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Abstract 
 
INTRODUCTION: The problem of low accuracy in harmonic measurement is a significant challenge in power systems. 
Traditional methods often exhibit higher measurement errors, leading to unreliable detection of harmonics. To address this, 
the author proposes a new approach that integrates wavelet transform and deep learning techniques for enhanced harmonic 
measurement accuracy. 
 
OBJECTIVES: The primary goal of this study is to develop a more accurate harmonic measurement algorithm by combining 
full phase fast Fourier transform (FFT) and adaptive neural networks. The research aims to automatically detect power 
system harmonics with minimal error and improve upon the limitations of traditional methods. 
 
METHODS: The study implemented a harmonic measurement method using full phase FFT integrated with an adaptive 
neural network. This approach calculates harmonic amplitudes based on the fundamental component and its amplitude, while 
determining the precise start and end times of harmonics. The system also incorporates mean filtering for automatic detection 
of harmonics. The effectiveness of the proposed method was evaluated through experiments that compared it to traditional 
harmonic measurement techniques. 
 
RESULTS: Experimental results demonstrated that the proposed method achieved an average measurement error of 0.02V, 
with a maximum error of 0.03V, both of which are below the acceptable error limit. In contrast, traditional methods exhibited 
significantly higher average errors of 3.31V and a maximum error of 5.17V. The new method consistently showed higher 
accuracy in harmonic detection compared to conventional approaches. 
 
CONCLUSION: The study concludes that the proposed harmonic measurement algorithm significantly improves accuracy 
compared to traditional methods. With its lower measurement error and effective automatic detection capabilities, the 
method proves to be highly suitable for harmonic measurement in power systems. 
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1. Introduction

As society progresses, the widespread use of electrical 
devices in everyday life has led to a significant rise in 
harmonic levels within the power grid. This increase in 
harmonics degrades the quality of grid operation, poses 
risks to the grid's safety, stability, and economic efficiency, 
and has a substantial impact on the surrounding electrical 
environment. Consequently, harmonics have become a 
major public safety concern for modern power grids [1]. 
Accurate and prompt measurement of harmonics in the 
power grid has thus become crucial for addressing the issue 
of harmonic pollution caused by power electronic devices 
and other sources of harmonics. The primary task in 
solving harmonic problems is to accurately measure the 
components, amplitude, phase, and other information of 
harmonics. Since the end of the last century, due to the 
inherent nonlinearity, randomness, distribution, non 
stationarity, and complexity of influencing factors of 
harmonics in the power grid, although a lot of research has 
been done in harmonic measurement technology, it is still 
difficult to accurately measure harmonic information [2]. 
With the development of the power system, research on 
harmonic measurement has gradually deepened, mainly 
resulting in harmonic measurement methods based on 
frequency domain theory and time domain theory. In the 
early stages of development, the principle of analog 
filtering was mainly used to measure harmonic 
information, namely the frequency domain theoretical 
measurement method. This measurement method mainly 
uses a structurally simple filtering circuit with high output 
impedance, low measurement cost, and easy control of 
quality factor [3]. However, due to the significant impact 
of circuit component parameters on the center frequency of 
the filter, when the component parameters change due to 
external environmental factors, the measurement effect 
significantly deteriorates, making it difficult to obtain ideal 
phase frequency and amplitude frequency characteristics. 
Especially when the grid frequency changes, the 
measurement error is greater and the real-time performance 
is worse. Therefore, this method is no longer preferred. 
With the increasing requirements for harmonic 
measurement in power systems, harmonic measurement 
methods are constantly being updated [4].  

 Deep learning models, particularly Convolutional 
Neural Networks (CNN) and Long Short-Term Memory 
Networks (LSTM), have shown remarkable effectiveness 
in managing intricate nonlinear and high-dimensional data. 
Combining wavelet transform with deep learning can fully 
leverage the advantages of both: using wavelet transform 
for time-frequency feature extraction, and then achieving 
high-precision harmonic feature recognition and 
classification through deep learning models. This fusion 
method can not only improve the accuracy of harmonic 
measurement, but also enhance the robustness and real-
time performance of the algorithm. The author aims to 
explore the harmonic measurement algorithm that 

combines wavelet transform and deep learning, and 
analyse its potential application in power system harmonic 
detection. Through in-depth research and experimental 
verification of existing technologies, we hope to propose a 
more efficient and accurate harmonic measurement 
method, providing strong support for the safe and stable 
operation of power systems [5-6]. 

2. Literature Review

In recent years, with the development of society, the field 
of power grid has also developed rapidly. When measuring 
harmonic energy in the power system, the phase difference 
and angle difference between the voltage divider circuit 
and the transformer affect the accuracy of the measurement 
results. How to accurately measure electrical energy has 
become one of the urgent problems to be solved both 
domestically and internationally. Kandezy, R.S. et al. 
introduced a novel approach for estimating harmonic 
distortion using convolution-based metrics, offering a more 
appropriate solution for real-time applications. The 
proposed technique features a sampling window with low 
sensitivity to deviations in fundamental frequency and 
signal stationarity, effectively preventing aliasing and 
spectral leakage. Additionally, it eliminates the impact of 
the fence effect on the estimation of harmonic distortion 
levels [7]. Ahmadi Horojayi, F. et al. introduced a novel 
harmonic state estimation (HSE) method designed 
specifically for low observability distribution systems. This 
method relies solely on the harmonic synchronous phasor 
data from a limited number of harmonic phasor 
measurement units (H-PMUs) located on the distribution 
feeder. The proposed HSE approach presents an innovative 
and practical use for H-PMUs, a new type of smart grid 
sensor that addresses a significant and challenging issue in 
power distribution system monitoring [8]. Du, L. et al. 
introduced a highly accurate method for measuring 
harmonic voltage that utilizes the dielectric equivalent 
model (DEM) of capacitive devices and their response 
current. By employing the DEM, they established the 
voltage-current transfer function for capacitive devices and 
reconstructed the harmonic voltage based on the response 
current. The study took into account the dielectric 
relaxation properties of capacitive devices, which differ 
from those of pure capacitor models. The authors evaluated 
the fitting performance of various equivalent capacitance 
models and enhanced the traditional pure capacitor model 
into a DEM, making it better suited for harmonic voltage 
reconstruction [9].  

In order to solve the problems in error correction 
mentioned above, the author proposes a power system 
harmonic measurement algorithm that combines wavelet 
transform and deep learning. 
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3. Method

3.1. Automatic measurement of harmonics 
in power systems  

Input the harmonic signal extracted from the fundamental 
component into the processing center of the power system 
for automatic processing, and obtain the automatic 

measurement results of the power system harmonics. After 
filtering, the harmonic signal will be transmitted to the 
processing center through the network channel. The 
transmission of the harmonic signal adopts the GPRS 
network, which has many transmission advantages, as 
shown in Figure 1.  

Figure 1. Advantages of GPRS network data transmission 

Using GPRS network to complete the transmission of 
harmonic signals in the power system, the signals are 
transmitted to the processing center for measurement and 
processing. The processing center uses Fourier transform 
to automatically analyze and process these transmitted 
harmonic signals in the power system, and finally forms 
automatic harmonic measurement results, which are sent to 
the display or client for power workers to view.  

3.2. Harmonic Measurement Based on All 
Phase Fast Fourier Transform and BP 
Neural Network 

3.2.1. Harmonic phase angle measurement  
The all-phase fast Fourier transform has phase invariance. 
Using this property to perform full phase fast Fourier 
transform spectral analysis on the sampled values of power 
grid voltage signals, high-precision harmonic phase values 
can be obtained [10]. The steps are as follows:  

(1) Collect power grid signals and obtain 2N −
1sampling values. 

(2) Perform full phase fast Fourier transform spectral
analysis on the sampled data to obtain amplitude and phase 
spectra.  

(3) The amplitude spectrum obtained by the all-phase
fast Fourier transform is affected by the fence effect and 

cannot obtain accurate harmonic signal amplitude. 
However, peak spectral lines appear near the 
corresponding frequency of the harmonic in the amplitude 
spectrum. By reading the phase value corresponding to this 
peak spectral line, the accurate harmonic phase can be 
obtained [11].  

3.2.2. Harmonic amplitude measurement based 
on BP neural network 
Select the BP neural network as the method for measuring 
harmonic amplitude. The process for determining 
harmonic amplitude using the BP neural network involves 
the following steps:   

3.2.3. Constructing a BP neural network structure 
for harmonic measurement  
The traditional BP neural network harmonic measurement 
network consists of an input layer, a hidden layer, and an 
output layer. The network constructed by the author only 
contains one hidden layer. Due to the fact that the output 
layer of traditional BP neural networks shares the same 
hidden layer among neurons, there is a significant impact 
on each other, resulting in low accuracy in measuring 
harmonic amplitude. Therefore, the author adopts an 
improved BP neural network structure, with unchanged 
input and output layer settings, only making each neuron in 
the output layer correspond to a hidden layer, solving the 
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problem of mutual influence among the measured 
harmonics and improving the accuracy of harmonic 
measurement [12].  

Determine the learning algorithm of BP neural network 
for harmonic measurement  

Assuming the voltage signal in the power grid is a 
periodic non sinusoidal signal A(t), sample A(t) at equal 
time intervals within one cycle. Sample data X =
[x1, x2,⋯ , x20] as input to the neural network. The output 
of the hidden layer is O3, O4. The output layer corresponds 
to the amplitudes of the third and fifth harmonics for Y3, Y5. 
Due to the fact that each harmonic has the same learning 
algorithm, only the third harmonic will be used as an 
example to introduce its learning algorithm. The outputs of 
the hidden layer and output layer of the third harmonic are:  

�
𝑂𝑂3(𝑗𝑗) = 𝑓𝑓2�∑𝑖𝑖 𝑊𝑊𝑖𝑖𝑖𝑖𝑥𝑥(𝑖𝑖) + 𝜃𝜃2(𝑗𝑗)�, 𝑖𝑖 = 1,2,⋯ ,20; 𝑗𝑗 = 1,2,⋯ ,9
𝑌𝑌3 = 𝑓𝑓3�∑𝑖𝑖 𝑊𝑊𝑗𝑗𝑗𝑗𝑂𝑂3(𝑗𝑗) + 𝜃𝜃3�, 𝑘𝑘 = 1

  

  (1) 

In the formula, f2, f3  represent the neural excitation 
functions of the hidden layer and output layer, respectively. 
Wi, Wjk  represent the connection weights from the input 
layer to the hidden layer and from the hidden layer to the 
output layer, respectively; i. J and k are the neuron labels 
of the input layer, hidden layer, and output layer, 
respectively [13-14].  

The performance indicator formula for correcting 
weights is:  

𝐸𝐸 = 1
2

(𝑑𝑑3 − 𝑌𝑌3)2                                        (2)                                                      
In the formula, d3 represents the expected output value 

of the third harmonic.  
The formulas for adjusting weights between the input 

layer and the hidden layer, as well as between the hidden 
layer and the output layer, during the training phase are as 
follows:  

�
𝑊𝑊𝑖𝑖𝑖𝑖(𝑡𝑡 + 1) = 𝑊𝑊𝑖𝑖𝑖𝑖(𝑡𝑡) + 𝛼𝛼�𝑊𝑊𝑖𝑖𝑖𝑖(𝑡𝑡) −𝑊𝑊𝑖𝑖𝑖𝑖(𝑡𝑡 − 1)� + 𝜂𝜂𝛿𝛿𝑘𝑘3𝑥𝑥(𝑖𝑖)
𝛿𝛿𝑗𝑗2 = 𝑂𝑂(𝑗𝑗)(1 − 𝑂𝑂(𝑗𝑗))∑𝛿𝛿𝑘𝑘3𝑊𝑊𝑗𝑗𝑗𝑗

3

𝜃𝜃𝑗𝑗2(𝑡𝑡 + 1) = 𝜃𝜃𝑗𝑗2(𝑡𝑡) + 𝜂𝜂𝛿𝛿𝑗𝑗2
                            (3) 

�
𝑊𝑊𝑗𝑗𝑗𝑗(𝑡𝑡 + 1) = 𝑊𝑊𝑗𝑗𝑗𝑗(𝑡𝑡) + 𝛼𝛼�𝑊𝑊𝑗𝑗𝑗𝑗(𝑡𝑡) −𝑊𝑊𝑗𝑗𝑗𝑗(𝑡𝑡 − 1)� + 𝜂𝜂𝛿𝛿𝑘𝑘3𝑂𝑂(𝑗𝑗)
𝛿𝛿𝑘𝑘3 = 𝑌𝑌3(𝑑𝑑3 − 𝑌𝑌3)(1 − 𝑌𝑌3)
𝜃𝜃𝑘𝑘3(𝑡𝑡 + 1) = 𝜃𝜃𝑘𝑘3(𝑡𝑡) + 𝜂𝜂𝛿𝛿𝑘𝑘3

                          (4) 

Select training samples for harmonic measurement 
neural network  

 In actual measurement, the focus is on measuring the 
lower order harmonics among odd harmonics. Before 
harmonic measurement, the process of selecting training 
samples is illustrated by filtering out the fundamental and 
higher-order harmonics, and selecting harmonic currents 
composed of third and fifth harmonics as an example. 
Harmonic voltage can be expressed as:  
𝐴𝐴(𝑡𝑡) = 𝐴𝐴3𝑠𝑠𝑠𝑠 𝑛𝑛(3𝜔𝜔𝜔𝜔 + 𝜑𝜑3) + 𝐴𝐴5𝑠𝑠𝑠𝑠 𝑛𝑛(5𝜔𝜔𝜔𝜔 + 𝜑𝜑5)       (5)                          
Under the determined harmonic phase conditions, the 

amplitude of the fundamental wave is normalized to 1. 
Based on the amplitude of the fundamental wave, the 
amplitude of the harmonic wave is normalized. When 
selecting training samples, the increment of the harmonic 
wave amplitude each time is the amplitude of the 
fundamental wave. Therefore, A3 and A5 each have 26 
values that can be taken as (0-0.5) [15]. Therefore, a total 
of 676 sets of training sample inputs can be obtained, and 
the corresponding 676 sets of expected outputs are:  
𝐷𝐷 = {(0.0,0.0), (0.02,0.0), (0.0,0.02),⋯ , (0.5,0.5)}   (6)                     

After selecting the learning samples, train the neural 
network according to the training process of the BP neural 
network [16]. After the training is completed, obtain the 
weights of each connection in the neural network to fix the 
structure and connection weights of the BP neural network, 
and complete the memory of harmonic wave amplitude 
values. Afterwards, only the power grid signal needs to be 
collected as the input of the BP neural network under the 
same phase condition, and the amplitude of each harmonic 
contained in the signal can be obtained from the network 
output.  

3.2.4. Harmonic Measurement Simulation 
This simulation only verifies the amplitude of the third and 
fifth harmonics of the BP neural network under a certain 
phase condition. Under the condition that the phase of the 
third harmonic is 30 ° and the phase of the fifth harmonic 
is 60 °, a training sample selection method was used to 
obtain 676 sets of training samples for offline training of 
the harmonic measurement BP neural network. The 
simulation program flow is shown in Figure 2.  
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Figure 2. Simulation program flowchart 

After training, select multiple sets of untrained samples 
with the same phase of 30 ° and 60 ° to simulate and verify 
the accuracy of harmonic amplitude measurement. 
Experimental results show that the BP neural network 
method for measuring harmonic amplitude outperforms 
interpolation FFT in terms of accuracy. Furthermore, 
increasing the number of training samples can further 
enhance the precision of harmonic amplitude 
measurements in neural networks [17]. 

3.3. Harmonic measurement based on full 
phase fast Fourier transform and adaptive 
neural network 

3.3.1. Measurement steps 
The specific steps of the harmonic measurement method 
based on full phase fast Fourier transform and adaptive 
neural network are as follows:  

(1) Collect training samples. Set sampling frequency 
and sampling time, collect power grid voltage signals, 
provide analysis data for full phase fast Fourier transform, 
and provide training samples for adaptive artificial neural 
networks. 

(2) Determine the initial phase of harmonics. Sample the 
power grid signal data through full phase fast Fourier 

transform analysis, identify peak spectral lines in the 
amplitude spectrum of the analysis results, and obtain high-
precision phases of each harmonic from the phase values 
corresponding to the peak spectral lines. 

(3) Initialize the harmonic amplitude measurement 
neural network. Use the harmonic phase measurement 
results to set the phase values of each harmonic in the 
reference input vector of the neural network.  

(4) Calculate the error by reading a training sample once, 
calculate the neuron output Y(ti) based on the sampling 
time, subtract it from the current grid signal sampling value 
V(ti) , and then calculate the error function e(ti)  and 
performance indicator Ji.  

(5) Adjust the weights of the neural network based on 
the error.  

Using the Least Mean Square Error (LMS) method as 
the learning algorithm for the adaptive neural network for 
harmonic amplitude measurement, the weight adjustment 
formula, that is the harmonic amplitude adjustment 
formula, is:  

𝜔𝜔𝑚𝑚(𝑖𝑖 + 1) = 𝜔𝜔𝑚𝑚(𝑖𝑖) + 𝛥𝛥𝜔𝜔𝑚𝑚(𝑖𝑖)                     (7)                                                
𝛥𝛥𝜔𝜔𝑚𝑚(𝑖𝑖) = −𝜂𝜂 𝜕𝜕𝐽𝐽𝑖𝑖

𝜕𝜕𝜔𝜔𝑚𝑚
= 𝜂𝜂𝜂𝜂𝜂𝜂 𝑛𝑛(2𝜋𝜋𝜋𝜋𝑓𝑓0𝑡𝑡𝑖𝑖 +

𝜑𝜑𝑚𝑚)𝑒𝑒(𝑖𝑖)       (8)                               
In the equation, η is the learning factor.  
In order to improve the convergence speed of neural 

networks, a momentum term is added to the weight 
adjustment formula [18]. The new weight increment 
formula is:  

Δωm(i) = −η ∂Ji
∂ωm

= ηsin (2πmf0ti + φm)e(i) +
λΔωm(i − 1)(9)                   

In the equation, λ is the momentum factor.  
(6) Check if the current iteration index i matches the 

total number of training samples N. If it does, then verify 
whether the maximum number of training iterations has 
been reached. If the maximum number has been reached, 
conclude the training process and move on to the 
subsequent step. If it does not meet the requirements, it is 
necessary to calculate J and determine whether J meets the 
performance indicators. If it meets the standards, proceed 
to the next step. If it does not meet the standards, return to 
step (4) and execute it again. If not, return to step (4) to 
continue execution.  

(7) Training is over. Obtain the amplitude of each 
harmonic based on the obtained neural network weights.  

3.3.2. Harmonic Measurement Simulation 
Let the current signal of the power grid be:  

A(t) = ∑m=1
7  Amsin (2πmf0ti + φm)             (10)                                   

In the formula: Fundamental frequency f0 = 50Hz , 
sampling frequency 1kHz; Neural network learning rate 
η = 0.05; Momentum factor λ = 0.5; Error criterion ε =
10−26. The flowchart of the simulation program is shown 
in Figure 3.  
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Figure 3. Simulation program flowchart 

After analyzing 511 grid signal sampling points using 
apFFT, it can be seen that the harmonic phase measurement 

has high accuracy. Using apFFT analysis results to 
initialize the neural network, and taking 50 sets of training 
samples to train the neural network, it can be seen that the 
value of the performance index function can reach 10-12 
under sufficient training times. After less than 10 training 
times, the fundamental and harmonic measurement values 
tend to stabilize. From the experimental data, it can be seen 
that the method adopted by the author greatly improves the 
measurement accuracy of harmonic amplitude [19].  

3.4. Inter harmonic measurement based on 
full phase fast Fourier transform and 
enhanced adaptive neural network 

3.4.1. Enhanced Adaptive Neural Network 
Interharmonic Measurement Model  
In harmonic measurement, when the fundamental 
frequency is known, there's no need to measure the 
harmonic frequency since it is an integer multiple of the 
fundamental frequency. However, for interharmonic 
measurement, because the interharmonic frequency is not 
an integer multiple of the fundamental frequency, it cannot 
be determined based on the fundamental frequency alone. 
Therefore, in interharmonic measurement, the frequency of 
the interharmonic also needs to be included as a 
measurement item. For this purpose, the adaptive neural 
network structure applied to interharmonic measurement 
will be designed in the form shown in Figure 4.  

 

Figure 4. Adaptive neural network structure for interharmonic measurement 

3.4.2. Harmonic measurement steps 
The steps for measuring interharmonics based on full phase 
fast Fourier transform and enhanced adaptive neural 
network are as follows:  

(1) Signal acquisition and apFFT analysis. After 
filtering out the measured fundamental and harmonic 
signals from the power grid signal, a signal composed of 
interharmonics is obtained. After sampling and analysis 
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using the apFFT algorithm, the amplitude spectrum and 
phase spectrum are obtained.  

(2) Define and initialize the neural network structure. 
The number of neurons in the hidden layer corresponds to 
the number of interharmonics, which is determined by the 
number of peak spectral lines in the apFFT amplitude 
spectrum. Set the learning rate η and momentum factor λ 
for the interharmonic frequency and amplitude, 
respectively. Establish the maximum number of training 
iterations for the neural network, and then begin training 
the artificial neural network.  

(3) Calculation error. Read one training sample, 
calculate the actual output Y(i)  of the neural network 
according to equation (11), and subtract it from the current 
sampling value D(i) to calculate the error function e(i) and 
performance indicator Ji.  

Y(i) = ∑  M
m=1 Amϕm(ti)                 (11)                                                   

In the formula, M represents the number of 
interharmonics.  

(4) Adjust the excitation function and neural network 
weights based on the error. LMS is also used as the learning 
algorithm for the neural network. In order to achieve inter 
harmonic frequency measurement, the angular frequency 
of the intermediate harmonics in the excitation function is 
also adjusted [20]. During the learning process, the 
formulas for adjusting the frequency and amplitude of 
interharmonics are as follows:  

ωm(i + 1) = ωm(i) + Δωm(i)                (12)                                               
Δωm(i) = −η1m

∂Ji
∂ωm

= η1me(i)Am(i)ti cos(ωmti +
φm)                                       (13)                      

Am(i + 1) = Am(i) + ΔAm(i)              (14)                                           
ΔAm(i) = −η2

∂Ji
∂Am

= η2e(i) sin(ωmti + φm)  (15)                                 
In the formula, η1m(m = 1,2,⋯ , M)  is the learning 

factor for adjusting the mth harmonic frequency; η2  is a 
unified learning factor for adjusting the amplitude of 
harmonic waves.  

Similarly, in order to improve the convergence speed of 
neural networks, momentum terms are added to the 
frequency and weight adjustment formulas. The new 
adjustment formula is:  

Δωm(i) = η1me(i)Am(i)ti cos(ωmti + φm) +
λΔωm(i − 1)                                (16) 

ΔAm(i) = η2e(i) sin(ωmti + φm) + λΔAm(i − 1)(17) 
In the equation, λ is the momentum factor.  
(5) Check if i equals the total number of training samples 

N. If it does, then verify whether the maximum number of 
training iterations has been reached. If the maximum 
iteration count has been reached, end the training process 
and move on to the next step. If it does not meet the 
requirements, it is necessary to calculate J and determine 
whether J meets the performance indicators. If it meets the 
standards, proceed to the next step. If it does not meet the 
standards, return to step (3) and execute it again. If not, 
return to step (3) to continue execution.  

(6) Learning is over. After the learning is completed, the 
interharmonic frequency is obtained through the angular 

frequency of the excitation function, and the interharmonic 
amplitude is obtained through the neural network weights.  

The principle of Fourier transform for automatic 
measurement of harmonics in power systems is as follows: 
The main characteristic of harmonics in power systems is 
spectral clipping value. When the power system operates 
stably and there is no periodic distortion in current and 
voltage, the sine and cosine signals of the three-phase 
current in the power system are relatively stable. The 
complex envelope of the short-time Fourier transform of 
the signal is a correct constant, and the spectral clipping 
value at the main frequency point in the instantaneous 
spectrum of reactive and active components is 1. When 
harmonics occur in the power system, periodic distortion 
occurs in the current and voltage, and the complex 
envelope of the short-time Fourier transform of the signal 
is an error constant. The spectral clipping value at the main 
frequency point in the instantaneous spectrum of the 
reactive and active components is -1. Therefore, the 
presence of harmonics in the power system can be 
determined based on the spectral clipping values at the 
main frequency points in the instantaneous spectra of 
reactive and active components, and the instantaneous 
spectral moments can be used to represent the 
instantaneous frequencies of reactive and active 
components. Using the power spectral density function, 
calculate the spectral clipping value at the main frequency 
point in the instantaneous spectrum of reactive and active 
components. The calculation formula is:  

κ = B
S2nF

− 2 �mod 1
2
ρ�                          (18)                                               

In the formula, k represents the spectral clipping value 
at the main frequency point in the instantaneous spectrum 
of reactive and active components; B represents the power 
spectral density function; ρ  represents the degree of 
normalized energy distribution. Determine whether there 
are harmonics in the power system based on the calculated 
value using equation (18). If there are harmonics, calculate 
the amplitude of the harmonics based on the collected 
signal, and the calculation formula is:  

ε = ε0
μ

× τ                                          (19)                                                     
In the formula, ε represents the amplitude of harmonic 

waves in the power system; ε0 represents the fundamental 
component value of the power system; μ represents the 
amplitude corresponding to the fundamental wave of the 
power system; τ represents the fundamental voltage of the 
power system. According to equation (19), calculate the 
harmonic amplitude and compare it with the signal 
sampling time series to draw the harmonic amplitude curve. 
The time at which the amplitude reaches its peak is 
identified as the beginning of the harmonic, while the time 
at which the amplitude hits its lowest point marks the end 
of the harmonic. From this, measure the start and end time 
of the power system harmonic, and then complete the 
power system harmonic measurement.  
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4. Results and Discussion  

The experiment takes a certain power system as the 
experimental object. There are 16 power electronic devices 
in the power system, and harmonics often occur. Using this 
research method and traditional methods, the harmonics of 
the power system are automatically measured. In the 
experiment, the resampling frequency was set to 1.26kHz, 

and the sine signal sampling frequency was set to 2.32kHz. 
A total of 2.61GB of signal samples were collected in the 
experiment. According to the above measurement process, 
the signal was subjected to fundamental filtering and 
harmonic feature extraction operations, and a total of 
0.26GB of fundamental components were filtered out. The 
fundamental frequency was 50Hz, and the specific 
measurement results are shown in Table 1.  

 
Table 1. Harmonic Measurement Results of Power System 

Index Fundamental Wave and harmonic amplitude /𝐍𝐍 Occurrence time/𝐬𝐬 
Fundamental wave harmonic starting time End Time duration 

Theoretical 264.04 45.51 0.31 0.54 0.23 
Measurement value 264.04 45.51 0.30 0.55 0.22 

 
In order to compare the measurement accuracy of the 

two methods, a total of 19 harmonic automation 
measurements were conducted on the power system. Based 
on the measurement results and actual values of each 
measurement, the measurement errors of the two methods 
were calculated and used as the only indicator for this 
experiment. The data was recorded using a spreadsheet, as 
shown in Table 2.  

Table 2. Comparison of Harmonic Measurement 
Errors in Power Systems between Two Methods/V 

Measurement 
frequency/time 

Maximum 
error limit 

Research 
Methods 

traditional 
method 

1 0.1 0.03 2.52 
3 0.1 0.02 3.04 
5 0.1 0.01 4.51 
7 0.1 0.01 3.53 
11 0.1 0.01 5.17 
19 0.1 0.01 4.52 
 
By analyzing the data in the table above, the following 

conclusions can be drawn: the average measurement error 
of the studied method is 0.02V, and the highest 
measurement error is only 0.03V. The measurement error 
is less than the maximum error limit, and the error value is 
relatively small, close to zero, indicating that the 
measurement results of the studied method are basically 
consistent with harmonics in the power system. The 
average measurement error of traditional methods is 3.31V, 
and the maximum measurement error is 5.17V, which is 
not only greater than the studied method, but also exceeds 
the maximum error limit. Thus, the experimental results 
clearly show that the method under study outperforms 
traditional approaches in terms of measurement accuracy 
and is better suited for the automated measurement of 
harmonics in power systems.  

 

5. Conclusion 

The author proposes research on the integration of wavelet 
transform and deep learning for power system harmonic 
measurement algorithm. In response to the problem of low 
measurement accuracy of existing mature harmonic 
measurement algorithms, this study applies mean filtering 
technology to power system harmonic automation 
measurement, and studies a new power system harmonic 
automation measurement method. The feasibility and 
reliability of this method are verified through experiments, 
which can provide reliable data basis for power system 
harmonic control and guarantee stable, reliable and safe 
operation of the power system. Therefore, this study has 
good practical significance.  

Acknowledgements. 
The author would like to express his heartfelt gratitude to the 
supervisor for his guidance and unwavering support during this 
research for his guidance and support.  
 
References 
[1] Kandezy, R. S.  Safarishaal, M. & Jiang, H. J. N. Refined 

convolution ‐ based measures for real ‐ time harmonic 
distortions estimation in power system dominated by 
inverter ‐ based resources. IET Power Electronics, 2023; 
16(16): 2708-2723. 

[2] Hae-Won, L. & Jang-Young, C. Improvement of harmonic 
measurement and test procedures considering inflow on the 
power source at the railway substation. transactions of the 
korean institute of electrical engineers, 2024; 73(4): 731-
737. 

[3] Wang, R.  Tao, J.  Zhang, H. & Zhu, Q. A distributed 
compensation method for active power filters based on 
model predictive control and kalman filter algorithm. IEEJ 
Transactions on Electrical and Electronic Engineering, 
2023; 18(7): 1076-1084. 

[4] Bonkoungou, D.  Korsaga, R. & Toussaint 
GuinganéSosthène TassembédoZacharie KoalagaFranois 
Zougmoré. Study and design of a dc/ac energy converter for 
pv system connected to the grid using harmonic selected 

EAI Endorsed Transactions 
on Energy Web | 

| Volume 12 | 2025 |



 Harmonic Measurement Algorithm of Power System Integrating Wavelet Transform and Deep Learning 
 
 
 

9 

eliminated (hse) approach. Open Journal of Applied 
Sciences, 2022; 12(3): 301-316. 

[5] Macii, D.  Bashian, A. & Shan X. Fontanelli D. Petri D. Wen 
H. Single-cycle p class phasor estimation based on 
harmonics whitening and off-nominal frequency offset 
adjustment. Electric Power Systems Research, 2024; 
229(Apr.): 1-12. 

[6] Song, Y.  Xiao, D. & He, H. Z. Measurement-based 
wideband model and electric parameter extraction of 
railway traction power system. IEEE transactions on 
transportation electrification, 2023; 9(1): 1483-1497. 

[7] Kandezy, R. S.  Safarishaal, M. & Jiang, H. J. N. Refined 
convolution ‐ based measures for real ‐ time harmonic 
distortions estimation in power system dominated by 
inverter ‐ based resources. IET Power Electronics, 2023; 
16(16): 2708-2723. 

[8] Ahmadi-Gorjayi, F. & Mohsenian-Rad, H. A physics-aware 
miqp approach to harmonic state estimation in low-
observable power distribution systems using harmonic 
phasor measurement units. IEEE Transactions on Smart 
Grid, 2023; 14(7): 2111-2124. 

[9] Du, L.  Feng, H.  Li, X.  Shao, X. & Yang, Z. Harmonic 
voltage measurement based on capacitive equipment 
dielectric equivalent model and responding current. IOP 
Publishing Ltd, 2024; 142(5): 385-392. 

[10] Nesri, M.  Benkadi, H.  Nounou, K.  Sifelislam, G. & 
Benkhoris, M. F. Fault tolerant control of a dual star 
induction machine drive system using hybrid fractional 
controller. Power Electronics and Drives, 2024; 9(1): 161-
175. 

[11] Zhou, X. J.  Xu, D. Z. & Huang, Y. R. Harmonic interaction 
analysis between multi-inverter system and power grid 
based on equivalent single-inverter model. Journal of 
Electrical Engineering & Technology, 2023; 18(1): 193-
203. 

[12] Yang, P.  Han, X. & Jiang, C. L. L. Modelling and analysis 
of lcc-hvdc converter station for harmonic coupling of ac/dc 
power grid during geomagnetic storm. IET Power 
Electronics, 2023; 16(14): 2423-2434. 

[13] Zhang, Y.  Li, S. & Luo, C. Y. Z. Output current harmonic 
analysis and suppression method for pmsm drive system 
with modular multilevel converter. IET renewable power 
generation, 2023; 17(13): 3289-3297. 

[14]  Kang, Z. & Li, L. Harmonic resonance analysis of shale gas 
distribution network with phased load, 2023; 11(1): 18-28. 

[15] Bonkoungou, D.  Korsaga, R. & Toussaint 
GuinganéSosthène TassembédoZacharie KoalagaFranois 
Zougmoré. Study and design of a dc/ac energy converter for 
pv system connected to the grid using harmonic selected 
eliminated (hse) approach. Open Journal of Applied 
Sciences, 2022; 12(3): 301-316. 

[16] Chamberlin Stéphane Azebaze Mboving, Hanzelka, Z. & 
Firlit, A. Analysis of the factors having an influence on the 
lc passive harmonic filter work efficiency. Energies, 2022; 
15(5): 1894. 

[17] Tanguturi, J. & Keerthipati, S. Module power balancing 
mechanism for a single-phase single-stage grid-connected 
photovoltaic cascaded h-bridge inverter. IEEE Transactions 
on Power Electronics, 2024; 39(2): 2777-2786. 

[18] Godbole, P. & George, S. A novel algorithm for optimal 
harmonic load flow including harmonic compensation. 
engineering technology & applied science research, 2023; 
13(1): 10093-10099. 

[19] Mukhopadhyay, S.  Maiti, D. & Biswas, C. S. K. Phase-
controlled multibank resistive heating with optimized 

current harmonics. IEEE Transactions on Industrial 
Electronics, 2023; 70(10): 9777-9785. 

[20] Berisha, N.  Prebreza, B. & Emini, P. Power quality 
analysis. case study for induction motor and 110/35kv 
substation. Przeglad Elektrotechniczny, 2023; 99(8): 120-
124. 

EAI Endorsed Transactions 
on Energy Web | 

| Volume 12 | 2025 |




