

coordination between the two systems, affecting the control 

effect [5]. Pandey et al. aimed to optimize the scheduling of 

virtual power plants (VPPs) and enhance their economic 

benefits by providing storage in the form of electric vehicles 

(EVs) as flexible reserves and energy storage systems (ESS) 

as rotating reserves. They also introduced the concept of risk 

management and utilized a popular risk measurement 

technique, Conditional Value at Risk (CVaR), to determine 

the optimization model of the VPP. The improved Harris 

Hawk optimization algorithm was used to solve the model 

and obtain the scheduling scheme of the VPP.. However, the 

virtual power plant its dispatching of power plants by a VPP 

involves multiple objectives, such as cost minimization, 

reliability maximization, environmental pollution 

minimization, etc. Although the Harris Hawks optimization 

algorithm can handle multi-objective optimization problems, 

how do we make trade-offs between these objectives? When 

there is conflict between them, it is still difficult to find the 

best trade-off solution [6]. To achieve effective dispatching 

of virtual power plants, Ghanuni et al. proposed a multi-

objective programming model to weigh the regret degree of 

uncertainty risk and operating costs, taking into account the 

uncertain parameters of renewable energy, load, and market 

price. The scheduling strategy for the VPP to participate in 

the day-ahead market is determined, and combined with the 

fuzzy satisfaction method of the p-robust stochastic 

programming model, the optimal economic plan is provided 

according to the worst-case scenario while minimizing the 

regret level. However, the rules of the electricity market and 

policies may change frequently, and multi-objective 

optimization usually requires trade-offs between different 

objectives. It is difficult to find the best balance point among 

all objectives and cannot fully adapt to all major changes in 

market rules, affecting scheduling and quotation strategies 

[7]. Ebrahimi et al., in order to ensure the dispatching effect 

of the power system, mainly focus on the energy storage 

system, optimize its operating status, and use the optimized 

energy storage system to perform peak shaving and load 

smoothing of the power system to ensure the balance and 

power stability of load during the dispatching process. 

However, there are uncertainties in energy markets, weather 

conditions, grid loads and other factors, and new algorithms 

need to be able to effectively handle these uncertainties. 

However, this algorithm may have certain limitations when 

dealing with uncertainty and the response speed is 

significantly affected [8]. 

The BBO algorithm, named Biogeography-based 

Optimization, is a swarm intelligence optimization algorithm 

proposed by Professor Dan Simon in 2008. Inspired by the 

theory of biogeography, this algorithm solves optimization 

problems by simulating the migration and mutation processes 

of biological species between different habitats and has good 

application results in power system and distribution network 

optimization [9]. The SaDE algorithm is an evolution 

algorithm. It is based on a differential evolution algorithm, 

and introduces an adaptive mechanism. It can dynamically 

adjust the parameters of the algorithm according to the 

evolutionary status of the population, such as mutation factor, 

crossover probability, etc., thereby improving its search 

performance.and convergence performance [10]. Combining 

the advantages of the SaDE and BBO algorithms, adaptively 

adjusting the parameters of the DE algorithm and using the 

migration and settlement mechanism in the BBO algorithm to 

guide the evolutionary direction of the population and 

improve the search efficiency. During the optimization 

process, the SaDE algorithm is responsible for generating 

new candidate solutions and adjusting the algorithm 

parameters through an adaptive mechanism, the BBO 

algorithm determines the migration direction and settlement 

probability of species based on the fitness of each habitat, 

thereby guiding the population to a better solution. Regional 

evolution is suitable for solving a variety of complex 

optimization problems. Based on this, this paper proposes a 

distributed energy storage partition scheduling control 

method for virtual power plants based on the SaDE-BBO 

algorithm. This method adopts a hierarchical partition 

scheduling mode and takes advantage of the SaDE-BBO 

algorithm to combine distributed energy storage systems to 

obtain the optimal scheduling control solution. 

2. Virtual power plant distributed energy
storage hierarchical zonal scheduling
control

2.1 Virtual power plant model 

Virtual power plant operation structure 
The VPP is a comprehensive distributed energy storage 

system and a load-responsive microgrid energy management 

system supported by smart-grid technology. As a bridge 

between power grid dispatching and demand-side resources, 

it is necessary to aggregate the response characteristics of 

demand-side resources and then participate in the schematic 

diagram of the power market or power grid dispatching and 

VPP operation, as shown in Figure 1. 
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Figure 1. Schematic diagram of the operational 
structure of the virtual power plant 

The VPP combines a comprehensive energy management 

system with dispatchable and nonschedulable distributed 

energy storage systems, traditional units, and controllable 

loads. It embeds the Internet and modern information 

technology into the management system to achieve the 

orderly adjustment and collaborative optimization of various 

resources. In particular, the support of new energy and 

renewable power to the power grid [11], including providing 

auxiliary services in the form of frequency and peak 

regulation, backup, and participation in new energy planning 

and optimization. 

Modeling of distributed energy storage systems 
During the operation of the virtual power plant, a large 

amount of renewable energy is distributed and connected to 

the grid. The configuration of a distributed energy storage 

system (ESS) is an important factor in the role of a virtual 

power plant, and the role of the ESS determines the 

configuration size of the distributed ESS to a certain extent. 

Therefore, a distributed ESS configuration model can be 

established based on the role of distributed ESS. The ESS 

functions involved in configuring the distributed ESS in this 

study mainly include the following aspects. 

(1) Demand response for economic operation.

Because the VPP aggregates the renewable energy

contained in it and directly participates in the operation of the 

power market, it can reasonably schedule distributed ESS 

charging and discharging according to electricity price 

signals to achieve a VPP demand response [12]. This 

increases the elasticity of the VPP power supply, improves 

economic returns, and realizes economic operation of the 

VPP. 

(2) Peak reduction and valley filling to stabilize the power

supplied by the network. 

In a VPP with a large-scale distributed photovoltaic, the 

phenomenon of peak shifting between photovoltaic and load 

causes the difference curve between the two to have a huge 

peak-to-valley difference, which brings serious challenges to 

the operation of the VPP. A distributed ESS depends on its 

supply and demand characteristics. It can realize peak 

shaving and valley filling, coordinate photovoltaic output and 

user demand, reduce the peak and valley difference in 

network supply, and thereby stabilize the network supply 

power [13]. 

(3) Improve the voltage environment and voltage quality.

After large-scale distributed photovoltaics are connected to 

the VPP, their intermittency, volatility, and irregular start and 

stop have a greater impact on the voltage quality of the VPP. 

However, distributed ESS with supply and demand 

characteristics can quickly respond and coordinate the 

photovoltaic output, improve the VPP voltage environment, 

and improve the VPP voltage quality [14]. 

Distributed energy storage systems are different from 

renewable energy generation systems in that can carry out 

two-way charging and discharging, and the output power can 

be freely adjusted and is not subject to external environmental 

constraints. However, the distributed energy storage model 

output active size is affected by its battery capacity, 

distributed energy storage system battery capacity indicates 

that the energy storage can be charged and discharged 

capacity size, and its main influence factor is the average 

discharge current. The size of the energy storage system 

battery capacity eS can be expressed as: 

( )0.9

0

1.67
1 0.005

1 1.67

e oS S T
I

I

= + 
 

+  
  (1) 

Where: T is the difference in temperature between the

actual outside temperature and the standard room temperature 

of 25°C; I  is the average value of the discharge current of 

the storage battery. 0I is the rated value of the 

charge/discharge current of the storage battery. oS is the 

capacity of a standard battery. 

Based on the capacity constraints of the storage battery, the 

output model of the energy storage system can be expressed 

as follows: 

( )min maxe

i i iP P t P−  
(2) 

Where: ( )e

iP t is the output of the i th energy storage system

at time t .
min

iP and
max

iP are the lower and upper limits of the 

energy storage system output, respectively. 

( )
1 1

T N
e

e e i

t i

C c P t
= =

=
(3) 

Where: eC  is the total operating cost of the energy storage 

system. ec is the operating cost of a single energy storage unit. 

N is the total number of energy storage units.
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Uncertainty modeling 
(1) Load probability model:

The load power fluctuations can be approximated as

obeying a normal distribution, so the load power probability 

density function is calculated by the following formula: 

( )
2

2

1
exp

22

L L

L

LL

P
f





 − −
=  

   (4) 

Where: LP is the active power of the load; L and L are the 

expectation and variance of the load power probability 

density function. 

(2) Probabilistic modeling of wind power output:

For wind power ratings is denoted by 0P , wind speed is 

modeled using the Weibull distribution probability density 

function, and the segmented function between the output 

power of wind power and wind speed is represented by WPP , 

the probability density function of the wind power output, 

which is given by: 

 exp , 0,

0 others

k

WP o

WP o o o

khv
P P

f P P P

 

  

   
  −   

=     

 ，

(5) 

0 1eih v v= − −
(6) 

( )o WP eiP hP v = +
(7) 

Where: Rated wind speed is denoted by 0v ; cut-in wind speed

is denoted by v ; k denotes the shape parameter.  indicates 

the speed parameter. 

(3) Probabilistic modeling of PV output:

The PV output power is linearly related to the intensity of

solar irradiation, thus it is considered that the PV output 

power obeys distribution, therefore, the probability density 

function of the PV output power is calculated by the formula: 

( )

( ) ( )

1 1

max max
1

PV PV

a b

PV

PV PV

P Pa b
f

a b P P



 

− −

+    
= −   

    (8) 

Where: a and b respectively are the positional parameters of

 distribution; PVP denotes the output power of the PV; its 

maximum value is denoted by
max

PVP ; ( ). represents the

Gamma function. 

2.2 Virtual power plant hierarchical zonal 
scheduling control model construction 

Stratified zonal regulation is based on spatio-temporal 

information to analyze the demand response capacity of 

virtual power plant resources in the region as an indicator, and 

considers the grid load, renewable energy, and distributed 

energy storage for stratified zoning on a time scale. Moreover, 

response resources with a large adjustable capacity, high 

adjustable elasticity, fast response speed, and good economy 

[15] have higher stratification and priority regulation.

Stratified zonal regulation is a dynamic aggregation process

with the purpose of avoiding the disorderly response of

resources, guiding the virtual power plant to reasonably and

scientifically play the value of demand response, and

promoting the smooth load of the grid and the safe and stable

operation of the system [16]. For a regional power grid with

a number of virtual power plants, after stratified partitioning

on the time scale, a virtual power plant stratified partitioning

scheduling control model is constructed, which contains

intraday scheduling and day-ahead scheduling, in which

intraday scheduling is based on day-ahead scheduling, taking

into account day-ahead scheduling plans and its own stability,

correcting the errors that may be brought by day-ahead

scheduling, and improving the accuracy and reliability of

scheduling [17], while ensuring compliance with the

scheduling arrangement, maximizing the benefits and

ensuring the stability of operation and maximizing the use of

renewable energy.

Day-ahead scheduling control objective function 
Day-ahead dispatching of virtual power plants refers to the 

process of unified planning and optimal allocation of 

resources in virtual power plants in the Day-Ahead Market 

(DAM) stage of power market transactions. The purpose is to 

use market forecast information (such as load forecasting) , 

renewable energy output forecast, etc.) to formulate the 

power generation or power consumption plan of the virtual 

power plant to meet the transaction needs of the power 

market, adjust the operation plan of power production and 

transmission equipment, ensure the economic benefits of the 

operation of the power system [18], and reduce the system 

peak and valley difference with as little regulation cost. 

Assuming that in the regional grid there are N virtual 

power plant participates in system regulation, each virtual 

power plant has different demand-side resources, and after 

the virtual power plant aggregates the internal resources, it 

presents the role of load unit with regulation capability to the 

grid, and the system peak-valley difference and system 

regulation cost are used, respectively 1min f and 2min f to 

expressed as: 

( )
2

1 ,

1 1

min
N T

VPP

L i t A

i t

f P Q P
= =

= − −
(9) 
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min
N T

VPP

i t p

i t

f Q 
= =

=
(10) 

Where: AP is the average daily load; ,

VPP

i tQ is the amount of 

electricity the i virtual power plant exchanges with the grid

during period t , a positive value indicating that electricity is

supplied to the grid and a negative value indicating that 

electricity is absorbed from the grid. 
p is the peak-to-valley 

tariff coefficient. T indicates the scheduling control cycle. 

Intraday scheduling control objective function 
Intraday scheduling involves making real-time adjustments to 

the operation of power production and transmission 

equipment within one day according to the changes in the 

actual power demand and power supply, with the aim of 

ensuring that the power system can continuously maintain 

balance and stability, correcting the errors that may be 

brought about by the dispatch before the previous day, and 

coping with a variety of emergencies. Therefore, the objective 

function of intraday dispatch control is set to optimize the 

integrated FM performance of the virtual power plant

3max f , voltage quality 4max f optimal as well as minimal 

optimization error penalties 5min f between the day-ahead 

and intraday optimization results and the real-time dispatch 

control instructions, which is calculated by the following 

formula: 

( )1, 2, 3,

1 1
3

1 1

0.25 2

max

T N
t t t t

WP PV i i i i

t i

T N
t

i

t i

f f k k k P

f

P

= =

= =

   + + 
 

=



(11) 

4

1
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ESS i L

ij

f F U j
U 




= − 
(12) 

5

1

min
T

t t

r

t

f P P 

=

=  −
(13) 

Where: 1,

t

ik 、 2,

t

ik 、 3,

t

ik are the regulation rate index, 

response time index and regulation accuracy index of each 

FM unit during the period t under the intraday short time

scale. 
t

iP represents the output result of each unit i in the

virtual power plant during period t . G is the set of nodes for

all generators; L is the set of nodes for the full load; iU is 

the complex voltage of the i th generator node; 
jU is the 

complex voltage of the j th load node; ESSF is a participation 

factor in distributed energy storage; the
tP and

t

rP represents 

the actual output value and real-time dispatching control 

instruction value of the virtual power plant before and during 

period t . is the penalization factor.

2.3 Constraints 

Combined with the operation mechanism of the virtual power 

plant and the uncertainty model, the constraints related to the 

hierarchical zonal scheduling control are set to ensure the 

rationality of the objective function, the details of which are 

as follows: 

(1) Distributed energy storage operational constraints:

max0 e eP P 
(14) 

max0 e eP P 
(15) 

min max

e e eSOC SOC SOC 
(16) 

Where: 
max

eP and
max

eP are the maximum charging power and 

maximum discharging power of the storage battery, 

respectively. eSOC denotes the state of charge of the 

distributed energy storage system, and its maximum and 

minimum values are denoted by
max

eSOC and
min

eSOC . 

(2) Wind and solar new energy unit output constraints:

The constraints on the amount of demand response when

the load increases or decreases is: 

min max

min max

WT WT WT

PV PV PV

P P P

P P P

  


  (17) 

Where: 
min

WTP and
max

WTP are the minimum and maximum 

output of the wind turbine. 
min

PVP and
max

PVP are the maximum 

output of the minimum output of PV. 

(3) Scheduling control deviation constraints:

t t

rP P  − 
(18) 

Where:  is the maximum allowable error for dispatch

control. 

2.4 Solving the scheduling control model 
based on SaDE-BBO algorithm 

The BBO algorithm is derived from optimization ideas 

contained in the migration process of species between 

habitats, and the activities of species in the ecological 

environment are called habitats. There are multiple factors in 
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the ecological environment that affect the quality of habitat 

environment, which are called fitness index variables (SIV). 

The suitability of the habitat for the survival of the species 

and the quality of the environment are described by the fitness 

index (HSI). Each generation of habitats is called a 

population, and its fitness value is optimized using HSI as the 

function of fitness [19]. In the virtual power plant 

optimization dispatch, five objective functions are considered 

in each period within a dispatch cycle: system peak-valley 

difference and system regulation cost, best comprehensive 

frequency regulation performance of the virtual power plant, 

best voltage quality, and day-ahead and intraday 

optimization. The minimum optimization error penalty 

between the results and real-time scheduling control 

instructions is used as an optimization vector, which 

corresponds to a habitat, and the values of each objective 

function represented by the habitat HSI are optimized and 

solved. 

A habitat represents a candidate solution, that is, a possible 

solution in the virtual power plant dispatch control 

optimization objective function. Each habitat contains a set of 

parameters or decision variables that together define the 

virtual power plant's power generation during different time 

periods. Scheduling plans, load distribution, etc. Each habitat 

has a corresponding habitat suitability index HIS. The HSI is 

an index used to evaluate habitat suitability for biological 

survival and reproduction. It is similar to the fitness function 

value in an optimization problem and is used to measure the 

quality of the solution. The exponent SIV corresponds to the 

characteristics or parameters of the solution. In the virtual 

power plant dispatch optimization problem, these SIVs may 

include the output power of the generating unit, charge and 

discharge status of the energy storage device, the amount of 

load reduction, etc. The value of SIV must satisfy constraint. 

When the BBO algorithm is applied, as the number of 

iterations increases, the HSI of each candidate solution tends 

to saturate, and the convergence rate decreases and even 

converges locally, ultimately leading to premature maturity. 

The occurrence of this phenomenon is inseparable from the 

interaction between habitats and mutation operation of 

individual habitats (deindividuals). Therefore, the SaDE 

algorithm is used to optimize the migration and mutation 

operators of the BBO algorithm. The differential evolution 

algorithm generates new solution individuals through 

mutation operations. When optimizing the migration operator 

of BBO, the mutation mechanism of SaDE is introduced into 

the migration process to generate new candidate solutions 

through differential information; At the same time, the 

adaptive mechanism is introduced to dynamically adjust the 

parameter settings during the migration process to improve 

the performance of the algorithm [20]. The optimized formula 

for the migration operator is: 

( ) ( )

( )

,0 ,0 1 2

,0.1

M M M M M

i i i k i i c c

i i

X X F X X F X X

F rand n 

 = + − + −


=      (19) 

Where: iX is the i th candidate solutions after the end of the 

migration. ,0

M

iX is the i th candidate solution of the M th 

iteration; 
M

kX is the k th candidate solution of the M th 

iteration; 
1

M

cX 、
2

M

cX are randomly selected candidate 

solutions in the population, respectively; iF denotes the 

difference coefficient. 

The purpose of the SaDE algorithm to optimize the 

mutation operator is to reduce the randomness of SIV in the 

late iteration. The optimized differential migration operator

( )i d  formula is: 

( ) ( )
( ) ( )

( )
1 2

2

c c

i i

i

d d
d d

d

 
  



 +   = +  
−   (20) 

Where: 1 2c c、 are different random numbers within 1, N ;

 is adaptive adjustment parameters calculated for SaDE. 

( )

( )

1

1

1

N

i

i

N

i

i

 



 



=



=

−

=

+ −




(21) 

Where:  is the optimal fitness of the current population;

i denotes the optimal fitness of the individual; as the 

number of iterations increases, the closer i to the optimal 

fitness, the smaller the adaptive tuning parameter is, and the 

more the original solution's good characteristics can be 

maintained. 

After the above-mentioned adaptive differential mutation 

operation, calculate the HIS of different candidate solutions, 

sort the calculation results from large to small, and use the 

greedy selection method to complete the survival of the fittest 

habitat selection. The greedy selection method only needs to 

be selected after the survival of the fit test. Sorting the 

population once is a simple operation. Its essence is to 

compare the fitness i of each candidate solution in the 

population with the fitness i of the new candidate solution 

after its own renewal, eliminating the bad ones, and retaining 

the good ones can effectively retain high-quality individuals, 

that is, obtain better solutions and enter them into the next 

generation population. According to the principle of the BBO 

algorithm, migration operations are allowed between the 

better solutions obtained, and certain mutation operations can 

be introduced to increase the diversity of the population to 

generate new solutions ˆM

kx , which is calculated as follows: 
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ˆM M

k k Hx X Q=
(22) 

Where: HQ denotes the eigenvector matrix of the solution; 

M denotes the number of iterations.

Determine whether the solution satisfies all the constraints. 

The differential evolution operation and biogeographic 

optimization operation are continuosly repeated until the 

maximum number of iterations is reached or other stopping 

conditions are met. During the iteration process, the currently 

found optimal solution (that is, the solution with the highest 

HSI value) is recorded and updated, and the final found 

optimal solution is output as the dispatching control scheme 

of the virtual power plant. 

3. Test analysis

To verify the application effect of the method in the 

hierarchical partition dispatch control of distributed energy in 

virtual power plants, we select the IEEE30 node system as the 

test system. In this system, photovoltaic, wind power and 

distributed energy storage systems are connected, and the 

maximum interaction between VPP and the power grid is 500 

kW, and the reserve price is 0.04 yuan/(kW.h); the carbon 

emission coefficient per unit power of the power grid is 0.93 

kg/(kW.h), and the carbon emission quota is 0.88 kg/(kW.h). 

The IEEE28 node system structure is shown in Figure 2, and 

the relevant parameters of the system are shown in Table 1. 

PV

WP

Energy 

storage

Energy 

storage

node

Figure 2. EEE28 Node System Structure 

Table 1. System related parameters 

Category Parameter Numerical value 

Distributed energy storage 

system 

Rated capacity /kW·h 150 

Maximum charging and discharging power /kW 60 

Charge/discharge efficiency 0.85 

Maximum charge capacity /kW·h 130 

Minimum charge capacity /kw·h 30 

Initial capacity /W·h 80 

Wind turbine 

Rated power /kW 500 

Rated wind speed /m.s 15 

Cut-in wind speed /m.s 3 

Cut-out wind speed /m.s 25 

Maintenance cost (yuan/kW.h) 0.08 

Power upper limit /kW 670 

Photovoltaic 

Conversion efficiency 0.093 

Maximum power /kW 600 

Capacity penetration rate /% 51 

Maintenance cost (yuan/kW. h) 0.06 

The method in this study makes full use of the distributed 

energy storage system to participate in scheduling when a 

virtual power plant hierarchical zoning scheduling control is 

carried out, and the degree of the utilization of distributed 

energy storage system affects the scheduling control results. 

Based on this, the utilization degree of distributed energy 

storage system is analyzed, and the three methods in literature 

[5], literature [6], literature [7] are used as the comparison 

method of the method in the paper to obtain the peak shifting 

effect of the four methods under different adjustable load 

ratios, and the test results are shown in Table 2.  
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Table 2. Load peak shaving effects (MW) of the four methods 

Adjustable load ratio/% Reference [5] method Reference [6] method Reference [7] method Proposed method 

2 57.1 57.8 53.3 36.5 

4 52.4 49.9 55.1 40.2 

6 55.9 46.7 52.9 31.7 

8 54.3 52.3 50.3 38.7 

10 56.2 55.1 57.6 36.3 

12 55.1 50.8 54.2 39.4 

14 52.8 56.6 53.6 40.9 

16 49.9 47.8 56.1 37.2 

18 48.7 45.9 55.8 36.9 

20 46.6 46.2 54.2 34.1 

After analyzing the test results in Table 2, it can be 

concluded that with the gradual increase in the adjustable load 

proportion, after scheduling control through the four 

methods, the load peak value changes to a certain extent. 

Among them, literature [5], literature [6] In literature [7], the 

maximum load peak values after dispatch control by the three 

methods are 57.1 MW, 57.8 MW, and 57.6 MW respectively; 

the maximum load peak values after dispatch control by the 

method in this paper are 40.9 MW respectively. This result is 

significantly better than those of the other three methods. 

Scheduling control results of for the two contrasting methods. 

Because the method in this study uses a distributed energy 

storage system to participate in the hierarchical partition 

dispatch control of the virtual power plant, it has a load peak 

shaving capability even when the adjustable load ratio is low, 

and the load peak value drops significantly after adjustment. 

Therefore, when regulating a virtual power plant, making full 

use of distributed energy storage systems to participate in 

regulation can optimize resource utilization, promote new 

energy consumption, and improve the power system's 

regulation capabilities. 

In order to further verify the effect of the method in the 

paper to control the virtual power plant by using distributed 

energy storage in hierarchical zoning, we obtain the active 

loss results of the virtual power plant after the distributed 

energy storage system participates in the scheduling control 

of the virtual power plant under different power fluctuation 

ratios in the method in the paper, and compare the results with 

the loss results before the scheduling control, so as to judge 

the effect of the application of its participation in the 

scheduling, and the test results are shown in Fig. 3. 
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Figure 3. Active Loss Results of Virtual Power Plant 

After analyzing the test results in Figure 3, it can be 

concluded that after the distributed energy storage system is 

used to participate in the virtual power plant dispatch control, 

under different fluctuation ratios, the active power loss results 

of the virtual power plant are all below 10 MW. Compared 

with the active power loss before scheduling control, there is 

a significant decrease. The distributed energy storage system 

can charge and discharge in both directions, and the output 

active power can be adjusted freely without being restricted 

by the external environment. Through the flexible scheduling 

of the energy storage system, it can more effectively 

participate in system peak shaving and optimize the load of 

the power grid. curve, making the power grid run more 

smoothly and reducing active power losses caused by load 

fluctuations. 

The method in the paper minimizes the optimization error 

penalty 5min f between the day-ahead and intra-day
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optimization results and the real-time scheduling control 

instructions when performing the virtual power plant 

scheduling control as one of the scheduling control objective 

functions, the real-time scheduling control command 

response capability is used as a judgment criterion to obtain 

the actual scheduling control command response results of 

the virtual power plant when the method in the paper is used 

for scheduling control, as shown in Fig. 4. 
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Figure 4. Actual Dispatch Control Instruction 
Response Results of Virtual Power Plant 

After analyzing the test results in Fig. 4, it is concluded 

that after real-time scheduling control of the virtual power 

plant through the scheduling control method in this study, it 

can track the fluctuation of renewable energy power and load 

demand in the system, respond to the control instructions in 

real time to ensure that the virtual power plant can be 

combined with the changes in the actual power demand and 

power supply, and make real-time adjustments in the 

operation of the power production and transmission 

equipment to ultimately realize the scheduling control of the 

virtual power plant under the multi-temporal time scale. 

In order to verify the effect of the method in the paper on 

the hierarchical zonal scheduling control of virtual power 

plants, the paper uses the loss factor e as an evaluation 

index, this index mainly describes the degree of power loss in 

the operation of the virtual power plant, which takes the value 

of 0~100, the larger the value indicates that the degree of loss 

is more obvious, the worse the scheduling control effect. The 

calculation formula of e is:

( )

( )1

1 T

e

t

Q t

T Y t


=

= 
(23) 

Where: ( )Q t represents the loss of load power; ( )Y t

represents the load demand power; T represents the total 

time period. 

The hierarchical and partition scheduling control of virtual 

power plant is carried out by using the method in this paper, 

and the hierarchical scheduling results of virtual power plant 

before and during the day are obtained. The test results are 

shown in Table 3. 

Table 3. Layered scheduling results of virtual power plants before and during the day (MW) 

Period of 

time/h 

Day ahead scheduling/MW Daily scheduling/MW 

Wind power 

output 

Photovoltaic 

output 

Wind power 

output 

Photovoltaic 

output 

2 32.5 11.7 27.8 16.2 

4 35.1 10.6 33.3 15.8 

6 49.3 15.9 35.2 15.5 

8 16.6 16.8 20.8 20.2 

10 15.8 24.4 19.6 25.1 

12 14.7 48.3 21.3 33.6 

14 13.5 45.5 22.1 32.7 

16 18.8 25.1 15.9 27.4 

18 24.3 24.4 24.1 20.2 

20 22.6 22.1 25.1 19.7 

22 25.1 20.8 20.7 18.3 

24 20.8 20.2 21.1 16.6 
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After analyzing the test results in Table 3, it can be 

concluded that under different time periods, after the 

hierarchical partition control of the virtual power plant is 

carried out through the dispatch control method in this article, 

and after the day-ahead dispatch control, the output power of 

wind power and photovoltaic power changes within the range 

of 10~50 MW, in which wind power output fluctuates greatly; 

after intraday dispatch control, the output power of wind 

power and photovoltaic power changes within the range of 

15~35 MW, and its fluctuation range decreases significantly. 

Therefore, when the method in this study performs 

hierarchical partition control of virtual power plants, intraday 

dispatch can correct errors that may be caused by day-ahead 

dispatch, cope with various emergencies, and better respond 

to control instructions. 

To judge the effect of the hierarchical partition dispatch 

control of the virtual power plant, under different renewable 

energy outputs, after the hierarchical partition control of the 

virtual power plant is carried out through the method in this 

study, the fluctuation of the node voltage is obtained and 

compared with the standard voltage. (The allowable range of 

voltage is 0.95~1.05 p.u.) to judge the operational stability of 

the virtual power plant after dispatch control. The test results 

are shown in Figure 5. 
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Figure 5. Voltage Dispatch Control Results of Virtual 
Power Plant Nodes 

After analyzing the test results in Figure 5, it can be 

concluded that after the hierarchical partition dispatch control 

of the virtual power plant is carried out through the method in 

the article, the node voltages fluctuate within the allowed 

range of 0.95~1.05 p.u., because the method in this study uses 

distributed control during dispatch control. The energy 

storage system enables the virtual energy storage power plant 

to quickly and closely follow the dispatch signal provided by 

the power grid control center, participate in the active power 

balance of the power system, and provide active power 

auxiliary services at different time scales for the power grid; 

At the same time, the node voltages are controlled within the 

allowable range, to ensure the safety and stability of the 

voltage of the virtual power plant under the access of 

renewable energy. 

4. Conclusion

In order to ensure the utilization and dispatching effect of 

energy and resources during the operation of a virtual power 

plant and to improve the operating efficiency and stability of 

the power system, this paper proposes a distributed energy 

storage hierarchical partition dispatch control method for 

virtual power plants based on the SaDE-BBO algorithm. This 

method can improve the dispatching control response 

capability of the virtual power plant, make full use of the 

advantages of the distributed energy storage system, and have 

the ability to participate in grid auxiliary services to achieve 

optimal operation and dispatch of the virtual power plant. 

After testing the method in this study, the application effect 

of the method was verified. This ensures ensure that the 

virtual energy storage power plant meets the regulation 

requirements of power system operation and can also provide 

local voltage support for the distribution network, effectively 

improving the efficiency and stability of power system 

operation. 
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