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Abstract 
INTRODUCTION: Global energy systems heavily rely on coal energy generation, particularly in emerging nations. 
OBJECTIVES: Strategies that maximize the efficiency of coal energy generation while limiting environmental harm are 
essential to addressing these issues. With an emphasis on increasing productivity and minimizing environmental effects, this 
study suggests an integrated strategy for optimizing coal energy production processes using Genetic Algorithms (GA). 
METHODS: Key factors, including GDP growth rate, pollution abatement investment, coal intensity, and clean technology 
efficiency, are all optimized using GA in the suggested approach. Finding the best combination of these factors to maximize 
coal production efficiency while reducing CO2 emissions and other pollutants is made possible by GA-based optimization. 
A Social Cost-Benefit Analysis (SCBA) and environmental impact appraisal are also included to assess various scenarios' 
economic and environmental consequences. The findings show that, particularly in situations with slower GDP growth, more 
pollution abatement expenditures and cleaner technology adoption result in notable emissions reductions and increased 
overall efficiency. 
RESULTS: The results show how crucial it is to balance environmental sustainability and economic prosperity. The study 
offers insightful information to industry executives and regulators, highlighting GA's potential to maximize the efficiency 
of coal energy generation. 
CONCLUSION: Scenario A provided the best economic advantages, with a greater GDP growth rate and higher 
environmental costs. 
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1. Introduction

Coal energy production has a very significant share in the 
energy scene globally. Using coal-fired power plants in 
developing countries becomes essential in meeting growing 
energy demands [1]. However, the widespread reliance on 
coal manifests with environmental challenges from emissions 
and the respective increase in greenhouse gases and the 
ensuing air pollution, damage to the ecosystem, etc [2]. Coal 
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energy is critical for emerging countries because of its 
availability, low cost, and economic progress. These 
countries rely heavily on coal to fulfil rising electrical 
demand, typically with limited access to cleaner energy 
sources. This dependence produces a vicious cycle in which 
rising coal production fuels GDP growth, increasing energy 
consumption. Limited financial capacity and high initial costs 
impede investments in alternative energy and clean 
technologies, increasing dependency on coal. The coal sector 
generates major employment and government money, 
making it politically and economically difficult to replace. 
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The paper advises utilizing Genetic Algorithms to increase 
coal production efficiency while decreasing pollution. 
Scenario analyses show moderate economic growth with high 
investment in pollution control and clean technologies yields 
the best environmental benefits, while high-growth scenarios 
incur greater ecological costs. The transition towards 
sustainable coal production is not limited purely to better coal 
extraction and processing; it also places a considerably wider 
lens on the environmental consequences of it [4], [5]. In 
seeking this balance, there is a need for innovative 
technological advancements, complemented by effective 
policies and strategies demanding reduced emissions and 
lesser pollution, and finally, working towards a more 
sustainable and responsible coal energy industry [6]. Coal is 
vital in global energy dynamics, particularly in developing 
countries, where it contributes to energy security and drives 
economic growth. Numerous countries depend on coal to 
fulfil their rising energy needs, which is important for 
industrial development. With ongoing industrialization, coal 
continues to be essential to their energy mix because of its 
cost-effectiveness and availability. A significant relationship 
exists between GDP growth and coal output, fueling 
increased demand as countries seek to enhance their 
economies. At the same time, there is a push to lessen coal's 
environmental effects through cleaner technologies such as 
carbon capture and storage. However, these approaches 
encounter significant expenses and gradual adoption, 
particularly in developing areas. Innovations like enhanced 
energy efficiency methods are crucial for these countries to 
integrate economic growth with environmental goals. 
Shifting to renewable energy poses obstacles, such as 
restricted financial resources and infrastructure, which further 
complicate the move away from dependence on coal. Despite 
worldwide trends supporting renewables, coal remains a 
safeguard against energy deficits, offering reliable and faster 
solutions than large-scale renewable initiatives. Therefore, 
developing nations struggle to find an equilibrium between 
promoting economic expansion and addressing the 
environmental impacts of coal. Approaches to improve coal 
efficiency, invest in cleaner technologies, and gradually 
integrate renewables are essential as these countries manage 
their energy security and climate obligations. 
The long-term economic and structural relationship between 
the growth of coal demand, production, and consumption 
entails certain steps to be taken together [7]. There is a lot of 
work around clean coal technologies and energy-efficient 
mining methodologies that have reduced the carbon footprint 
of coal production, but those improvements are quite limited 
[8], [9]. High costs of building integrated cleaner coal 
technologies, coupled with minimal investments in research 
and development, further decelerate the rhythm [10]. 
Furthermore, political and economic factors, such as 
changing energy policies and shifting global markets, further 
complicate the transition toward cleaner practices [11]. There 
is a need for a holistic modal for intervention and to mount 
well-coordinated responses that will combine technological 
innovations, economic incentives, and institutionalized 
environmental policies to address these challenges with the 
optimum efficiency of coal production processes [12]. AI and 

MI are transforming coal production by enhancing efficiency, 
increasing economic advantages and minimizing 
environmental effects. AI enhances every phase of coal 
production, including exploration, processing, and 
transportation, by analyzing geological data to predict 
suitable extraction techniques. It additionally forecasts 
equipment failures, enabling pre-emptive maintenance and 
reducing costs and downtime. Automation boosts operational 
efficiency, reduces human mistakes, and increases safety in 
dangerous mining settings. AI tracks coal reserves, energy 
consumption, and operating costs in real-time, aligning 
production with sustainability objectives while minimizing 
waste and energy consumption. Machine learning enhances 
energy efficiency in coal production through genetic 
algorithms, leading to decreased carbon emissions and 
reduced water usage. AI also enhances carbon capture 
technologies to reduce the carbon footprint of coal power 
facilities. Integrating AI and machine learning with economic 
models facilitates policies that align economic growth with 
environmental sustainability, supporting cleaner and more 
efficient coal-fired power generation. 

One of the most suitable ways to enhance the efficient 
production of coal energy is by providing modern 
optimisation techniques capable of adapting to the ever-
evolving situations and challenges [13], [14]. Certain tools, 
such as machine learning and optimization algorithms, have 
been rightly picked in this context. The modelling of different 
aspects such as production rate, economic expansion, 
pollution, and acceptance of new technology might depend 
on these methods as they establish a more accurate forecast 
and allow for better decision-making in the coal industry [15], 
[16]. Such computational techniques do, however, also allow 
for the development of flexible policies and strategies that can 
also be tailored to address the needs of specific regions or coal 
industries, given that they would consider local 
environmental considerations and economic goals [17]. 

This study aims to enhance the efficiency of coal energy 
production by implementing Genetic Algorithms-GA, a 
robust optimization method inspired by natural evolution. GA 
is instrumental in solving complex problems based on several 
factors; thus, it can be helpful for the improvement of 
production processes, energy consumption management, and 
pollution control within the coal industry. It mimics natural 
selection by testing factors such as GDP growth rate, coal 
intensity, pollution control investment, and technologically 
improved opportunities to discover the most efficient 
conditions to enhance production while minimizing 
environmental degradation. Through the use of GA, the study 
not only optimizes coal production but also assesses the 
economic impact of these optimizations, providing a 
comprehensive way to improve the coal sector's economic 
viability and environmental sustainability. 
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The paper's organisation includes related works and 
methodology in Sections 2 and 3, respectively. Section 4 
discusses the results, and Section 6 concludes. 

2. Related Works

Cormos [18] evaluates numerous decarbonization 
technologies incorporated into cement production, including 
oxy-combustion options and tail-end capture after 
combustion using membranes, calcium repetition, and amine-
based chemical cleaning. Calcium looping performs better in 
recovering heat compared to chemical cleaning, while 
membranes and oxy-combustion options are the most cost-
effective among them, based on the techno-economic 
analysis that relies on simulations and modelling and 
compares the performance of each of these options based on 
cement manufacturing costs and CO2 avoided costs. Using 
qualitative research and content analysis of government 
documents and files, (Khalid, Ahmad, and Ullah [19] analyze 
the ecological impacts of improving infrastructure under the 
CPEC. The findings point towards significant environmental 
issues, including emissions of greenhouse gases due to the 
operation of coal power plants, deforestation, and an increase 
in the traffic of vehicles. They also refer to the need for 
enhanced legal and economic cooperation between China and 
Pakistan to address these climate change issues. 

Using an electric-thermal gas-based optimizing method, Wei 
et al. [20] analyse the feasibility of having a carbon 
emissions-neutral manufacturing park considering solar 
energy and electrolytic hydrogen production. The model can 
be applied to other global industrial regions while economic 
and environmental compromises remain. The study finds that 
achieving carbon-neutral status would cost $8.61 billion, 
while another plan reducing pollution by 61% would cost 
$3.95 billion. Shatar et al. [21] assess the efficacy of passive 
solar still in Malaysia's tropical climates by integrating a 
thermoelectric cooling system and a partly covered 
condensate cover. The results show compromises between 
performance and cost-effectiveness, representing a dramatic 
126% improvement in hydro output, albeit with a 6.55-year 
payback period for electricity with lower exergy 
effectiveness. 

Wu, Lan, and Yao [22] combine process modelling, techno-
economic analysis, and life cycle analysis to examine the 
economic and environmental feasibility of a BECCS pathway 
for hydrogen production using forest residues in the 
American West. Based on the results, hydrogen from forest 
residues is economically on par; however, carbon capture and 
storage increase its environmental impact, which can be 

reduced by utilizing clean energy sources or energy self-
sufficiency. BECCS offers a carbon-negative alternative. 
Deng, Jiang, and Wang [23] examined the viability of 
advancement in coal-resource cities under low-carbon 
economic conditions. It will also create an economic 
resilience assessment system based on traditional and high-
tech industries. According to the findings, by 2011-2021, 
economic resilience is increasing. This research is recognized 
and marked with the importance of public participation and 
government intervention. Limitations exist, including 
spatiality and temporality of the research. 

Dong et al. [24] employ energy balance, efficiency analysis, 
and LCA with sensitivity analysis to examine three coal-fired 
energy generation scenarios, including CCS and solar-
assisted plants. The results show that while CPGS-CCS is the 
best method for generating renewable energy, SCPGS-ORC-
CCS offers a more realistic alternative when considering both 
economic outcomes and environmental footprint, as well as 
limitations under site conditions and equipment selection. 
With a focus on the utilization of energy per GDP, Узі and 
Сотник [25] analyze the monetary efficiency of energy 
consumption and modifications in energy consumption in 
China and India between 1990 and 2019. Though there are 
limitations on the magnitude of a mix of energy alterations 
and policy implementation, the findings highlight the 
prominent use of coal and oil in both country's use of energy 
and identify a trend in terms of green power generation and 
the adoption of alternatives to fossil fuels in addressing 
sustainability targets. 

To minimize the emission of pollutants, Smaisim, Abed, and 
Alavi [26] have developed a thermodynamic analysis of a 
coal-fired power plant integrated with green technology, 
namely solar energy and a boiling bicarbonate fuel cell. The 
results show increases in energy, energy efficiency, and a 
decrease in pollution with constraints on the type of coal used 
and the amount of solar harvesting needed for optimal 
performance. Jolaoso, Duan, and Kazempoor [27] studied 
SOEC driven by combustion power plants, and solar 
photovoltaic is employed to carry out an LCA of an 
innovative, integrative hydrogen production process. While 
production and steam extraction processes have far-reaching 
adverse environmental impacts, the results confirm that the 
environmental footprint of the method is significantly 
minimized, with solar electricity compared to regular power, 
with recommendations for further LCA and energy analysis 
in encouraging sustainability. 

Considering different types of energy and configurations, 
Terlouw et al. [28] estimate the costs and environmental 
effects of hydrogen production on geographically situated 
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places on a large scale using electrolysis with water. Based 
on the results, hydrogen production costs can be up to 2 euros 
per kilogram by 2040. Hybrid configurations have the best 
economic and environmental benefits, but scaling up may be 
challenging based on land availability and component 
limitations. Wang et al. [29] employ the Tapio models and 
LMDI method for identifying significant influencing factors 
as it examines the decoupling of electricity production and 
carbon dioxide emission between 2000 and 2019 among the 
Chinese provinces. The research indicates that while some 
provinces managed to achieve separation, influences such as 
per capita GDP and population density retarded development. 
It also possesses certain limitations in recording long-term 
trends and regional differences. 

Das et al. [31] investigate a renewable hybrid energy system 
for remote Saint Martin Island, Bangladesh, integrating solar, 
wind, biogas, and vanadium redox flow battery technologies. 
Using advanced multi-objective optimization methods 
(NSGA-II and IDE), the study evaluates system 
configurations based on the cost of energy and life cycle 
emissions under set reliability. A fuzzy decision-making 
approach determines the optimal solution. Results show that 
multi-objective optimization yields better environmental 
performance than single-objective methods with similar 
energy costs. The intelligent techniques also outperform the 
HOMER software in cost and emissions. The system proves 
cost-competitive with grid electricity at acceptable reliability 
levels (loss of power supply probability >8%) and achieves 
notably lower emissions. 

Hu et al. [32] focus on integrated energy systems (IES) at the 
park level, particularly for the mining industry, which 
involves complex energy flows and stringent ecological 
requirements. It proposes a structure for coal mine IES that 
integrates underground wastewater, mine gas, ventilation air 
methane, and geothermal energy, alongside flexible loads. A 
multi-objective dispatch model is developed, considering 
economic cost, carbon transaction cost, and customer 
dissatisfaction related to flexible loads. An enhanced 
evolutionary multi-objective algorithm is introduced to 
address time-series constraints and optimize dispatch 
solutions. The model proves feasible and effective when 
applied to a real coal mine under various scenarios. 

Entezari et al. [33] analyze and optimize a hybrid power 
system combining a solid oxide fuel cell (SOFC), gas turbine 
(GT), steam cycle (ST), and organic Rankine cycle (ORC) 
using HFE7000. It explores adding SOFCs to existing GT-ST 
plants to boost efficiency and reduce electricity costs. A novel 
setup using a Stirling engine eliminates the need for fuel 
compressors and steam generators in reforming. Modelling 

and optimization were done using EES and NSGA-II in 
MATLAB. Results show high energy (72.66%) and exergy 
(69.23%) efficiencies, with a levelized electricity cost of 
14.46 cents/kWh, including environmental taxes. 

The comparative analysis of four optimisation techniques 
used in coal energy production efficiency, including their 
methodology, results, advantages, and limitations. Genetic 
Algorithm, as proposed by Cormos [18], Wu [22], and Wei et 
al. [20], is inspired by natural evolution, utilizing selection, 
crossover, and mutation to evolve solutions. It is effective for 
complex, nonlinear, multi-objective problems like coal 
energy optimization, offering strong global search 
capabilities and the ability to handle multi-objective 
optimization. However, it comes with high computational 
costs, slow convergence, and struggles with very high-
dimensional or highly complex nonlinear problems. Particle 
Swarm Optimisation (PSO), based on bird flocking behaviour 
and referenced by Khalid, Ahmad, and Ullah [19] and Wei et 
al. [20], is faster in simple, continuous optimisation problems. 
It is simple to implement and converges faster in simpler 
problems but is susceptible to getting stuck in local minima, 
less effective for combinatorial or highly nonlinear problems, 
and may not fully explore the solution space in complex 
problems. The Whale Optimization Algorithm (WOA), cited 
by Jolaoso et al. [27] and Cormos [18], is based on humpback 
whale hunting behaviour, balancing exploration and 
exploitation. It is effective for multi-objective optimization 
and suitable for complex trade-offs. It can struggle with high-
dimensional problems, exhibits slower convergence for large-
scale problems, and may need parameter fine-tuning. Grey 
Wolf Optimization Algorithm (GWOA), referenced by Wei 
et al. [20] and Dong et al. [24], is inspired by the hierarchical 
leadership of grey wolves, guiding the search process. It 
excels in navigating complex landscapes and maintaining 
diversity in solutions, with strong global search capabilities, 
working well for continuous and discrete optimization 
problems. 

Research Objectives 

• Optimize coal energy production efficiency by
integrating GA for better decision-making in coal production
processes.

• Assess the economic impact of coal energy
production strategies by evaluating key parameters, such as
GDP growth rate, pollution abatement investment, and
energy efficiency.
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• Explore the environmental benefits of implementing
cleaner technologies and pollution control measures in coal
production to reduce carbon emissions and other pollutants.

• Provide policymakers and industry leaders with
actionable insights on balancing economic growth with
environmental sustainability through optimized coal energy
production strategies.

3. Proposed GA-SCBA Framework

The overall methodology for improving coal energy 
production efficiency through integrated GA and economic 
impact assessment is given in Figure 1. The figure illustrates 
the main components of the methodology, starting from GA 
optimization of parameters, including fitness function and 
genetic operators to improve coal production processes. It 
also emphasizes economic impact assessment, which 
includes cost-benefit analysis, pollution control investment, 
and carbon offset. The coal-focused optimization strategy 
combines Genetic Algorithms and Social Cost-Benefit 
Analysis (SCBA) to enhance efficiency in fossil fuel sectors 
and hybrid energy systems. The GA framework optimizes 
key parameters like production intensity and pollution 
investment, proving adaptable for the oil and natural gas 
sectors. GA optimises energy mix and load balancing in 
hybrid systems, integrating fossil fuels with renewables such 
as wind or solar, reducing fossil fuel dependency while 
ensuring stability and cost-effectiveness. The SCBA 
component provides a holistic view of economic and 
environmental trade-offs, factoring in market and non-market 
impacts like carbon offsets and health benefits. This flexible 
methodology, validated through scenarios A to D, simulates 
varied policy outcomes, demonstrating applicability across 
different energy infrastructures. Ultimately, it addresses 
economic viability, energy security, and environmental 
sustainability challenges in the energy landscape. It provides 
a scenario analysis to examine various economic growth 
scenarios (A, B, C, D), while the results section presents 
optimization outcomes and sensitivity analysis. It gives a 
structured approach to assessing and optimizing coal energy 
production efficiency, emphasising economic and 
environmental perspectives. Unlike earlier applications of 
Genetic Algorithms in coal energy, which primarily focused 
on optimizing technical efficiency or reducing emissions at 
the plant level, this GA-based approach integrates 
socioeconomic and environmental variables through Social 
Cost-Benefit Analysis. It goes beyond operational 
optimization by simultaneously considering factors like GDP 
growth, pollution abatement investment, and clean 
technology adoption. This integration allows the model to 
evaluate broader policy scenarios and economic trade-offs, 
offering insights for national-level planning and decision-
making. In contrast to past GA applications' narrower, 
engineering-centric focus, this method adopts a holistic 
framework to balance economic development with 
environmental sustainability. 

The Social Cost-Benefit Analysis (SCBA) framework 
combined with Genetic Algorithm (GA) modelling provides 
a comprehensive approach to formulating carbon pricing and 
subsidy policies for clean coal technologies. This framework 
evaluates direct costs, such as pollution control investments, 
and indirect social benefits, like improved air quality and 
public health. By applying valuation methods, policymakers 
can set appropriate carbon prices reflecting societal costs, 
while scenario-based simulations assess policy performance 
under different economic conditions. For instance, Scenario 
D highlights significant environmental benefits from 
substantial pollution control investments despite lower GDP 
growth. The GA optimizes coal production efficiency and 
environmental impact through evolutionary algorithms, 
analyzing variables such as GDP growth and clean 
technology efficacy. By incorporating SCBA, the framework 
not only enhances technical optimization but also evaluates 
these strategies' economic and social viability. This closed-
loop system allows outputs to inform socioeconomic 
validations, facilitating multidimensional optimization and 
scenario-based policy analysis. Overall, this integrated 
approach supports balancing economic growth with 
environmental sustainability in coal energy production. 

Figure 1: Proposed GA-SCBA Methodology 

The proposed method, GA-SCBA (Genetic Algorithm–
Social Cost-Benefit Analysis) framework, is well-suited for 
improving coal energy production efficiency as it combines 
advanced optimisation with comprehensive economic 
evaluation. The Genetic Algorithm optimizes critical 
variables such as coal intensity, GDP growth rate, pollution 
abatement investment, and clean technology efficiency, 
identifying optimal combinations that enhance production 
while minimizing environmental impact. Its adaptability to 
complex, nonlinear, and dynamic systems allows for more 
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accurate modelling of real-world coal production processes. 
Integrating GA with SCBA extends the analysis beyond 
technical performance to include economic and 
environmental consequences, assessing direct financial 
metrics (like net present value and annual savings) and 
indirect societal impacts such as health benefits and carbon 
offsets. The framework also employs scenario-based 
planning, enabling stakeholders to evaluate outcomes under 
different economic and policy conditions. Demonstrated 
improvements—like a reduction in pollution from 500 to 200 
tons and increased energy efficiency from 40,000 to 50,000 
MWh—along with a high model accuracy (MAPE of 8%) 
affirm the framework's effectiveness. Additionally, 
sensitivity analysis identifies key variables influencing 
system performance, guiding more targeted policy and 
investment decisions. 

3.1 GA Modelling 

In this paper, GA is instrumental in modelling coal energy 
production parameters, driving high efficiency and less 
environmental pollution. Using simulations of several 
scenarios, GA can derive a better combination of coal 
intensity, pollution abatement investment, and GDP growth 
rates. GA optimization processes also lead to better strategies 
for improving coal production, considering economic growth 
and environmental sustainability. The proposed method 
focuses on economic growth and environmental 
sustainability, highlighting how economic incentives can 
drive environmental strategies in coal energy. The research 
uses Genetic Algorithms to optimise parameters like GDP 
growth, coal intensity, and pollution investment to enhance 
production efficiency while reducing CO₂ emissions. 
Economic incentives are crucial for adopting cleaner 
technologies, leading to significant emission reductions and 
improved energy efficiency seen in Scenarios C and D. These 
scenarios illustrate trade-offs between environmental 
performance and economic growth, with Scenario A 
emphasizing higher GDP growth and Scenario D prioritizing 
sustainability and environmental gains. Incorporating Social 
Cost-Benefit Analysis ensures both non-market and 
economic environmental values are integrated, aligning 
financial performance with sustainability objectives. 
 GA also allows for the investigation of complex and 
nonlinear relationships. It comes out as a viable methodology 
to achieve the desired goals for both economic and 
environmental performance. Genetic Algorithms (GA) 
support decision-making for retrofitting systems and 
selecting cost-effective abatement measures by optimizing 
multiple interdependent variables such as coal intensity, 
pollution abatement investment, GDP growth rate, and clean 
technology efficiency to maximize production efficiency and 
minimize environmental impact. By integrating GA with 
scenario-based evaluation, stakeholders can assess different 
economic and environmental policy options, compare trade-
offs, and select strategies aligned with sustainability goals 
and budget constraints. GA also enhances decision-making 
through its combination with Genetic Algorithms (GAs) are 

optimization techniques inspired by natural selection. They 
work by iteratively testing and refining potential solutions to 
find the most effective outcome for complex problems, such 
as improving coal energy production processes, quantifying 
economic returns, monetising environmental and health 
benefits, and identifying strategies that yield the highest net 
social benefit. Furthermore, sensitivity analysis conducted 
through GA highlights critical parameters—such as coal 
intensity and pollution control investment—guiding targeted 
interventions. Its ability to handle nonlinear, complex system 
interactions helps simulate realistic outcomes and avoid 
suboptimal decisions. Finally, GA's evolutionary, iterative 
nature ensures robust, globally optimal solutions, making it a 
powerful and flexible tool for optimizing retrofitting 
strategies and pollution abatement in coal energy systems. 

3.1.1 Boundary of the Analysis 

The system boundary for the increasing efficiency of coal 
energy production includes the specific processes and 
variables represented in the model. This study will consider 
everything related to coal supply, energy use, pollution 
produced, and associated economics. It comprises such 
variables as the demand for coal energy, coal production 
rates, the levels of environmental pollution-aide such as CO₂ 
emission, solid waste, and water usage-and the investments 
made in pollution control and technology. This boundary also 
incorporates innovations in coal mining technology, increases 
in energy demand, and coal intensity, production of energy 
per unit of coal consumed. Emphasizing these variables, this 
model seeks to solve such questions for the coal production 
process while minimizing environmental impacts in the 
research. 

The system boundary specifically excludes external factors 
that may have some function in coal formation but are beyond 
the capacity of coal production itself. Such factors include the 
pollution from coal combustion done by end-use sectors such 
as power plants and industrial processes; these are external 
factors considering the boundary. Also, the global coal price, 
international trade policies, and macroeconomic influences 
are considered indirect influences of the activities in the coal 
production process and have not been modelled in the study. 
Clearly defining the boundaries of this study thus directs the 
focus to the coal production cycle itself and its immediate 
implications for efficiency, economic outcomes, and 
environmental sustainability, which offers useful insights to 
be taken up in optimization strategies within the coal industry. 

3.1.2 Causal Linkages and Flowchart 
Representation 

It is critical to understand the causal linkages that define 
cause-and-effect relationships among various variables in the 
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system to maximize coal energy production efficiency. For 
instance, increased investment in pollution control 
technologies minimizes adverse environmental effects but 
also raises the cost of production. Likewise, variations in 
energy intensity (energy per unit of coal used) of coal will 
directly influence the volume of energy produced and the 
related environmental impacts of coal production. Causal 
relationships provide insight into the behaviour of the various 
variables as they interrelate within the coal production system 
and the effect these interactions exert on both efficiency and 
sustainability. 

In this research, causal linkages are depicted using a causal 
loop diagram, which graphically illustrates the feedback 
processes in the system. Positive feedback loops, like more 
investment in high-tech technology resulting in greater 
efficiency and more investment, are differentiated from 
negative feedback loops, where reduced efficiency can result 
in increased costs or more pollution. Figure 2 depicts the 
casual loop representation. 

Figure 2: Causal Loop Representation of Primary 
System Variables 

3.1.3 Initial Variable Settings 

The study's starting variable parameters rely on Provisional 
Coal Statistics 2022-2023, which have all the necessary 
information regarding energy consumption, levels of 
production, and other main parameters. The settings establish 
a base for coal energy production efficiency assessment and 
its economic and environmental implications [30]. The 
variable settings are given in Table 1. 

Table 1: Variable Settings 

Cause Variable Effect Variable Type of 
Relationship 

Coal Production GDP Positive (+) 

GDP Coal Production Positive (+) 

Coal Production Pollution Levels Positive (+) 

Pollution Levels Pollution Abatement Investment 
(RPAI) 

Positive (+) 

Pollution Abatement Investment 
(RPAI) 

Pollution Levels Negative (-) 

Coal Intensity (CI) Coal Production Positive (+) 

Coal Production Coal Intensity (CI) Positive (+) 

Investment in Coal Mining (ICI) Coal Production Positive (+) 
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Key Variables and Initial Settings 

The energy production efficiency model from coal is a 
platform to assess variables like coal output, pollution, and 
GDP. The grounding for these or any other variables would 
be historical data from 2012 through 2022 collected from 
government publications and energy yearbooks. Such figures 
have to do with levels of coal output, pollution from mining 
activities, and usually GDP at constant prices. These initial 
values have been the basis for the model's simulation and 
optimization. Data on coal production includes coking and 
non-coking, symbolizing different mining methods employed 
and, thus, energy yields. The proposed approach combines 
Genetic Algorithms (GA) with Social Cost-Benefit Analysis 
(SCBA) to enhance coal energy production efficiency while 
minimizing environmental impacts, particularly CO₂ 
emissions. GA optimizes variables such as coal intensity, 
pollution levels, GDP growth, and investments in technology. 
The method identifies optimal combinations that improve 
production efficiency and reduce pollution by simulating 
different scenarios. Key GA parameters—population size 
(50-1000), crossover rates (60%-80%), mutation rates (1%-
5%), and selection mechanisms (like an elitist roulette 
wheel)—are crucial for performance enhancement. The 
population comprises random solutions (chromosomes), and 
crossover merges parental genetic material to produce 
offspring, while mutation prevents local optima. A fitness 
function evaluates solutions, seeking to align simulations 
with reality, thus ensuring a balanced strategy that supports 
economic viability and environmental sustainability through 
scenario analysis of pollution investment and technology 
adoption. 

Key Economic and Environmental Parameters 

• The initial values for coal production include the
total production and dispatch data, which are reported yearly
by agencies such as CIL and public/private companies. As per
data for 2022, the total coal production was 893.19 million
tonnes, growing 14.77% over the previous year. India's GDP,
which drives coal demand, has also grown.
• Data on pollution, such as the amount of waste
produced per million tonnes of coal mined, is handed down
from environmental yearbooks. Pollution effects are closely
related to mining activities' intensity and advancement in
pollution abatement technology. It presumes that initial
values rely upon historic pollution trends and the pace of
investments in pollution control.

Static Parameters 

Some parameters in the model have been kept static due to 
little or no established variation over time. 

• The Pollution Abatement Investment Ratio, set at an
average of 0.061 per cent, was based on historical trends. It is
the amount of GDP earmarked for pollution control in coal
mining operations.
• Coal Intensity is calculated as the average of coal
energy consumption and GDP over 2012-2022, established at
0.1267 million tonnes per billion GDP.
• Mining Productivity, set at 98.78 per cent, is a
measure of the effectiveness of coal mining based on
historical data.

Dynamic Parameters to be Optimized 

These six auxiliary variables to be optimized using GA are 
highly important in affecting the efficiency of the model:  

• Investment in the coal mining industry describes the
investment needed to sustain an increase in coal production
capacity. This shall vary dynamically with demand and
production expenditure.
• Pollution abatement efficiency tracks the efficiency
of pollution control measures. Its initial value is the present
capability of implementation standards within coal industries.
• Technological progress in mining is the rate at which 
technology advances in mining methods and pollution control
technology. This parameter is assumed to vary gradually due
to ongoing technological improvements in mining.

3.1.4 Optimization of Parameters Using GA 

GA is now utilized to optimize parameters in selecting those 
production parameters that minimize the environmental 
impact while maximizing the efficiency of coal production. 
Genetic Algorithms (GAs) are optimization techniques 
inspired by natural selection. They work by iteratively testing 
and refining potential solutions to find the most effective 
outcome for complex problems, such as improving coal 
energy production processes. It imitates the natural selection 
procedure to assess different parameter combinations such as 
coal intensity, pollution levels, and investment in pollution 
control measures. Realtime chromosomes represent these 
parameters, each comprising 18 real number variables in 
various confines. The ungainliness function drives the 
optimization process through selection, crossover, and 
mutation operations. GA continues to evolve the population 
very close to it, enhancing coal energy production and 
ensuring sustainability and cost-effectiveness. Ultimately, it 
will assist in designing a balanced strategy optimizing 
economic performance and environmental impact on coal 
production. Genetic Algorithms (GA) enhance coal energy 
production by mimicking natural evolution to boost economic 
and environmental performance. Key variables, including 
GDP growth rate, coal intensity, and clean technology 
efficiency, are represented as chromosomes with 18 
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parameters. The optimization process incorporates genetic 
operators like elitist roulette wheel selection, arithmetic 
crossover, and mutation. A fitness function minimises errors 
between simulated and historical data regarding coal 
production and pollution levels. Four scenarios (A to D) 
analyze the impacts of varied growth rates and policies on 
coal efficiency and emissions. Scenario D yields the best 
environmental and social advantages despite higher 
investments. GA optimization achieved a fitness score of 
40.8, raising efficiency by 18%, cutting annual pollution by 
550 tons, and increasing NPV from 7,500 to 10,000 million 
Yuan. GAs are essential for balancing economic growth with 
sustainability, influencing policy-making, industrial 
practices, and global environmental goals. 

The optimization process for enhancing coal energy 
production efficiency employs Genetic Algorithms (GA) for 
parameter optimization, considering economic and 
environmental impacts. GA mimics natural selection and 
identifies optimal variable combinations such as GDP growth 
rate, coal intensity, pollution control investments, and clean 
technology efficiency. A critical component is the fitness 
function, which evaluates parameter performance by 
comparing simulated outcomes with real-world data, aiming 
to minimize errors in predictions regarding coal production, 
pollution, and economic indicators. Key genetic operators—
selection, crossover, and mutation—are utilized: elitist 
roulette wheel selection chooses solutions based on fitness, 
crossover merges features from parent solutions to create 
offspring, and mutation introduces random changes for 
diversity. The model incorporates dynamic variables, 
optimizing them to enhance efficiency while reducing 
environmental impact. Four scenarios are analyzed: Scenario 
A (baseline), Scenario B (optimistic policy), Scenario C 
(energy efficiency improvements), and Scenario D (transition 
to sustainable energy). A SCBA evaluates the economic 
implications of these scenarios, highlighting trade-offs 
between pollution control expenses and improved 
environmental outcomes. The GA optimisation results 
maximise economic and environmental benefits, with 
sensitivity analysis identifying key parameters influencing 
performance. This methodology thus offers strategies for 
improving coal production efficiency while balancing 
economic growth and environmental sustainability, ensuring 
that optimized solutions contribute to pollution reduction and 
long-term ecological well-being. 

Coding 

Real coding is utilised to encode the variables to optimise the 
efficiency of coal energy production. The reason behind 
this technique is to support quicker convergence and dealing 
with continuous variables, making it most suitable 
for the parameter optimization of the model. 
Real-coded chromosomes are denoted as vectors, each 
with 18 real-number variables representing the coal 
energy production system parameters. Encoding limits are 
specified as [10, 100] 

for all the parameters to maintain all the parameter values 
within viable operating ranges. The coding approach helps 
maintain simplicity for GA to search and optimize the 
parameters without imposing redundant complexity. The 
selection of a real-coded Genetic Algorithm (GA) for 
enhancing coal energy production efficiency is based on 
several advantages. It naturally accommodates continuous 
variables like coal intensity and pollution levels, avoiding 
binary conversion. Real-coded GAs also demonstrate faster 
convergence, which is essential for complex systems needing 
precise solutions. This method offers enhanced precision, 
enabling minute adjustments that significantly impact 
economic and environmental outcomes. Moreover, real-
coded GAs facilitate the implementation of crossover and 
mutation operations efficiently, using arithmetic crossover to 
explore the solution space while maintaining parameter 
validity. Their flexibility addresses the nonlinear 
interdependencies of coal production parameters, optimizing 
the system effectively in complex landscapes. 

Fitness Function 

The fitness function is a key factor in the GA's capability to 
identify the best solution. For the case of coal energy 
production efficiency, the fitness function is formulated to 
reduce the discrepancies between simulated model outputs 
and past real-world data. The fitness value is proportional to 
the inverse of the total errors related to major system variables 
like coal production, pollution levels, and economic 
indicators. In particular, the fitness function is given by Eq. 
(1): 

 fitness = 1
𝑒𝑒𝑒𝑒1+𝑒𝑒𝑒𝑒2+𝑒𝑒𝑒𝑒3+𝑒𝑒𝑒𝑒4+𝑒𝑒𝑒𝑒5+𝑒𝑒𝑒𝑒6

(1) 

Where: 

er1: Average relative error of coal production increase per 
billion investments, 

er2: Average relative error of pollution attributable to coal 
production, 

er3: Average relative error of pollution abatement per billion 
investments, 

er4: Average relative error of the pollution effect factor of 
coal production cut, 

er5: Average relative error of pollution abatement technology 
progress factor, 

er6: Average relative error of the investment in the coal 
mining industry. 
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This process helps to ensure that the GA adjusts the system 
so closely to reflect historical data to enhance the prediction 
accuracy of coal production efficiency with minimal 
environmental and economic mistakes. 

Genetic Operators 

• The selection mechanism in GA uses the elitist
roulette wheel algorithm. This algorithm chooses individuals
based on their fitness values, and the most fit solutions are
copied to the next generation. The rest of the individuals are
chosen probabilistically through the roulette wheel method.
This ensures diversity in the population while keeping the
best solutions.
• The crossover process in real-coded GA merges two
parent solutions to produce offspring. In real coding, the 
crossover process is generally arithmetic, where offspring are 
produced as linear combinations of parent solutions. This 
enables the algorithm to search new areas in the solution 
space by combining successful features from both parents. 
This process improves the exploration of potential solutions 
without overfitting the existing population. 
• Mutation in a GA adds randomness to the process to
avoid the algorithm being trapped in suboptimal solutions. In 
real-coded GA, mutation randomly changes the value of a 
variable within a given range. It is achieved by picking a 
variable from the parent solutions and giving it a new value 
within a predefined interval. This stochastic flip preserves 
genetic diversity in the population so that the algorithm 
searches over a larger solution space. Through this, mutation 
guarantees that the GA will keep sssearching for the optimal 
solution and not converge prematurely on local optima. 

GA efficiently optimizes the major parameters affecting coal 
energy production, economic effect, and environmental 
sustainability through these processes. The process continues 
until the optimal solution converges to ensure that the 
optimized parameters give maximum efficiency in coal 
energy production with the lowest cost and environmental 
effect. 

Pseudocode 1: Genetic Algorithm 

Initialize the population with random solutions 
(chromosomes) with 18 real-number variables 
(parameters) 

 Define encoding limits for all parameters: [10, 100] 

Set GA parameters 

For each generation from 1 to max generations 

    Calculate the fitness value for each individual in the 
population using the fitness function 

   Select individuals for mating: 

       Use the elitist roulette-wheel selection method to 
choose the fittest individuals 

       Copy the top 10% directly to the next generation 

       Select remaining individuals probabilistically using 
the roulette-wheel method 

    Perform crossover to create offspring: 

       Apply arithmetic crossover to combine genes of parent 
solutions and create new offspring 

       Add offspring to the next generation pool 

       Apply mutation to introduce randomness: 

       Randomly change the value of a variable in the 
offspring within the encoding limits 

       Preserve genetic diversity in the population 

    Evaluate the new population and update the generation 

After reaching max generations or convergence 

    Select the best solution (chromosome) with the highest 
fitness value 

    Extract optimized parameter values 

Output the optimized parameter values and final fitness 

3.2 Scenario Analysis 

The scenario analysis would analyse the effects that coal 
energy production will incur from different values of 
economic growth, the intensity of coal used, and 
environmental policies. Through this scenario analysis, one 
can understand the possible effects of different strategies and 
guide the decisions of policymakers and industry leaders. It 
also shows how changes in the three factors could greatly 
affect the efficiency of coal production and its environmental 
footprint, thereby moving the development of energy 
production into a much more sustainable and effective 
circuitry. 
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3.2.1 Designing the Scenarios 

The scenario analysis aims to analyse the economic and 
environmental effects of different coal production and energy 
efficiency enhancement strategies. To this end, the following 
are chosen as scenario variables: GDP growth rates 
(GRDPG), CI, pollution generated per million tonnes of coal 
production (APPCP), and the ratio of pollution abatement 
investment in the coal mining sector (RPAI). The four cases 
for the coal energy production system are organized as 
follows: 

Scenario A (Baseline Scenario) 

This case assumes a constant continuation of existing 
policies. The GDP growth rate is kept at 8% between 2022 
and 2030. The coal intensity is kept constant at 0.127 million 
tonnes/billion Yuan RMB and the pollution generated per 
tonne of coal produced is taken to be 0.339 t. The investment 
in abatement of coal pollution is kept constant at 0.061% of 
GDP. This situation addresses continuing current coal 
production techniques and resultant pollution levels. 

Scenario B (Optimistic Policy Scenario) 

In these assumptions, the GDP growth rate is taken to be 7%, 
slightly lower to reflect economic conditions at the global 
level. Coal intensity is lowered to 0.115 million tonnes/billion 
Yuan RMB to reflect a change in technology using cleaner 
coal. The pollution per tonne of coal was reduced to 0.305 t 
with clean coal technologies and the advancement in 
production processes. Investment in pollution abatement 
technologies increases to 0.070% of GDP, up 10% from the 
baseline. 

Scenario C (Aggressive Energy Efficiency 
Improvement) 

This case presumes a more vigorous policy towards 
increasing coal production efficiency. The GDP growth rate 
remains at 6%, with more weight given to the decrease in coal 
intensity, which falls to 0.100 million tonnes/billion Yuan 
RMB. Pollution per tonne of coal is also reduced further to 
0.271 t, representing the successful application of improved 
pollution control. The investment ratio for coal pollution 
abatement increases to 0.075% of GDP, a 15% increment 
from the baseline scenario. 

Scenario D (Transition to Sustainable Energy) 

The emphasis is on shifting to cleaner and more sustainable 
coal production processes. The GDP growth rate is 5%, 
representing a more sustainable and low-growth economic 

scenario. Coal intensity further reduces to 0.090 million 
tonnes/billion Yuan RMB, and the pollution generated per 
tonne of coal produced reduces to 0.250 t due to the extensive 
use of cleaner technologies. Investment in pollution 
abatement increases to 0.080% of GDP, a 20% increase from 
the baseline. 

These four cases provide good examples of the levels of 
influence that technological innovation, policy initiatives, 
and economic conditions had on efficiency in coal energy 
production and the consequences of this production, both 
economic and environmental. In each of these cases, the 
prospective ability of different policies to mitigate the 
adverse environmental impacts of coal production while 
promoting economic development is learned. 

3.3 Economic Impact Assessment Using 
SCBA with Environmental Impact Valuation 

The SCBA with environmental impact valuation represents a 
rather encompassing mechanism of evaluating the total 
economic impacts of the coal energy production efficiency 
improvement strategy, incorporating an integrated GA 
technique. Social Cost-Benefit Analysis (SCBA) is a method 
used to evaluate the overall economic value of a project by 
comparing its total expected benefits to its total expected 
costs, including environmental and health impacts. This 
approach does not only envisage the monetary aspects of the 
coal energy production efficiency improvements but also 
includes the social and environmental costs and benefits 
assumed with the transfers to sustainable coal production 
methods. Environmental factors included in this valuation 
were pollution control costs, greenhouse gas emission 
reductions, and health benefits attributable to better air 
quality, and hence, SCBA provides a wider view of the 
economic implications of improving coal production 
efficiency. The Social Cost-Benefit Analysis (SCBA) is 
essential for evaluating coal production efficiency within 
Genetic Algorithms (GA), merging economic and 
environmental evaluations. It examines direct economic 
factors like net present value (NPV) and total annual savings. 
It also assesses pollution reduction, carbon offsets, and health 
benefits, thereby addressing external costs often missed in 
standard analyses. SCBA enhances decision-making via 
scenario and sensitivity analyses, pinpointing vital 
parameters such as GDP growth, coal intensity, and pollution 
investment. It monetizes environmental benefits to compare 
costs and benefits effectively. When combined with GA, 
SCBA identifies optimal economic and environmental 
combinations, promoting coal production strategies that are 
efficient, economically sound, socially responsible, and 
environmentally sustainable, aligning with sustainable 
development goals. 

Using the SCBA, one compares the total costs with the total 
benefits of a project or strategy with market and non-market 
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values. This will help decide whether the good resulting from 
improved coal energy production efficiency through the 
integration of GA outweighs the costs associated with the 
integration of GA. The analysis covers the direct economic 
costs and benefits and the indirect benefits of reduced 
pollution and increased public health. The Social Cost-
Benefit Analysis plays a pivotal role in evaluating the 
economic impact of the proposed Genetic Algorithm-based 
optimization strategy for enhancing coal energy production 
efficiency. SCBA extends beyond conventional cost-benefit 
frameworks by incorporating market-based factors and non-
market impacts, such as environmental degradation and 
public health outcomes. Within this GA-integrated approach, 
SCBA assesses direct economic costs like investments in 
clean coal technologies and pollution control measures, while 
also quantifying broader societal benefits, including reduced 
pollution levels, improved air quality, and associated health 
improvements. It uses environmental valuation techniques 
such as avoided cost methods and willingness-to-pay 
estimates to assign economic value to reductions in emissions 
and environmental harm. The analysis is tightly interwoven 
with the GA framework by influencing the fitness function, 
ensuring that economic and ecological sustainability are key 
optimization objectives. Moreover, SCBA facilitates 
comparison across multiple policy scenarios—ranging from 
high GDP growth with minimal environmental intervention 
to more sustainable, low-growth alternatives—by measuring 
total social benefits against total social costs. This enables a 
comprehensive understanding of economic development and 
environmental protection trade-offs. For instance, while 
Scenario A provides significant economic gains, Scenario D 
yields the highest environmental and public health benefits. 
Through this integrative role, SCBA validates the real-world 
feasibility of the GA-optimized solutions by ensuring that 
proposed efficiency improvements deliver tangible social and 
economic value, thereby serving as a crucial tool for guiding 
policy decisions in the coal energy sector. 

The principle of the SCBA is that TSB is compared with TSC 
in terms of implementing improvements in coal energy 
production, and it is given in Eq. (2):  

 Net Benefit (NB) = TSB −  TSC 
(2) 

The calculation of TSB is based but is not limited to, the 
following Eq. (3): 

𝑇𝑇𝑇𝑇𝑇𝑇 = ∑  𝑛𝑛
𝑡𝑡=1 � Benefit 𝑡𝑡 × 1

(1+𝑟𝑟)𝑡𝑡
� 

 (3) 

Environmental valuation methods, such as contingent 
valuation, avoided cost, or willingness-to-pay, have been 
used to assess the benefits of much lower pollution levels and 
concomitant health improvements. In this instance, it is 
assumed that reducing health costs determines the value of 

pollution reduction, avoided damages to the environment, and 
the value of clean air. This is given in Eq. (4). 

𝐸𝐸𝐸𝐸 =
∑  𝑛𝑛
𝑡𝑡=1 ( Pollution Reduction 𝑡𝑡 ×  Value per Ton of Emission Reduced )

(4) 

Environmental costs include all the costs incurred in the 
abatement of pollution, such as investment in clean coal 
technologies, installing pollution control systems, and waste 
management. Environmental costs are to be brought into the 
SCBA model. It is given in Eq. (5). 

 Environmental Cost =
∑  𝑛𝑛
𝑡𝑡=1 � Pollution Control Investment 𝑡𝑡 × 1

(1+𝑟𝑟)𝑡𝑡
�  

(5) 
The integration framework combines Genetic Algorithm 
(GA) optimisation with Social Cost-Benefit Analysis 
(SCBA) to assess economic and environmental costs and 
benefits. Economic costs comprise capital investments in coal 
production expansion, operational expenses, and pollution 
abatement. At the same time, benefits are derived from 
increased net present value, annual savings, and GDP growth 
from enhanced efficiency. Environmental costs include 
emissions, cleaner technology implementation, land and 
water use, and waste management, with benefits quantified 
through avoided costs and health-related savings. The SCBA 
framework determines if social benefits surpass costs by 
evaluating direct economic returns and indirect 
environmental gains. Scenario analysis reveals trade-offs 
between economic performance and environmental 
protection; higher GDP growth often leads to greater 
economic benefits but raises environmental costs. Sustainable 
scenarios with investments in cleaner technologies yield 
better environmental outcomes, albeit with slower economic 
returns. Sensitivity analysis highlights crucial parameters for 
informed decision-making in coal energy strategies. 

Incorporating GA into the SCBA 

Environmental expenses are pollution control expenses, e.g., 
investments in clean coal technology, pollution control 
equipment, and waste disposal. These expenses need to be 
included in the SCBA model in Eq. (6): 

 Maximize Net Benefit =
𝑓𝑓 (Production Efficiency, Pollution Reduction, Cost Control) 

(6) 

4. Results and Discussion

The results section presents the outcomes of the optimization 
process using GA to improve coal energy production 
efficiency, focusing on economic and environmental factors. 
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4.1 GA Optimization Results 

A GA was used to optimize and enhance the efficiency of coal 
energy production. The maximum generation, an optimal 
value of 40.80 of fitness, is obtained; it is an optimized 
solution concerning coal production efficiency and economic 
effects. The fitness function measures the differences 
between simulated and actual data and touches upon critical 
issues, such as coal production efficiency, pollution levels, 
and investment ratios. It is essential for GA's capabilities to 
reduce error, allow the model to imitate realistic operational 
scenarios, and lift performance. 

The following average relative errors were calculated for the 
model: er1 = 0.0043, er2 = 0.0270, er3 = 0.0448, er4 = 
0.0264, er5 = 0.0721, and er6 = 0.0705. These represent the 
difference between the simulated and historical values in 
different model variables. The MAPE over all parameters 
comes out to 8%, a figure that can be regarded as acceptable 
and represents a high accuracy of forecasts. Optimization 
results establish the model to balance efficiency and accuracy 
and confirm its consistency in simulating coal production 
given economic and environmental factors. The best fitness 
value is depicted in Figure 3. 

Figure 3: Best Fitness Value 

The optimal parameters for the optimal individual solutions 
in the GA model are values like x1 = 3.204, x2 = 52.655, x3 = 
227.98, and so on. These values are equivalent to key 
parameters in the coal energy production system, with the 
dynamics equations obtained by plugging the coded values 
into the system model. The model captures the nonlinear 
interactions between economic development, demand for 
coal energy, coal production, and environmental pollution 
load. The Genetic Algorithm (GA) is a method that combines 
several factors to enhance coal energy generation, tackling 
both economic and ecological issues. It employs an 
optimization method that adjusts to changing circumstances 
and interconnections, modelling factors such as GDP growth 
rate, coal intensity, pollution levels, and investments in 
pollution reduction technologies. By imitating natural 
selection processes such as selection, crossover, and 
mutation, GA can navigate the extensive search space formed 
by these interconnected variables, discovering the optimal 
combination to enhance efficiency while reducing 
environmental impact. The main benefit of GA is its capacity 
to manage nonlinear and dynamic interactions, guaranteeing 
optimal solutions for both ecological sustainability and 
economic objectives. By simultaneously tweaking various 
factors, GA guarantees ideal solutions for environmental 
sustainability and economic objectives, rendering it a 
valuable instrument for enhancing coal energy production 
and minimizing ecological effects. The model is 
demonstrated to be relatively insensitive and has strong 
behaviour, and thus, it can be easily adapted to variations in 
the major parameters. Scenario simulations may be 
conducted to test the influence of various production and 
pollution control strategies on the system, and this can be 
useful for policymakers and industry participants aiming to 
maximize coal energy production efficiency. The parameter 
setting of scenarios is given in Table 2. 

Table 2: Parameter Setting of Scenarios 

Scenario Average 
GRGDP (%) 

Average CI (million 
tonnes/billion Yuan) 

Average APPCP 
(million tonnes/tonne) 

Average RPAI (%) 

A 9 0.1267 0.3391 0.061 

A1 9 0.114 0.3052 0.067 
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A2 8 0.118 0.315 0.062 

A3 7.5 0.12 0.328 0.065 

B 8 0.114 0.3052 0.067 

C 7 0.1077 0.2882 0.071 

D 6 0.1014 0.2713 0.073 

The optimized values of key parameters relating to a coal 
energy production system and their significance are obtained 
through the GA optimization process, as listed in Table 3. In 
the table, the optimized coal production efficiency, coal 
intensity, pollution levels, and several important factors such 
as GDP growth rate, pollution abatement investment, and 
renewable energy conversion indicate these parameters' 
lower and upper limits. These values were chosen to represent 

a situation that maximizes economic and environmental 
objectives: energy-efficient and less polluting coal 
production. The information in the table thus indicates the 
directions in which optimization may be exerted concerning 
energy use, pollution control, and technology investments, 
revealing that a change in the value of the parameters studied 
has the potential to change the overall performance of the 
system. 

Table 3: GA Optimization Results for Key Parameters 

Parameter Optimized Value Lower 
Bound 

Upper 
Bound 

Units 

Coal Production Efficiency 3.204 1 10 Million tonnes 

Coal Intensity 52.655 0.1 100 Million 
tonnes/billion Yuan 

Pollution per Million Tonnes 227.98 100 500 Tons 

GDP Growth Rate 0.5206 0.1 10 Percentage 

Pollution Abatement 
Investment 

0.446 0.1 5 Percentage of GDP 

Investment in Technology 0.3061 0.1 5 Percentage of GDP 

Renewable Energy Utilization 1553.8 100 2000 MW 

Clean Technology Efficiency 0.1133 0.05 1 Percentage 

Pollution Abatement Rate 0.0278 0.01 0.1 Tons 
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The results of GA optimization for some economic and 
environmental indicators are given in Table 4, especially the 
raised optimization benefits. The optimized value shows a 
tremendous improvement from the old baseline as NPV 
advanced from 7,500 to 10,000 million Yuan, indicating 
higher profit favouring the coal production system. Though 
the total annual savings and environmental and economic 

benefits are greatly enhanced, pollution control improved 
from 200 to 500 tons, carbon offset increased from 0.1 to 0.2 
million tons, and energy efficiency improved from 40,000 
MWh to 50,000 MWh. The outcomes suggest that the 
optimization is very efficient in improving the financial 
performance of the coal production system and providing 
substantial environmental benefits concerning pollution 
control and energy efficiency. 

Table 4: GA Optimization Results for Economic and Environmental Indicators 

Indicator Optimized Value Baseline Value Units 

NPV 10,000 7,500 Million Yuan 

Total Annual Savings 500 350 Million Yuan 

Annual Environmental 
Benefits 

400 250 Million Yuan 

Annual Economic Benefits 500 400 Million Yuan 

Pollution Reduction (Tons) 500 200 Tons 

Carbon Offset (Million 
Tons) 

0.2 0.1 Million Tons 

Energy Efficiency (MWh) 50,000 40,000 MWh 

The sensitivity analysis results of the GA optimization under 
four different scenarios are given in Table 5, showing how 
the system performance likely responds towards the other 
parameters. Scenario A shows an extremely high sensitivity 
to coal intensity and pollution abatement. These two factors 
act as key drivers within the optimization process. Scenario 
B's sensitivity remains medium concerning coal intensity and 
pollution abatement. At the same time, it is extremely 
sensitive to clean technology investment, indicating more 

dominance of technology investments when compared with 
the previous case. Scenario C is observed to be highly 
sensitive to GDP growth and of medium sensitivity to other 
parameters. Scenario D generally displays low sensitivity 
towards other parameters, indicating a relatively stable 
response to input changes. These results assist in identifying 
the critical parameters controlling the optimization process 
for each considered Scenario, thus allowing concluding 
decisions regarding improving coal energy production 
efficiency. 

Table 5: GA Optimization Results for Sensitivity Analysis 

Parameter Scenario A Scenario B Scenario C Scenario D 

Sensitivity to Coal 
Intensity 

High Medium Low Low 
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Sensitivity to GDP 
Growth 

Medium Medium High Low 

Sensitivity to 
Pollution Abatement 

High Medium Medium High 

Sensitivity to Clean 
Technology 
Investment 

Low High Medium Low 

The GA optimization performance across four scenarios in 
Table 6 gives insight into trade-offs among investment, 
pollution reduction, and economic and environmental 
benefits. Scenario A, with an investment of 5000 million 
Yuan, is shown as the Scenario that achieves the largest 
pollution reduction of 500 tons with a benefit of 500 million 
Yuan, thereby achieving an efficiency improvement of 15%. 
Scenario B directly complies with the 4500 million Yuan 
investment, hence a reduction of only 450 tons in pollution 
and a small benefit of 450 million Yuan leading to only a 12% 

improvement in efficiency. Scenario C, with an investment of 
4000 million Yuan, leads to a substantial pollution reduction 
of 400 tons and 400 million Yuan benefit accruing to it with 
only 10% efficiency gained from it. Still, scenario D shows 
the highest environmental benefit at 450 million Yuan and 
550-ton pollution reduction with the optimal 18%
improvement with a high investment of 5500 million Yuan.
The results further illustrate the trade-off between
investments and outputs in terms of performance economic
and environmental.

Table 6: GA Optimization Performance 

Scenario Total 
Investment 

Pollution 
Reduction 

(Tons) 

Economic Benefit 
(Million Yuan) 

Environmental 
Benefit 

(Million Yuan) 

Final Efficiency 
Improvement 

(%) 

Scenario A 5000 500 500 400 15 

Scenario B 4500 450 450 350 12 

Scenario C 4000 400 400 300 10 

Scenario D 5500 550 550 450 18 

4.2 Scenario Results 

The coal production efficiency graph in Figure 4 represents 
how different rates of GDP growth affect the efficiency of 
coal production over four different scenarios, ranging from 
2022 to 2030. In Scenario A, there is a consistent growth in 
GDP from 5% to 8%, resulting in maximum growth in 
production efficiency, represented by the trend in the graph 
going upwards. Scenario B also traverses a parallel course at 

a lower 5% to 7% growth rate. Scenario C, with a growth rate 
from 5% to 6%, shows a steeper rise in efficiency. In contrast, 
at a flat 5% growth, Scenario D reflects the lowest level of 
improvement in coal production efficiency during the period. 
This development emphasizes how different levels of 
economic growth directly affect production efficiency, with 
the greatest developments being realized at higher growth 
rates. 
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Figure 4: Coal Production Efficiency Across Scenarios 

Coal intensity reduction and the simultaneous emulation of 
such activity on emissions moderated under four scenarios in 
the years 2022 to 2030, as in Figure 5. In scenario A, coal 
intensity increased from 0.127 to 0.090 million tonnes per 
billion Yuan, leading to larger overall emission reductions. In 
scenario B, coal intensity also decreased significantly, but the 
reduction was slower than in scenario A, with a decline from 
0.127 down to 0.100 million tonnes per billion Yuan. An 
intermediate reduction of 0.127 down to 0.095 million tonnes 
per billion Yuan in Scenario C produces a midrange emission 
reduction between that of Scenario A and Scenario B. No 
change in emissions was recorded in Scenario D, where the 
coal intensity remained constant at 0.090 million tonnes per 
billion Yuan. This graph states that coal intensity reduction 
and consequent emission reduction are invariably related, and 
the larger the reduction in coal intensity, the higher the 
emission reduction in the scenarios. 

Figure 5: Effect of Reducing Coal Intensity 

The progressively reduced pollution projection over multiple 
scenarios between 2022 and 2030 due to the rising investment 

in pollution abatement is given in Figure 6. Scenario A 
involves the respective investments rising from 0.061% to 
0.080% of GDP; hence, this represents steady efforts to 
mitigate pollution. However, on a much smaller scale, 
Scenario B similarly increases from 0.061% to 0.075% of 
GDP. Again, with an increase from 0.061% to 0.070% of 
GDP, Scenario C is indeed illustrative of gradual investment, 
but with the level of aggressiveness significantly lessened 
compared to A and B. Scenario D, conversely, attains a state 
of constant invested value at 0.080% of GDP: from 2022 to 
2030, there is no variability in abatement effort. The graph 
shows the strategic options available for coherently adjusting 
investments in pollution abatement in various scenarios, with 
higher levels of investment leading to more considerable 
actions being taken to reduce pollution. 

Figure 6: Impact of Increasing Pollution Abatement 
Investment 

The environmental impact of cleaner technologies in various 
scenarios, illustrating the shift in pollution from 2022 to 2030 
in tons per million tonnes of coal, is given in Figure 7. 
Scenario B shows a gradual reduction in pollution from 0.339 
to 0.305 tons per million tonnes of coal, indicating moderate 
improvements in cleaner technologies. Regulatory structures 
are vital for advancing cleaner technologies and improving 
coal production by influencing environmental effects and 
economic performance. They implement emission 
regulations and promote investments in pollution 
management and clean coal technologies via subsidies and 
tax breaks, driving industries towards sustainable methods. 
Higher spending on pollution control leads to significant 
environmental improvements. These frameworks also aid 
R&D and technological progress in mining and energy 
integration by employing tools such as Social Cost-Benefit 
Analysis (SCBA) to evaluate costs and benefits. They 
established goals for GDP expansion, pollution reduction, 
and energy efficiency, allowing policymakers to reconcile 
development with sustainability. By incorporating Genetic 
Algorithms (GA), these frameworks enhance essential 
parameters, transforming them into strategic tools for 
effective and sustainable coal production. A similar trend is 
portrayed for Scenario C, wherein pollution levels drop from 
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0.339 to 0.271 tons, thus indicating a more vigorous 
technological emphasis on pollution-control technologies. 
Finally, Scenario D shows a greater reduction of emissions 
from 0.339 to 0.250 tons, thus establishing the overall trend 
toward implementing extensive cleaner technologies. 
Overall, the graph displays the cleaner technology benefits in 
that, for the scenarios, the more extensive technological 
improvements that are into consideration now lead to 
enhanced reductions of pollution levels. 

Figure 7: Environmental Impact 

4.3 Economic Impact Assessment Results 

The social benefits and costs for various scenarios in Table 7 
show the trade-off between the investment into pollution 
control, environmental and economic savings, and the social 
costs attached. Scenario A has an investment in pollution 
control of between 0.061% and 0.080% of GDP, realizing 
environmental savings of 400 million Yuan and economic 
savings of 500 million Yuan, yielding a net social benefit of 
450 million Yuan. Scenario B invests marginally less 
(0.061% to 0.075%) and has lesser savings and lower social 
benefits, bringing about a net social benefit of 400 million 
Yuan. Scenario C, with an investment of 0.061% to 0.070% 
GDP, goes further down in savings. Scenario D has the 
highest pollution control investment of 0.080% of GDP and 
generated the highest environmental and economic benefits, 
550 million Yuan net. The table suggests that with higher 
investments in pollution control, higher social and 
environmental benefits arise, especially optimal in Scenario 
D, whereas their increasing investments cause increasing 
social costs. 

Table 7: Social Benefits and Costs 

Category Scenario A Scenario B Scenario C Scenario 
D 

Pollution Control 
Investment 

0.061% to 
0.080% of GDP 

0.061% to 
0.075% of GDP 

0.061% to 
0.070% of GDP 

0.080% of 
GDP 

Annual Environmental 
Savings (Million Yuan) 

400 350 300 450 

Annual Economic Savings 
(Million Yuan) 

500 450 400 550 

Social Cost (Million Yuan) 5000 4000 3500 6000 

Net Social Benefit (Million 
Yuan) 

450 400 350 550 

Carbon Offset (Million 
Tons) 

0.2 0.18 0.15 0.25 

Health Benefits (Million 
Yuan) 

200 180 150 250 
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The environmental impact evaluation of different scenarios in 
comparison with parameters covering climate change 
potential, ozone depletion potential, human toxicity potential, 
freshwater usage, land use, and air pollution is given in Table 
8. Scenario A proves to have the highest values in most
categories: in terms of climate change potential, it is valued
at 0.2; ozone depletion potential, damped up to 0.05; and air
pollution amounts to 500 tons, suggesting a higher
environmental impact. The environmental impact decreases
as pollution control measures increase in subsequent
scenarios. Scenarios B and C show reductions in the impact

categories, with a notable decrease in climate change 
potential and air pollution, reflecting improved cleaner 
technologies and energy efficiency. Scenario D, with the 
most significant environmental measures, results in the 
lowest values for climate change potential (0.05), ozone 
depletion potential (0.01), and air pollution (200 tons), 
demonstrating the greatest environmental benefit. These 
results highlight the positive effects of enhanced pollution 
control investment and the adoption of cleaner energy 
technologies in reducing environmental burdens across 
different scenarios. 

Table 8: Environmental Impact Valuation for Different Scenarios 

Impact Category Scenario A Scenario B Scenario C Scenario D 

Climate Change Potential (CCP) 0.2 0.15 0.1 0.05 

Ozone Depletion Potential (ODP) 0.05 0.04 0.03 0.01 

Human Toxicity Potential (HTP) 0.1 0.08 0.05 0.03 

Freshwater Usage (m3) 10,000 8,000 7,000 6,000 

Land Use (ha/year) 50 40 30 20 

Air Pollution (Tonnes) 500 400 350 200 

The sensitivity analysis of core parameters in Table 9 
presumably oscillates across scenario functions about 
pollution abatement investment, coal intensity, and GDP 
growth rate. Scenario A, with an 8% GDP growth rate and a 
range of pollution abatement investments (0.061-0.080%), 
gave signs of high sensitivity to GDP growth, indicating that 
economic forays consolidate growth strategies through 

effective negotiation with the coal production regime. 
However, Scenario B, with a slightly lower GDP growth rate 
of 7%, did moderate sensitivity on GDP growth and pollution 
abatement, coupling the two environments further. In 
Scenario C, the lowered GDP growth rate of 6% is spiked by 
sensitivity toward pollution abatement investment and, 
hence, the growing requirement for greater investment in 
emission reductions. 

Table 9: Sensitivity Analysis of Key Parameters 

Parameter Scenario A Scenario B Scenario C Scenario D 

Pollution Abatement 
Investment 

0.061% to 
0.080% 

0.061% to 
0.075% 

0.061% to 
0.070% 

0.08% 
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Coal Intensity 0.127 to 0.090 0.127 to 
0.100 

0.127 to 
0.095 

Constant 
0.090 

GDP Growth Rate 8% 7% 6% 5% 

Sensitivity to GDP Growth High Medium Low Low 

Sensitivity to Pollution 
Abatement Investment 

Medium Medium High High 

4.4 Discussion 
Impact of Pollution Abatement Investment 

The findings reveal that elevated amounts of pollution 
abatement investment led to a good reduction in pollution, 
particularly surrounding Scenarios C and D, where the high 
investments strongly impact. Scenarios A and B show 
moderate sensitivity to investment, with Scenario B less 
responsive to increased investment owing to other factors' 
impact. Data availability and computational resources are two 
primary challenges in applying Genetic Algorithms for 
optimizing coal energy production. The first challenge 
revolves around the quality and accessibility of essential 
data—such as coal intensity, GDP growth rates, pollution 
levels, and investment in pollution control—needed for 
parameter optimization. Acquiring consistent and accurate 
data is often difficult, especially with complex and varying 
long-term trends influenced by external factors like political 
changes and market fluctuations. The second challenge 
pertains to GA's high computational demands, particularly 
when optimizing complex systems with multiple variables 
and constraints. Factors like energy efficiency, pollution 
control, and technology adoption necessitate significant 
computational power for realtime simulations and 
optimizations. Addressing these challenges is critical for 
enhancing the scalability and applicability of GA in coal 
energy production, necessitating innovative solutions for both 
data acquisition and computational efficiency. 

Effect of Coal Intensity 

Reducing coal intensity produces lower emissions with the 
most significant improvement displayed in Scenario A. In 
Scenarios B and C, lowering coal intensity continues to 
achieve satisfactory emissions reductions, while Scenario D 
keeps intensity constant to achieve sustainability. The 
proposed method uses a Genetic Algorithm (GA)-based 
optimisation framework, highlighting how investments in 
pollution control significantly affect coal production costs, 
emissions, and energy efficiency. Increased investments lead 
to higher initial and operational costs; for instance, Scenario 
D, which allocated 0.080% of GDP for pollution abatement, 
resulted in the highest social cost (6000 million Yuan) but 

achieved notable pollution reduction (550 tons) and the best 
net social benefit (550 million Yuan). This indicates that 
elevated upfront costs can yield long-term economic returns 
and reduced externalities, making investment worthwhile. 
Notably, increased spending on pollution control consistently 
led to meaningful emissions reductions, with enhanced 
carbon offsets (e.g., 0.25 million tons in Scenario D). Cleaner 
technologies, funded by greater investments, significantly 
reduced pollutants like CO₂, improving air quality and public 
health. Energy efficiency rose from 40,000 MWh in the 
baseline scenario to 50,000 MWh post-optimization, with 
Scenario D showing an 18% efficiency increase—the highest 
among all scenarios. The findings emphasize the trade-off 
between economic growth (Scenario A) and environmental 
health (Scenario D), underscoring the necessity of balancing 
economic expansion with sustainability. 

Influence of GDP Growth Rate 

Scenario A depicts an above-average economic growth, 
based on which it estimates desirable performance regarding 
coal production efficiency, although facing challenges to 
balance increased growth with the environmental goals. In 
contrast, Scenario D's low GDP growth dominates to more 
sustainability and cares less about economic growth 
priorities. 

Overall Efficiency and Environmental Impact 

Scenario D would clean up the environment but invest 
heavily in cleaner technologies. Scenarios A, B, and C, in 
returning the balance between economic benefits and 
environmental damage, give Scenario A an edge in 
economics, but with greater pollution. 

The proposed method explores using Genetic Algorithms to 
optimise coal energy production, balancing economic and 
environmental impacts. It optimizes key factors such as GDP 
growth, coal intensity, pollution control investment, and 
clean technology efficiency, resulting in improved efficiency, 
reduced pollution, and better economic outcomes. Four 
scenarios were tested, from a baseline to aggressive energy 
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efficiency improvements, showing trade-offs between 
economic growth and environmental sustainability. Scenario 
A demonstrated higher economic benefits but increased 
pollution, while Scenario D focused on sustainability, 
reducing environmental impact but requiring higher 
investment in cleaner technologies. The GA optimization 
highlighted the importance of coal intensity reduction and 
pollution control investment in improving efficiency. These 
findings offer valuable insights for optimizing coal 
production strategies. 

5. Conclusion and Future Works

In conclusion, this study accomplished the research 
objectives defined earlier and demonstrated the effectiveness 
of GA in the optimization of coal energy production 
efficiency. The optimization process considered key 
parameters, such as coal intensity, GDP growth rate, pollution 
abatement investment, and clean technology efficiency. The 
results showed that investments in pollution control and 
cleaner technologies significantly improved coal production 
efficiency and environmental sustainability. Scenario 
analysis further extolled a trade-off between economic 
growth and environmental damage. Thus, higher GDP growth 
yielded greater economic returns at the expense of increased 
pollution, while more sustainable growth scenarios provided 
larger environmental benefits with moderate costs to the 
economy. The economic impact assessment showed 
increased improvements in both economic and environmental 
conditions, with significantly lower emissions, higher energy 
efficiency, and greater economic benefits. The sensitivity 
analysis helped guide decision-making toward alternatives to 
coal energy production through additional insights on the 
distortions in optimizing outcomes via adjustments in several 
parameters. These findings would be salient to decision-
makers from-the-government and thus industry, as it opens 
avenues for people to strike a balance between economic 
growth and environmental sustainability in coal energy 
production. While this study has succeeded in a wider 
understanding of coal production efficiency and its economic 
and environmental implications, future research can explore 
incorporating additional variables, including advancements 
in renewable energy technologies and detailed 
socioeconomic considerations. 

Furthermore, the scalability of the optimization model should 
be evaluated against real coal production sites for practicality 
in scaling applications. Future studies may also focus on more 
extended remarks on switching to cleaner coal production 
technologies, including financial and logistics challenges that 
would align with wide-scale implementation. To conclude, 

the integration of GA in coal energy production processes 
could be further refined and expanded upon in future studies, 
while providing an excellent opportunity for improving 
efficiency in any form of environment. 
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