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Abstract 

Predicting the power output of photovoltaic clusters is crucial for optimizing regional solar power scheduling. To enhance 
the accuracy of distributed photovoltaic station power forecasts, a method incorporating spatiotemporal correlation and dual 
Attention-LSTM is introduced. First, the K-means algorithm is used to classify the distributed photovoltaic power plant 
clusters in the region based on the photovoltaic power curve. The reference station for the target photovoltaic station is 
determined by calculating the Euclidean distance between the target station and the typical daily power profiles of other 
stations in the cluster. Simultaneously, pivotal weather features that influence photovoltaic output are ascertained through 
computation of the Pearson correlation coefficient. Subsequently, an Attention-LSTM-based power prediction and error 
correction model is constructed, utilizing both meteorological and power traits as input variables to finalize the photovoltaic 
power generation forecast. To validate the approach, a simulation analysis is conducted using empirical data from Arizona, 
USA. The experimental results indicate that the suggested method greatly improves the accuracy of predictions for 
distributed photovoltaic power. 
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1. Introduction

In alignment with China's objectives for "carbon peak and 
carbon neutrality," and the ongoing advancement of energy 
transition strategies[1], renewable energy sources, 
predominantly solar (photovoltaic) and wind, are witnessing 
sustained growth with rising installation capacities annually. 
Moreover, distributed photovoltaic (PV) power generation 
has emerged as a significant direction in the swift evolution 
of solar energy production in recent times. A distributed  

*Corresponding author. Email: 220222221110@ncepu.edu.cn 

photovoltaic system involves installing solar power 
generation equipment on rooftops of buildings, industrial 
zones, residential areas, and other decentralized locations. 
Initially, we apply the K-means algorithm to classify clusters 
of distributed photovoltaic power stations in the region. We 
identify the reference station for the target photovoltaic 
station by calculating the Euclidean distance to the typical 
daily power profiles of other cluster stations. The 
experimental results show that this method greatly enhances 
the accuracy of photovoltaic power predictions. The system 
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generates electricity for self-consumption, feeding any excess 
back into the grid. Currently, distributed photovoltaic power 
generation is extensively implemented and promoted 
worldwide. Numerous countries and regions have introduced 
various policies and initiatives to foster the growth of 
distributed PV, aiming to reduce reliance on traditional 
energy sources and enhance the use of sustainable energy. In 
the context of a modern power system, the large-scale 
integration of distributed PV into the distribution network can 
change network currents, creating challenges for grid 
management. If regional distribution networks cannot handle 
the randomness and variability of PV generation, it may result 
in voltage fluctuations and reduce the capacity for PV 
consumption. Thus, precise short-term power forecasting for 
distributed PV is essential for optimizing power system 
operations and ensuring the grid operates safely[2]. 

Extensive research on centralized photovoltaic (PV) 
forecasting has been conducted both domestically and 
internationally. For example, literature[3] utilizes Principal 
Component Analysis (PCA) to reduce the dimensionality of 
multivariate data series that are highly correlated with PV 
power. The resulting principal component data series are then 
used to develop a short-term PV power prediction model 
based on the Long-Short Term Memory (LSTM) neural 
network. Literature[4] in the Gate Recurrent Unit (GRU) 
network algorithm on the basis of a time-shared GRU ultra-
short-term power prediction method, the model for each 
moment to establish a GRU model, a model predicts the 
power of a moment, to achieve time-shared photovoltaic 
power prediction. The above prediction methods all use a 
single prediction model, which has the problems of low 
prediction accuracy and poor stability, for this reason, a 
combination model is considered for prediction, and the 
combination prediction integrates each single prediction 
method, which can combine the advantages of each type of 
prediction method[5-6], and usually obtains a higher 
prediction accuracy. Extensive research into centralized PV 
power forecasting has been explored globally. Literature[7] 
utilized a Convolutional Neural Network (CNN) to extract 
spatial features from the data, followed by the application of 
Long-Short Term Memory (LSTM) for temporal feature 
extraction. This approach combines both methods with the 
Extreme Gradient Boosting (XGBoost) model through an 
error backpropagation technique, facilitating comprehensive 
forecasts of photovoltaic power generation. Another study[8] 
created a dataset of historical power output and correlated 
characteristics after applying wavelet noise reduction. It 
proposed a short-term PV power forecasting model that 
combines bidirectional Long-Short Term Memory (Bi-LSTM) 
and Random Forest (RF), resulting in high-precision, ultra-
short-term power predictions. Furthermore, the Attention 
mechanism, known for highlighting the significance of input 
features, was incorporated into core neural network units to 
enhance model's generalizability[9-10]. 

However, traditional centralized PV power plants are 
usually established in specific geographical locations, and 
their power prediction is usually modeled based on time 
series. In contrast, distributed PV systems comprise 
numerous plants spread across various geographic locations, 

exhibiting spatial correlations between them. Considering 
both temporal and spatial correlations can enhance the 
accuracy of power predictions for distributed PV systems[11]. 
Literature[12] combines data from neighboring multi-user 
sources to enhance the sample size and introduces a similar 
day search method that considers power correlation and 
correlation weights. This approach is used to implement day-
ahead forecasting with LSTM. On the other hand, 
Literature[13] employs meteorological data from nearby 
public weather stations and corrects for any discrepancies in 
this information to achieve accurate power predictions for the 
target site. Literature[14] performs gridded interpolation of 
meteorological resource data across a wide area and groups 
photovoltaic power stations with similar meteorological 
characteristics based on the interpolation results. This method 
is then integrated with LSTM to develop a dual migration 
model that shifts from the source domain to the target domain. 
The aforementioned methods tackle the issue of limited 
distributed PV data by enhancing it through geographic 
interpolation of meteorological resources or by fusing data 
from neighbouring PV stations. While these approaches 
improve the accuracy of distributed PV power predictions, 
they do not fully exploit the potential connections between 
the power sequences of nearby PV stations. Literature[15] 
utilizes the K-means clustering method, grouping stations 
based on the Euclidean distance of historical power 
generation data. It applies the Least Squares Support Vector 
Machine (LSSVM) model to analyse single-station 
predictions for spatially correlated power stations. 
Literature[16] develops a PV clustering method aimed at 
predicting power for large-scale distributed PV users. It 
selects PV power stations with spatial correlation to the target 
stations within the clusters and establishes an Autoregressive 
Moving Average (ARMA) model for power prediction of the 
identified PV stations. Literature[17] first employs an 
integrated XGBoost-LSTM model to forecast based on 
historical time series data of PV installations. It then utilizes 
the Least Squares Support Vector Machine (LSSVM) model 
to leverage spatial correlations between PV plants for 
predictive purposes. Ultimately, by evaluating the prediction 
errors from both models, it calculates the weights for each 
model. These weights are then combined to derive the 
forecasted power of the time-combined model. The method 
described above forecasts the power output of target PV 
plants by establishing a connection between the power series 
of target and reference PV plants. However, it relies solely on 
a single power characteristic as the model's input, 
overlooking the influence of weather features and additional 
power traits. Consequently, there remains potential for further 
enhancement of the model's predictive accuracy. Furthermore, 
the aforementioned methods either do not incorporate error 
correction models or utilize overly simplistic ones, which fail 
to adequately mitigate the impact of random errors and noise 
on model predictions. This results in a prediction model that 
is highly sensitive to data noise, lacking robustness and 
stability, and exhibiting significant errors under complex and 
fluctuating weather conditions. 

Considering these factors, this study presents a short-
term power forecasting methodology for distributed 
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photovoltaic (PV) systems that utilizes spatiotemporal feature 
fusion and model error correction to improve the accuracy of 
distributed PV power predictions. Section 2 divides 
distributed photovoltaic clusters based on power curves. 
After division, each photovoltaic power station group has 
meteorological consistency. Section 3 uses the Pearson 
correlation coefficient to determine the key meteorological 
characteristics of the target photovoltaic power station, and 
selects the reference photovoltaic power station by 
calculating the Euclidean distance between the power 
sequence of the target power station and other photovoltaic 
power stations in the cluster, thereby completing the model 
input characteristics Build. Section 4 builds a power 
prediction model and error correction model based on 
Attention-LSTM. The weather characteristics of the target 
photovoltaic power station and the power of the reference 
photovoltaic power station are jointly input into the power 
prediction model for prediction, and the error correction 
model is used to reduce the error of the power prediction 
model forecast error. Experimental simulations are carried 
out in Section 5. The results indicate that the method 
presented in this paper significantly improves the accuracy of 
distributed PV power predictions. 

2. Distributed PV cluster segmentation 

2.1. Correlation between photovoltaic power 
and meteorological factors 

The power production from photovoltaic (PV) systems is 
affected by various meteorological elements such as 
irradiance, temperature, humidity, wind velocity, and wind 
bearing. Reflecting the significant connection between PV 
power output and solar irradiance, the power curve of a PV 
plant can serve as an equivalent indicator of irradiance[18]. 
This represents the local light intensity, temperature, and 
additional meteorological details. By dividing the PV power 
station clusters based on the PV power history data, the data 
characteristics of each station within the cluster can be 
converged and have similar meteorological conditions. This 
categorization considers the sensitivity of the photovoltaic 
(PV) power system to solar irradiance and how PV modules 
respond under varying meteorological conditions. As a result, 
it allows for a better understanding and analysis of PV power 
plant operations. By grouping stations with similar 
meteorological characteristics, the power output of a PV 
cluster can be assessed and predicted more accurately, 
offering a more reliable reference for the operation and 
management of PV power systems. 

2.2. Distributed PV cluster segmentation 
based on K-means algorithm 

There are two main types of cluster partitioning algorithms 
commonly used today, one is cluster analysis (cluster analysis) 

algorithm and the other is association structure discovery 
(community detection) algorithm[19]. 

The K-means algorithm is a widely used technique for 
cluster analysis. In a scenario with n data points to be grouped 
into k clusters, the procedure starts by randomly choosing k 
points as the initial centroids. Subsequently, the remaining n-
k data points are allocated to the closest cluster by minimizing 
their distance to the centroids. Following this allocation, the 
mean of all data points within each cluster is computed to 
update and establish the new centroids. The steps for dividing 
the clusters of distributed PV plants based on K-means 
algorithm are as follows: 

Step 1: For each distributed PV power plant, the annual 
PV power data are standardized. 

Step 2: Select n typical days and calculate the mean, 
standard deviation, coefficient of variation, kurtosis and 
skewness of their power, respectively, where the expressions 
for the mean, standard deviation, and maximum value are not 
repeated, and the coefficient of variation, kurtosis, and 
skewness are defined as: 
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In the formula, Xi denotes the value of the i-th data point 

in the sample for the variable X; X  represents the mean of the 
variable X; X indicates the sample size; and σ  signifies the 
standard deviation of the variable. 

Step 3: The mean, standard deviation, maximum, 
coefficient of variation, kurtosis and skewness of the n typical 
daily powers are used as clustering features and clustered 
using K-means clustering algorithm. 

Step 4: Analyse the contour coefficients under different 
number of clusters, select the best clustering results, and 
complete the distributed PV power plant cluster division. 

One of the contour coefficients is a metric used to 
evaluate the clustering results[20] and is used to measure the 
tightness and separation of the clusters. Where the definition 
of the profile coefficient ( )S i is shown below, the closer the 
value of the profile coefficient is to 1 the better the clustering 
effect of the model, and the closer it is to -1 the worse the 
clustering effect of the model. 
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In the formula, ( )a i denotes the average distance from 

sample point i  to other sample points in the same cluster; 
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( )b i denotes the average distance from sample point i  to all 
other sample points in some cluster. 

3. Input feature construction based on 
spatio-temporal correlation models 

3.1. Analysis of photovoltaic power influencing 
factors 

PV power generation is affected by various meteorologic 
factors, such as irradiance, temperature, humidity, wind speed, 
and wind direction. Therefore, it is essential to analyse the 
correlations among these variables to identify the primary 
factors impacting PV power output[21]. Pearson coefficients 
can better reflect the degree of linear correlation between 2 
random variables[22], and for the 2-length n of the data series 
X and Y, the Pearson correlation coefficient between series X 
and Y is expressed using X ,Yρ , which is calculated as: 
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In the formula: iX and iY  represent the value of the i-th 

data point in the sample on variable X and variable Y, 
respectively; X and Y  represent the mean values of 
variable X and variable Y; n represents the sample size. 

3.2. Proximity to photovoltaic power plant 
selection 

The Euclidean distance is a commonly used metric for 
calculating the straight-line distance between two points in a 
multidimensional space. Most traditional similar day theories 
identify a similar day to the predicted day by calculating the 
Euclidean distance between the attribute values[23]. 
Applying it to the comparison of power profiles among 
different PV plants, their differences can be assessed by 
calculating the Euclidean distances between typical daily 
power profiles of different PV plants. To identify the PV plant 
with the most similar power characteristics to the target plant, 
the reference PV plant is chosen based on the smallest 
Euclidean distance. This is done by calculating the Euclidean 
distances between the target PV plant and the n typical daily 
power curves of each plant within the cluster after it has been 
segmented. The formula for calculating the Euclidean 
distance is shown below: 
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1

n
i ii

dist X ,Y X Y
=

= −∑  (6) 

 

In the formula: iX and iY   represent the values of the i-
th data point in the sample on variable X and variable Y 
respectively 

 

3.3. Model of input feature construction 

Currently on the construction of power prediction model 
input features are only based on meteorological features or a 
single power feature, so in this paper, we construct an 
extended matrix that integrates meteorological features and 
power features: 
 

{ }1 2F W ,W Wn,Ppv= …   (7) 
 

In the formula: 1 2W ,W Wn…  is a key meteorological 

feature that affects PV output; Ppv  predicted power for 
reference photovoltaic plants. 

The construction method of specific model input 
features is as follows: 

Step 1: Weather features with high impact on PV power 
are selected from all-weather features based on the method in 
Section 2.1. 

Step 2: A reference PV plant for the target PV plant is 
selected based on the method in Section 2.2, and the predicted 
power of the reference PV plant is calculated based on the 
model proposed in Section 3. 

Step 3: Combine the weather features of the target time 
period with the predicted power sequence of the reference PV 
power plant at the target time period to complete the 
construction of the model input features. 

4. Attention-LSTM-based power prediction 
model and error correction model 
construction 

4.1. LSTM model 

LSTM is a modified Recurrent Neural Network (RNN)[24] 
that removes or adds information through forgetting gates, 
input gates, and output gates so that only the important 
information is retained, thus avoiding the phenomenon of 
gradient explosion that exists in RNNs. 

4.2. Attention mechanism 

The Attention mechanism is a widely used technique in 
machine learning[24] that mimics human attention. It allows 
models to selectively focus on the most relevant aspects of 
the input by dynamically assigning varying weights to 
different positions within the input sequence. In models using 
the Attention mechanism, the correlations between each 
location in the input sequence and the current output location 
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are computed, and then these correlations are converted into 
weights that are used to weight the average input sequence 
representation. In this way, the model is able to adaptively 
focus more attention on the information that is more 
important to the current task, thus improving model 
performance. 

4.3. Attention-LSTM-based power prediction 
model and error correction model construction 

The structure of the Attention-LSTM model is shown in 
Figure 1. The LSTM network depicted in the figure consists 
of two LSTM layers, with a Dropout layer added after each 
to mitigate overfitting during training. The Attention 
mechanism enhances the LSTM model by dynamically 
learning and assigning weights, enabling the model to better 
capture relevant information from the input sequences that 
pertains to the prediction outcomes. Ultimately, the 
predictions are produced through a fully connected layer 
(Dense). 
 

LSTM

LSTM

Input

Attention

Dropout

Dropout

Dense

Output
 

Figure 1. Attention-LSTM model structure 

To improve the accuracy of distributed PV power 
prediction, this paper presents an error correction model 
based on Attention-LSTM, extending the existing Attention-
LSTM power prediction model. The data is first divided into 
three groups: A, B, and C. The Attention-LSTM power 
prediction model is first trained using the data from group A. 
The trained model is then used to predict the power output for 
the data in group B. The data in group B is predicted using 
the Attention-LSTM power prediction model. Subsequently, 
the differences between the predicted values and the actual 
values for group B are calculated, and the Attention-LSTM 
error correction model is trained based on this sequence of 
differences. Finally, both the power prediction model and the 
error correction model are employed to predict the data in 
group C. The final prediction result for group C is obtained 
by summing the outputs from the power prediction model and 
the error correction model. The flow of power prediction with 
Attention-LSTM power prediction model and the error 
correction model is shown in Figure 2. 

The main flow of the method proposed in this paper is 
shown in Figure 3. First, the K-means algorithm is used to 
divide the distributed photovoltaic power station groups in 
the region. Then, by calculating the Euclidean distance 
between the target photovoltaic power station and the typical 
daily power sequence of other photovoltaic power stations in 
the cluster, the reference photovoltaic power station of the 
target photovoltaic power station is selected. At the same time, 
the key meteorological characteristics that affect photovoltaic 
output are determined by calculating the Pearson coefficient. 
Finally, a power prediction model and error correction model 
based on Attention-LSTM were established, and 
meteorological characteristics and power characteristics were 
used as inputs to the model to complete the prediction of 
photovoltaic power generation. 

 
Data for A Data for B

Data for C

Power Prediction 
Model

Power Prediction 
Value for B

Error Series for B

Error Prediction Model

Error Prediction Value 
for C

Error Prediction Value 
for C

Power Prediction 
Value for CFinal Prediction for C

 

Figure 2. Power prediction process 

EAI Endorsed Transactions on 
Energy Web 

| Volume 12 | 2025 | 



 
Yueyuan Zhang et al. 

  6      

Attention-LSTM power  
prediction modeling

Power Prediction 
Value

 Error Series

Error Prediction Value

Fina l prediction result

Attention-LSTM Error 
Correction Modeling

Key meteorological fea tures 
affecting PV output

Pearson's coefficient calculation

Weather  Features

Predicted power of re ference 
photovoltaic plant

Reference PV plant selection

K-means based distributed 
photovoltaic cluster division

True  value of power

 

Figure 3. The main method flow of this paper 

The main flow of the method proposed in this paper is 
shown in Figure 3. First, the K-means algorithm is used to 
divide the distributed photovoltaic power station groups in 
the region. Then, by calculating the Euclidean distance 
between the target photovoltaic power station and the typical 
daily power sequence of other photovoltaic power stations in 
the cluster, the reference photovoltaic power station of the 
target photovoltaic power station is selected. At the same time, 
the key meteorological characteristics that affect photovoltaic 
output are determined by calculating the Pearson coefficient. 
Finally, a power prediction model and error correction model 
based on Attention-LSTM were established, and 
meteorological characteristics and power characteristics were 
used as inputs to the model to complete the prediction of 
photovoltaic power generation. 

5. Experimental results and analysis 

In order to validate the effectiveness of using spatio-temporal 
fusion features as well as complex error correction models. 
This paper utilizes power data and meteorological data from 
48 distributed PV power plants in Arizona, USA, covering 
the period from January 1, 2006, to December 31, 2006, for 
simulation and analysis. Each PV plant has an installed 
capacity ranging from 30 to 150 MW, with data sampled at 

30-minute intervals, resulting in 48 observations collected 
daily. The dataset is divided into a training set and a test set 
in an 80% to 20% ratio. 

5.1. Data preprocessing 

(1) Outliers handling 
The initial PV power and meteorological data have some 

outliers and missing values, which affect the accuracy and 
reliability of the data, resulting in the inability to use them 
directly for predictive analysis. Therefore, before prediction, 
the data need to be processed by data cleaning, so as to 
remove outliers and fill in missing values. 
(2) Data standardization 

In order to eliminate the differences in physical 
dimensions and accelerate the convergence speed of the 
model degree, The original PV power and meteorological 
data are normalized using the maximum-minimum method, 
ensuring that all values fall within the range of [0, 1] after 
normalization. 

5.2. Distributed photovoltaic power plant 
cluster segmentation results 

For each PV plant, May 15 (spring), August 15 (summer), 
November 15 (fall), and February 15 (winter) are selected as 
the feature days, and the mean, standard deviation, coefficient 
of variation, kurtosis, and skewness of the power of each 
feature day are computed respectively, and the power features 
of the four feature days are clustered as the cluster features. 
The contour coefficients corresponding to different 
classification numbers are shown in the table, and the results 
of cluster division of distributed PV are shown in Figure 4. 
 

LSTM

LSTM

Input

Attention

Dropout

Dropout

Dense

Output
 

Figure 4. Results of distributed PV cluster division 

Among the clusters, PV clusters 1, 2, and 3 consist of 18, 
10, and 20 distributed PV power stations, respectively. It is 
clear that clusters formed based on PV power characteristics 
generally belong to the same geographic area. This indicates 
that the stations within these clusters can be viewed as small-
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scale PV power station groups sharing consistent 
meteorological conditions. 

5.3. Distributed PV power prediction results 

5.3.1. Analysis of influencing factors of photovoltaic 
power generation 
Using the No. 1 power station in the No. 1 PV cluster as an 
example, Table 1 displays the Pearson correlation 
coefficients between the power station's output and various 
meteorological factors. It is evident that Global Horizontal 
Irradiance (GHI) has a very strong correlation with PV power 
output. Direct Normal Irradiance (DNI) and the solar zenith 
angle also exhibit strong correlations with PV power. 
Relative humidity shows a medium correlation, while Direct 
Horizontal Irradiance (DHI), wind speed, dew point, and 
temperature have weak correlations. Pressure, wind direction, 
and surface albedo have almost no correlation with PV power. 
Four features with high correlation, i.e., GHI, DNI, solar 
zenith angle, and relative humidity are selected in the text as 
the main meteorological output parameters affecting PV 
power. 

Table 1. Pearson coefficient of each meteorological 
factor 

Weather 
Characteristics 

Pearson 
Factor 

Weather 
Characteristics 

Pearson 
Factor 

DHI 0.192 Temperature 0.311 
DNI 0.683 Pressure -0.006 

Dewpoints -0.205 GHI 0.851 
Surface 
Albedo 0.128 Wind 

Direction 0.062 

Wind Speed 0.255 Solar Zenith 
Angle -0.693 

Relative 
Humidity -0.476   

 
5.3.2. Reference PV plant selection results 
Using PV cluster No. 1 as an example, for each PV plant in 
the cluster, the dates May 15 (spring), August 15 (summer), 
November 15 (fall), and February 15 (winter) are selected as 
typical days. PV No. 1 is designated as the target PV plant, 
and the sum of the Euclidean distances between the typical 
days of the target PV plant and those of the other PV plants 
in the cluster is presented in Table 2. From the table, it can be 
seen that the Euclidean distance between PV power plant No. 
10 and the typical day of the target PV power plant is the 
smallest, so PV power plant No. 10 is selected as the 
reference power plant for PV power plant No. 1. 

Table 2. Euclidean distance between meteorological 
stations 

Power Station 
Number 

European 
Distance 

/MW 

Power Station 
Number 

European 
Distance 

/MW 
Power Station 

2 3.516 Power Station 
10 3.132 

Power Station 
3 6.133 Power Station 

11 3.742 

Power Station 
4 3.467 Power Station 

12 3.698 

Power Station 
5 3.348 Power Station 

13 4.532 

Power Station 
6 3.298 Power Station 

14 4.429 

Power Station 
7 3.459 Power Station 

15 4.288 

Power Station 
8 3.845 Power Station 

16 5.187 

Power Station 
9 3.272 Power Station 

17 5.559 

 
5.3.3. Predictive model performance evaluation and 
error analysis 
(1) Evaluation indicators 

Mean Absolute Error (MAE) and Mean Squared Error 
(MSE) are utilized as error evaluation metrics. The formulas 
for calculating the two indicators are shown below: 
 


1

1 n

i
MAE yi yi

n =
= −∑   (8) 

( )2

1

1 n

i i
i

MSE y ŷ
n =

= −∑   (9) 

 
In the formula: iy  stands for the value of the i-th data 

point in the sample at the true value y  , respectively; ˆiy  
stands for the value of the ith data point in the sample at the 
predicted value ŷ  , respectively; and n   stands for the 
number of samples. 
(2) Comparative analysis of different input features 

To validate the effectiveness of using spatio-temporal 
information fusion features as model inputs, the prediction 
model incorporating these features is compared with models 
that utilize only meteorological or power features. To ensure 
the objectivity of the comparison, all experiments employ the 
Attention-LSTM-based power prediction model along with 
the error correction model. 

As an example, the experimental results of power station 
No. 1 in PV cluster No. 1 are shown in Figure 5 and Table 3. 
Figure 5 demonstrates the comparison of PV power 
prediction curves randomly selected from November 17 
(sunny), November 12 (cloudy), and November 28 (rainy) 
from 7:00 to 19:00, and Table 3 demonstrates the comparison 
of the errors under different input characteristics. 
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Table 3. Error comparison of different input features 

Input Features MAE/MW MSE/MW 
Temporal and 

Spatial Integration 
Features 

2.71 16.72 

Meteorological 
Feature 2.93 18.91 

Power 
Characteristics 3.26 21.33 

Meteorological 
Feature 2.93 18.91 

 
From Table 3, it can be seen that the MAE and MSE of 

the method proposed in this paper with spatio-temporal 
information fusion features as model input features are 2.71 
MW and 16.72 MW, respectively. In comparison to the 
meteorological features., the MAE and MSE are reduced by 
7.51% and 11.58%, respectively; compared with the power 
features, the MAE and MSE are reduced by 16.87% and 
21.61%, respectively. It is evident that utilizing 
spatiotemporal information fusion features as model inputs 

can significantly enhance the accuracy of distributed PV 
power prediction. 
(3) Comparative analysis of the results of different error 
correction models 

To verify the effectiveness of the Attention-LSTM error 
correction model, a comparative analysis will be conducted 
among the Attention-LSTM error correction model, the 
XGBoost error correction model, and a scenario without any 
error correction. To ensure objectivity, all experiments will 
use the Attention-LSTM power prediction model, with 
spatiotemporal information fusion features as input. 
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(C) rainy 

Figure 5. Comparison of prediction results under different input characteristics 

Taking the No. 1 power station in the No. 1 PV cluster as an 
example, the experimental results are shown in Figure 6 and 
Table 4. Figure 6 shows the comparison of the PV power 
prediction curves for November 17 (sunny), November 12 
(cloudy), and November 28 (rainy) from 7:00 to 19:00, and 
Table 4 shows the comparison of the errors under different 
error correction models. 
 

Table 4. Error comparison of different error models 
 

Input Features MAE/MW MSE/MW 
Error-Free 

Correction Model 
3.24 23.12 

XGBoost Model 2.97 20.14 
Attention-LSTM 

Modeol 
2.78 17.95 
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(B) cloudy 

 
(C) rainy 

Figure 6. Comparison of prediction results under different error correction models 

As shown in Table 4, the Mean Absolute Error (MAE) and 
Mean Squared Error (MSE) of the Attention-LSTM error 
correction model proposed in this paper are 2.78 MW and 
17.95 MW, respectively. Compared to the XGBoost error 
correction model, the MAE and MSE are reduced by 6.39% 
and 10.87%, respectively. Additionally, when compared to 
the scenario without any error correction model, the MAE 
and MSE decrease by 14.19% and 22.36%, respectively. 
These results indicate that the Attention-LSTM error 
correction model effectively enhances the accuracy of 
distributed PV power predictions. 

6. Conclusion 

This paper presents a method for short-term power 
prediction of distributed photovoltaic (PV) systems that 
utilizes a fusion of spatial and temporal features, combined 
with model error correction, to improve prediction 
accuracy, and the main conclusions are as follows: 

(1) A model input feature construction method that 
accounts for spatiotemporal correlation is proposed. This 
approach jointly utilizes the weather features of the target 

PV plant and the power features of the reference PV plant 
as input features for the model. By incorporating these 
fused features, the accuracy of distributed PV power 
prediction is enhanced compared to models that use only 
weather features or power features as inputs. 

(2) An Attention-LSTM-based error correction model 
is proposed, building upon the Attention-LSTM power 
prediction model. Compared to scenarios with no error 
correction or the use of a simple error correction model, the 
Attention-LSTM error correction model effectively 
reduces the prediction error of the power prediction model, 
yielding superior results. 

However, the problem of gradient disappearance or 
explosion of the Attention-LSTM model used in this article 
still exists. Therefore, more advanced models such as 
LSTNet can be considered in future work to further 
improve the accuracy of photovoltaic power prediction. 
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