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Abstract 

INTRODUCTION: This paper examines the stability of small disturbances in wind farm grid-connected systems within the 
framework of power system resilience. With increasing renewable integration, minor disturbances can escalate into 
cascading failures, threatening grid reliability. 
OBJECTIVES: The goal is to build a short-term voltage prediction model by integrating Topological Data Analysis (TDA) 
with Deep Belief Networks (DBN) and to propose a coordinated reactive power control strategy that enhances system 
dynamic performance under small disturbances. 
METHODS: The study adopts a VSC-HVDC system based on Modular Multilevel Converters (MMC) to model wind farm 
connectivity. A cluster-based reactive power control approach is applied by grouping wind turbines with similar operational 
characteristics. Small disturbance signals are simulated, and both unified and decentralised Doubly Fed Induction Generator 
(DFIG) control schemes are compared using impedance modelling and time-domain analysis. 
RESULTS: Simulations indicate that small AC-side disturbances have a significant impact on reactive power and system 
voltage, whereas DC-side faults affect frequency stability. The decentralised DFIG coordination strategy achieved a lower 
network loss (0.467 MW) compared to the unified approach (0.473 MW) while also improving reactive power allocation 
and system responsiveness. 
CONCLUSION: By combining TDA and DBN with decentralised control, the proposed model enhances the stability of 
small disturbances in wind-integrated power systems. It enhances fault tolerance, mitigates power fluctuations, and facilitates 
the resilient operation of renewable-rich grids. 
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1. Introduction

The global push towards carbon neutrality and the 
widespread adoption of renewable energy has led to an 

unprecedented transformation of modern power systems. 
Among various renewable sources, wind power has emerged 
as a leading alternative to fossil fuel-based electricity 
generation due to its scalability and environmental benefits 
[1,4,5]. Wind and solar renewable energy sources impact 
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small-signal stability in power grids due to their variable 
output and reliance on power electronic converters, which 
reduce system inertia and damping. Wind farms using MMC-
based VSC-HVDC systems are particularly sensitive to small 
disturbances that affect voltage, reactive power, and 
frequency stability. Decentralised reactive power control and 
impedance-based stability models enhance dynamic 
performance and improve fault tolerance. Integrating 
topological data analysis with deep learning enhances short-
term voltage prediction and stability management. Similarly, 
solar PV systems face stability challenges from inverter 
dynamics and fluctuating irradiance, requiring advanced 
control strategies to maintain grid reliability. As a result, the 
integration of large-scale wind farms into transmission 
networks has become a central component in the evolution of 
power grid infrastructure [3,9]. However, this paradigm shift 
introduces significant challenges concerning the operational 
stability, reliability, and resilience of the power grid—
particularly under small disturbance scenarios that may 
trigger cascading failures in wind-rich systems [8,16]. 
Alagarsundaram et al. (2024) [6] developed a load forecasting 
model that combines RBMs and Bi-GRUs to capture the 
temporal characteristics in power system data. Our work 
adopts their RBM-driven feature learning within Deep Belief 
Networks and integrates it with Topological Data Analysis to 
enhance short-term voltage prediction. This integration 
improves prediction precision and strengthens the assessment 
of power system resilience. 
Unlike conventional power generation, wind farms exhibit 
inherently variable and stochastic output characteristics 
driven by fluctuating wind speeds and environmental 
conditions [1,5]. Off-grid wind turbine accidents, although 
occurring locally, have far-reaching impacts on the power 
grid by inducing voltage instability, reactive power 
imbalances, frequency fluctuations, and dynamic oscillations. 
The interconnected nature of wind farms and their power 
electronics-based interfaces make the system sensitive to 
such faults. Without advanced decentralized control and 
predictive resilience assessment, these incidents risk 
escalating into larger grid disturbances, threatening overall 
reliability and power quality. Additionally, the widespread 
use of power electronic converters, such as Modular 
Multilevel Converters (MMC) in Voltage Source Converter-
based High Voltage Direct Current (VSC-HVDC) systems, 
alters the dynamic behaviour of wind-integrated networks [3, 
11]. These changes introduce complex electromagnetic and 
electromechanical interactions that reduce system inertia and 
damping, thereby increasing vulnerability to small-signal 
instabilities and subsynchronous oscillations [8,10]. Sub-
synchronous oscillation refers to slower-than-normal 

electrical oscillations that can cause mechanical stress and 
damage to equipment if not properly detected and controlled. 

Small disturbances—such as minor load fluctuations, 
localized faults, or temporary disconnections of generator 
units—may seem trivial in isolation. However, in highly 
interconnected wind farm systems, such events can propagate 
and amplify, causing dynamic instability or even large-scale 
blackouts [2,3,16]. Existing methods for stability analysis, 
particularly time-domain simulations, while accurate, are 
computationally intensive and limited in their ability to 
provide real-time operational insights [19]. Moreover, many 
current reactive power control strategies employ centralised 
or unified schemes, assuming homogeneous turbine 
behaviour, which overlooks the heterogeneity of wind farm 
topologies, geographical dispersion, and dynamic 
characteristics [4,5,7]. This limits the system's responsiveness 
and adaptability under disturbance conditions [20]. Nelson et 
al. (2024) [15] present a hybrid forecasting model combining 
ARIMA with Bi-GRU to improve time-series predictions. 
Their hybridization concept is leveraged in this research by 
integrating topological insights through TDA with deep 
learning via DBN for voltage prediction. This synergy 
enhances forecasting precision by capturing both the network 
topology and temporal trends that contribute to power system 
resilience. 

In response to these challenges, researchers have proposed a 
range of solutions, including reactive power compensation 
using Static VAR Compensators (SVC), On-Load Tap 
Changers (OLTC), and improved converter control strategies 
[4,5]. Advanced modelling approaches, such as impedance-
based stability analysis and small-signal eigenvalue 
computation, have also gained traction [3, 11]. However, 
these methods often rely on idealised assumptions, lack 
scalability for large multi-unit systems, or require precise 
model parameters that may not be available in real-world 
applications [16, 17]. Our proposed study employs the 
Topological Data Analysis (TDA) and Markov model strategy, 
as demonstrated by Dyavani et al. [18], to capture the 
complex features of systems and enhance cloud security. This 
approach is incorporated to identify topological 
characteristics in voltage data, which are then integrated into 
a Deep Belief Network for short-term voltage forecasting. 
This supports more accurate and robust predictions, essential 
for resilient power system operation. 

Furthermore, while deep learning and data-driven techniques 
have demonstrated remarkable success in power load 
forecasting and fault detection, their application in voltage 
stability prediction and dynamic control coordination in 
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wind-integrated systems remains underexplored [12, 13, 22]. 
Most existing machine-learning approaches lack integration 
with the topological or structural characteristics of the power 
network, which limits their interpretability and 
generalizability across different wind farm configurations 
[14,20]. Deep Belief Networks are employed by Gattupalli et 
al. (2025) [23] for precise early stroke detection through 
advanced pattern recognition. Inspired by this approach, our 
proposed model integrates their DBN technique with 
Topological Data Analysis to improve short-term voltage 
forecasting under power system resilience frameworks, 
allowing for more accurate predictions and strengthening the 
assessment of power system resilience. 

The short-term voltage prediction model integrates 
Topological Data Analysis and Deep Belief Networks to 
predict voltage behaviour in wind farm grid-connected 
systems under small disturbances. It enhances dynamic 
stability assessment and reactive power coordination, 
improving fault tolerance, reducing power fluctuations, and 
enabling decentralised control for enhanced voltage stability 
and improved system responsiveness. To address these gaps, 
this paper proposes a novel short-term voltage prediction and 
stability optimisation framework that integrates TDA with a 
DBN model within the context of a power system resilience 
assessment paradigm. The proposed method combines 
Topological Data Analysis (TDA) and Deep Belief Networks 
(DBN) to enhance short-term voltage prediction in wind farm 
power systems. TDA provides noise-resistant topological 
features, while DBN captures nonlinear relationships for 
accurate forecasting. This integration enhances prediction 
accuracy, facilitates adaptive reactive power control, and 
improves system resilience, thereby reducing power loss and 
enhancing dynamic response in large-scale wind farms. Deep 
Belief Networks (DBNs) were selected over CNNs and 
RNNs because they effectively capture complex nonlinear 
relationships in power systems, benefit from unsupervised 
pre-training, which helps with limited labelled data, and 
integrate well with topological features from Topological 
Data Analysis. Unlike CNNs and RNNs, DBNs are better 
suited for short-term voltage prediction tasks where temporal 
dependencies are less critical. 
Additionally, their layer-wise training offers computational 
efficiency, making them ideal for real-time voltage stability 
assessment and improving prediction accuracy in power 
system resilience contexts. The proposed methodology is 
validated through comprehensive simulation experiments 
using an MMC-based VSC-HVDC wind farm model. 
Comparative studies between unified and decentralised DFIG 
compensation strategies show that the latter significantly 
reduces active power loss and improves fault-tolerant 

behaviour under small disturbance scenarios. The impedance 
response and voltage dynamics under various frequencies are 
analysed to assess the system's ability to recover from minor 
faults and maintain synchronisation. The MMC model, 
renowned for its precise voltage control and modular design, 
facilitates decentralised reactive power coordination in wind 
farms, thereby enhancing fault resilience. The DFIG model, 
commonly used in wind turbines, enables variable-speed 
operation and reactive power control, which are crucial for 
maintaining voltage stability during disturbances. 
Decentralised control enhances system responsiveness and 
reduces losses compared to centralised control. A cluster-
based, decentralised approach handles localised disturbances 
more effectively than centralised methods. Alternatives 
include SVC/STATCOM devices, PMSG technology, 
centralized control, machine learning models, and stability 
analysis methods. Combining these models offers a practical 
solution for improving small disturbance stability in wind-
integrated power systems. 

2. Small disturbance stability model of 
wind farm grid connected system 

Small-signal stability is a crucial aspect of power systems, 
indicating their ability to maintain synchronism despite minor 
changes. In wind farms using MMC, these disturbances can 
manifest as current, voltage, or power fluctuations. An 
impedance-based analysis reveals how these disturbances 
affect system components, such as converters and 
transmission lines. A decentralised, cluster-based reactive 
power control strategy enables turbines with similar operating 
conditions to adjust their reactive power, thereby mitigating 
disturbances and ensuring stable operation. This analysis 
enhances power system resilience in wind farm grid 
connections by modelling the complex dynamics of 
converter-based wind farms, thereby reducing system inertia 
and increasing vulnerability. It supports decentralised, 
topology-aware reactive power control strategies, enabling 
short-term voltage prediction and real-time monitoring for 
proactive management of disturbances. Efficient simulation 
models facilitate timely stability assessments and controller 
tuning, ensuring reliable and resilient operation in renewable-
rich grids. 

Figure 1 illustrates the modular multilevel converter (MMC) 
topology used in the grid-connected wind farm system, which 
serves as the basis for the small disturbance stability analysis 
presented in this study. The converter consists of three-phase 
bridge arms, each composed of multiple cascaded 
submodules (SMs) labelled 𝑆𝑆𝑀𝑀1, 𝑆𝑆𝑀𝑀2, … , 𝑆𝑆𝑀𝑀𝑛𝑛, allowing for 
precise voltage regulation via individual switching. These 

EAI Endorsed Transactions 
on Energy Web 

| Volume 12 | 2025 |



 
H. Wang, T. Li & Z. Dong 

4 

bridge arms connect to the AC terminal and include arm 
inductors 𝐿𝐿arm , which help suppress current transients and 
improve dynamic response. The topology features 
symmetrical upper and lower arms for each phase, 
characteristic of MMC systems. On the right side of the 
figure, transformer units 𝑇𝑇1  and 𝑇𝑇2  represent the step-up 
process from local voltage levels (e.g., 33 kV) to transmission 
voltages (e.g., 230 kV and 370 kV), consistent with the wind 
farm model introduced earlier. This modular architecture not 
only facilitates high-resolution voltage synthesis but also 
provides a flexible platform for implementing the 
decentralized reactive power coordination strategy described 
in Section 4. Reactive power coordination is the process of 
determining how reactive power, which contributes to steady 
voltage, is distributed among wind turbines. This is typically 
achieved by clustering turbines to enable improved local 
control and enhanced overall system reliability. Moreover, 
the clustered arrangement of SMs aligns with the control 
framework, which groups turbines based on similar operating 
characteristics, thereby enabling localised voltage control and 
improved fault resilience. As a whole, the figure supports the 
theoretical modelling and simulation of MMC-based VSC-
HVDC systems under small disturbance scenarios, forming a 
critical component of the proposed voltage prediction and 
stability optimization approach. 
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Figure 1: MMC Topology for Grid-Connected Wind 
Farm under Small Disturbance Conditions 

In the context of MMCs, when the number of sub-
modules (SMs) in each bridge arm is sufficiently large, the 
system exhibits quasi-continuous behaviour. This allows the 
converter to be modelled using averaged techniques rather 
than discrete switching logic. Under this approximation, the 
output voltage of a single bridge arm can be characterized by 
a continuous-time switching function, as expressed in 
equation (1): 

�𝑆𝑆𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢 = 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚

 𝑑𝑑𝑑𝑑
𝑢𝑢𝑎𝑎𝑎𝑎𝑚𝑚 = 𝑁𝑁𝑆𝑆𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚

 

              (1) 

When MMC is in steady state, MMC bridge arm current, 
capacitor voltage component, by equations (2) - (4): 

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚−𝑚𝑚 = 𝑢𝑢𝑚𝑚 + 𝑢𝑢𝑎𝑎𝑚𝑚1 + 𝑢𝑢𝑎𝑎𝑚𝑚2 = 𝑢𝑢𝑚𝑚 + 𝑢𝑢𝑎𝑎𝑚𝑚1 𝑠𝑠𝑖𝑖𝑠𝑠(𝜔𝜔𝜔𝜔 +
𝛿𝛿1) + 𝑢𝑢𝑎𝑎𝑚𝑚2 𝑠𝑠𝑖𝑖𝑠𝑠(2𝜔𝜔𝜔𝜔 + 𝛿𝛿2)    (2) 

�
𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚−𝑢𝑢𝑢𝑢 = 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚−𝑑𝑑𝑚𝑚

3
− 𝑖𝑖𝑠𝑠

2
𝑠𝑠𝑖𝑖𝑠𝑠(𝜔𝜔𝜔𝜔 + 𝛽𝛽1) + 𝑖𝑖𝑚𝑚𝑖𝑖𝑎𝑎 𝑠𝑠𝑖𝑖𝑠𝑠(2𝜔𝜔𝜔𝜔 + 𝛽𝛽2)

𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚−𝑢𝑢𝑢𝑢 = 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚−𝑑𝑑𝑚𝑚

3
+ 𝑖𝑖𝑠𝑠

2
𝑠𝑠𝑖𝑖𝑠𝑠(𝜔𝜔𝜔𝜔 + 𝛽𝛽1) + 𝑖𝑖𝑚𝑚𝑖𝑖𝑎𝑎 𝑠𝑠𝑖𝑖𝑠𝑠(2𝜔𝜔𝜔𝜔 + 𝛽𝛽2)

     

      

(3) 

⎩
⎨

⎧𝑆𝑆𝑝𝑝 =
1
2𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚−𝑑𝑑𝑚𝑚−

1
2𝑀𝑀𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚−𝑑𝑑𝑚𝑚 𝑠𝑠𝑖𝑖𝑛𝑛(𝜔𝜔𝑑𝑑+𝛼𝛼)+𝑢𝑢𝑚𝑚𝑐𝑐𝑐𝑐 𝑠𝑠𝑖𝑖𝑛𝑛(2𝜔𝜔𝑑𝑑+𝜑𝜑)

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚−𝑑𝑑𝑚𝑚

𝑆𝑆𝑛𝑛 =
1
2𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚−𝑑𝑑𝑚𝑚+

1
2𝑀𝑀𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚−𝑑𝑑𝑚𝑚 𝑠𝑠𝑖𝑖𝑛𝑛(𝜔𝜔𝑑𝑑+𝛼𝛼)+𝑢𝑢𝑚𝑚𝑐𝑐𝑐𝑐 𝑠𝑠𝑖𝑖𝑛𝑛(2𝜔𝜔𝑑𝑑+𝜑𝜑)

𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚−𝑑𝑑𝑚𝑚

  

      (4) 

Figure 2 presents a simplified equivalent model of the MMC-
based grid-connected system under small disturbance 
conditions, serving as the foundation for stability analysis and 
dynamic simulations in this study. Small disturbances in the 
MMC-based VSC-HVDC wind farm system cause 
fluctuations in reactive power and voltage on the AC side, 
affecting voltage stability. On the DC side, these disturbances 
result in variations in DC voltage and current, which in turn 
influence frequency stability through the converter control 
dynamics. At the receiving end, frequency deviations and 
oscillations can occur due to changes in active power flow, 
especially in low-inertia grids with high wind integration. A 
decentralised reactive power coordination strategy helps 
mitigate these effects by providing localised voltage support, 
enhancing damping of oscillations, and facilitating faster 
recovery to maintain system stability and frequency 
synchronisation. DC side disturbances in VSC-HVDC 
systems, such as faults or sudden changes in DC voltage and 
current, mainly affect frequency stability and converter 
performance. These disturbances can propagate to the AC 
grid, reducing system resilience and causing instability. 
Effective mitigation involves decentralised control strategies, 
impedance-based modelling, and rapid converter responses to 
maintain stable power flow and system synchronisation in the 
face of small disturbances. 
 

The model is divided into three main sections: the MMC side, 
the transmission line, and the AC power source. On the MMC 
side, the converter is represented by a DC input terminal 
supplying voltage 𝑢𝑢mmc_dc and current 𝑖𝑖mmc_dc . Its output is 
modulated through submodules and filtered by an inductance, 
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𝐿𝐿𝑓𝑓, producing an AC voltage, 𝑖𝑖𝑢𝑢𝑠𝑠, and current . The dq-
frame control voltage, 𝑢𝑢mmc_dq, enables decoupled dynamic 
control analysis. The converter interfaces with the 
transmission network at node 𝑘𝑘2 . The transmission line is 
modelled as a simplified 𝜋𝜋-type network consisting of a series 
inductor 𝐿𝐿1 , a shunt capacitor 𝐶𝐶1 , and associated voltages 
𝑢𝑢1 𝑎𝑎𝑠𝑠𝑎𝑎 𝑢𝑢2, and currents 𝑖𝑖1 𝑎𝑎𝑠𝑠𝑎𝑎 𝑖𝑖2. This section captures the 
line's impedance characteristics, which are critical for 
analyzing frequency response and resonance phenomena. 
Finally, the AC grid is represented as an ideal voltage source 
𝒖𝒖𝒈𝒈 , serving as a fixed reference or disturbance input for 
simulations. Together, these interconnected components form 
an integrated model that facilitates detailed evaluation of the 
system's response to small disturbances. This framework 
supports impedance-based stability assessment and the 
development of coordinated control strategies within the 
MMC-HVDC wind power integration framework. 

DC side faults in MMC-based VSC-HVDC wind farm grid 
connections pose significant risks to system frequency 
stability and converter operation. These faults can cause 
converter blocking and turbine disconnections, leading to 
cascading failures. To address this, decentralised reactive 
power control strategies group turbines into clusters, 
identifying resonant frequencies and adjusting the controllers 
accordingly. Impedance-based analysis and data-driven 
methods, such as deep learning and topological data analysis, 
enhance fault prediction and stability management. 
Simulations show decentralized control reduces power losses 
and improves response during DC faults. 
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Figure 2: Grid-Connected System under Small 
Disturbance 

The dynamic equivalence method enhances voltage stability 
analysis of large wind farms by simplifying complex turbine 
systems into manageable equivalent models that retain key 
dynamic behaviours. This approach reduces computational 
complexity while accurately representing impedance and 
dynamic responses to disturbances. By enabling cluster-based 
reactive power control, it supports localized voltage 
regulation and improves system responsiveness. The method 
enables faster simulations for real-time voltage prediction and 
improved fault tolerance, ultimately enhancing the stability 
and resilience of wind-integrated power grids. 

Small-signal stability is directly impacted by the growing 
complexity of power grids, which is brought about by the 
incorporation of renewable energy, sophisticated power 
electronic converters, and numerous interconnections. These 
factors decrease system inertia and increase dynamic 
interactions. Due to its increased complexity, the grid is more 
susceptible to oscillations and is more vulnerable to minor 
disruptions. Furthermore, typical centralised control 
techniques are challenged by complicated grid topologies, 
which call for decentralised and topology-aware control 
systems in order to preserve stability. Resonance effects and 
frequency-dependent impedance resulting from this 
complexity further increase the possibility of instability. 
Hence, sophisticated modelling and adaptive management are 
crucial for dependable grid operation. 

3. Methods 

The disconnection of a single wind turbine unit within a wind 
farm can trigger abnormal operating conditions in adjacent 
units due to their interdependent electrical and control 
relationships. This cascading effect may ultimately lead to 
large-scale unit disconnections, significantly expanding the 
scope and severity of system disturbances. The sudden 
disconnections of wind turbines cause voltage dips and 
frequency deviations, disrupting power flow and load 
balance. These disturbances can cause cascading failures. 
Voltage recovery relies on coordinated reactive power 
control, with decentralized strategies improving stability. 
Low inertia from power electronic converters reduces 
damping, leading to faster frequency changes. Advanced 
frequency control methods and impedance-based stability 
analysis guide control design. Such chain-reaction failures 
not only reduce the stability margin of the power system but 
also introduce substantial hidden risks that are difficult to 
detect through conventional analysis. Moreover, the process 
of disconnection and subsequent system instability is 
inherently dynamic and nonlinear, often evolving over 
extended periods of time. These characteristics make it 
challenging to capture the full scope of the disturbance using 
static models or steady-state analysis alone. Disconnecting a 
wind turbine in a wind farm can cause dynamic disturbances 
that affect neighbouring turbines, potentially leading to 
instability. Modelling the wind farm's behaviour using MMC-
based VSC-HVDC systems can help identify fluctuations in 
reactive power, voltage, and frequency. A decentralised, 
cluster-based reactive power control strategy can mitigate 
these disturbances by adjusting output, maintaining voltage 
stability, and preventing the spread of faults. Simulations 
demonstrate that decentralised control enhances system 
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recovery and reduces power losses, thereby improving wind 
farm stability and resilience during disconnection events. 

As illustrated in Figure 3, this approach enables 
hierarchical control, where localised disturbances are 
addressed at the cluster level before propagating across the 
entire system. By doing so, the strategy enhances voltage 
stability, minimizes reactive power imbalances, and improves 
the system’s ability to withstand and recover from small 
disturbances.  

          

Different reactive power control 
strategies are adopted according 

to different characteristics of 
different clusters

Calculation of 
reactive compensation

Detector 
terminal voltage

Whether the limit is 
exceeded

Transmission of reactive 
power to the power grid

Partition 
coherent cluster

Building a differentiated 
wind field model

Y

N

 

Figure 3: Topology-Aware Reactive Power Dispatch 
Strategy for Wind Farms 

Geographical location, feeder distribution, wind speed, fan 
output of the units, and fans same feeder line consist of 
different terminal voltages. The wind turbine terminal voltage 
remains stable within a specific safety range, effectively 
reducing the probability of wind farm failure. These factors 
create heterogeneous operating conditions, making 
centralised reactive power control less effective. Instead, a 
decentralized, cluster-based coordination approach is needed 
to adapt to local voltage differences and dynamic wind 
conditions, thereby improving voltage stability, reducing 
losses, and enhancing overall system resilience. Geographical 
location impacts wind farm performance by creating voltage 
variations due to electrical distances and feeder impedance. 
Grouping turbines based on location allows localized reactive 
power control, improving voltage stability, reducing losses, 
and enhancing system efficiency. Wind speed directly 
influences turbine power output and terminal voltage 
fluctuations. Stable terminal voltages enable efficient 
operation and maximise energy capture, whereas excessive 
voltage fluctuations can reduce efficiency. Integrating 
geographical and wind speed factors into a decentralised 
control and impedance-based stability model enhances 

voltage prediction, control optimisation, fault tolerance, and 
overall wind farm efficiency under small disturbances. 

 Moreover, the terminal voltage level of each wind 
turbine generator unit also represents its operating condition: 

||𝛥𝛥𝑈𝑈𝐺𝐺||2 = ∑ (𝑈𝑈𝐺𝐺𝑖𝑖 − 𝑈𝑈𝑎𝑎𝑟𝑟𝑓𝑓)2𝑁𝑁
𝑖𝑖=1                      

      
  (9) 

According to the above formula, the small disturbance 
stability optimization model is shown in Figure 4: 

WFZ MMCZ

LineZ

  
  

Figure 4: Optimized Simulation Model of Additional 
Small Disturbance Signal 

4. Experiments 

Figure 5 illustrates the frequency-domain comparison 
between the calculated and simulated equivalent impedance 
of the wind farm grid-connected system under small 
disturbance conditions. The two curves exhibit high 
consistency in their overall trends, particularly around the 
resonance peak at approximately 6 Hz, indicating the 
accuracy and validity of the impedance-based analytical 
model. The slight discrepancy between the calculated value 
(green line) and the simulation result (red dashed line) may 
be attributed to idealized assumptions in the theoretical model, 
such as linearity and neglect of converter-level dynamics. 
Nonetheless, the analytical model slightly overestimates the 
impedance magnitude, providing a conservative estimate that 
is beneficial for control design and stability margin 
assessment. The model's predictive capability across the 
frequency range supports its application in small-signal 
stability analysis and impedance-shaping-based controller 
optimisation. 
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Figure 5: Comparison of Calculated and 
Simulated Equivalent Impedance 

Figure 6 compares the frequency-domain equivalent 
impedance of the wind farm grid-connected system obtained 
through theoretical calculation and time-domain simulation. 
Grid impedance in wind-connected systems is modelled as a 
frequency-dependent equivalent circuit, including converter 
interface dynamics, transmission line elements, and grid 
source characteristics. It is fundamental to understanding and 
predicting the propagation and damping of small 
disturbances. The impedance directly influences stability, 
reactive power flow, and voltage dynamics, making it a key 
factor in designing control strategies that enhance system 
resilience and dynamic performance under minor 
perturbations. While the general trend between the two curves 
remains comparable in the mid-frequency range (2–7 Hz), 
noticeable deviations arise in the low (<2 Hz) and high-
frequency (>8 Hz) regions. These discrepancies may result 
from unmodeled nonlinearities, filtering effects, or 
limitations in the system's dynamic control bandwidth. The 
simulation curve also reveals multiple local peaks, indicating 
potential resonant modes or controller-induced oscillatory 
behaviour. Despite the variations, the overall consistency in 
the core frequency band supports the reliability of the 
analytical model for small-signal stability evaluation and 
controller tuning purposes. Small-signal stability measures a 
power system's ability to remain stable and synchronised 
when faced with minor disturbances, such as faults or small 
load changes. A stable system can quickly dampen these 
disturbances and maintain normal operation, whereas 
instability can lead to growing oscillations and potentially 
more severe failures. This stability is typically assessed 
through analyses like eigenvalue or impedance studies and is 
essential for ensuring reliable and continuous power system 
performance. 
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Figure 6: Frequency-Domain Comparison of 
Equivalent Impedance 

Figure 7 exhibits a non-uniform and segmented pattern, 
with notable dips around nodes 17, 33, and 48, indicating the 
presence of cluster boundaries or control zone transitions. 
These local minima correspond to nodes with reduced or zero 
reactive power contribution, which may be due to their 
proximity to voltage constraints or lower priority in the 
reactive power dispatch hierarchy. The observed stair-step 
trend suggests that reactive power is strategically allocated 
based on the operational characteristics and topological 
location of each wind turbine unit. This uneven distribution 
validates the effectiveness of the decentralized coordination 
approach in enhancing voltage control flexibility while 
minimizing system losses. 
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Figure 7: Node-Wise Distribution of Reactive 
Power Output 

The small disturbance stability model for wind farm grid-
connected systems uses a modular multilevel converter 
framework for detailed dynamic analysis. It focuses on minor 
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disturbances that can cause instability and uses a 
decentralized, cluster-based reactive power control strategy 
to enhance voltage stability, reduce losses, and improve fault 
tolerance. Stability is assessed through impedance-based 
frequency-domain analysis to detect resonance and 
oscillations. The model also integrates data-driven 
techniques, such as Topological Data Analysis and Deep 
Belief Networks, to predict voltage stability and optimise 
reactive power dispatch, making it adaptable to the complex 
nature of wind farms. 

5. Conclusion 

This paper proposed a small disturbance stability analysis 
framework for wind farm grid-connected systems based on 
modular multilevel converters (MMC). By integrating 
impedance modelling with a cluster-based reactive power 
coordination strategy, the study effectively captured the 
dynamic response characteristics under minor perturbations. 
Simulation and calculated results showed good consistency in 
impedance behaviour across key frequency ranges, verifying 
the accuracy of the theoretical model. The proposed 
decentralized control strategy enabled differentiated reactive 
power distribution among turbine clusters, improving voltage 
support and reducing network losses.  
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