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Abstract 

INTRODUCTION: Power systems are complex due to their time-varying and uncertain parameters, challenging 
conventional control methods. 
OBJECTIVES: This study proposes an adaptive dynamic programming (ADP) controller to address this limitation. The ADP 
controller eliminates the need for pre-existing knowledge of the system dynamics, a significant advantage in real-world 
applications. 
METHODS: By iteratively solving the Riccati equation using only system state and input data, the controller learns an 
approximate optimal control strategy. In this study, we use an iterative computational approach with an online adaptive 
optimal controller designed for unknown power system dynamics. 
RESULTS: Utilizing real-time collected system states and input information, even in the absence of knowledge about the 
power system matrix, we achieve iterative solutions for the algebraic Riccati equation, enabling the computation of an 
optimal controller. Simulation results demonstrate the ease of implementation of this approach in power system load 
frequency control (LFC). 
CONCLUSION: The proposed ADP controller exhibits good control performance of grid stability, making it a valuable 
reference for LFC, especially in scenarios with unknown system parameters. 
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1. Introduction

The power system represents a dynamic and extensive
system with substantial dimensions, exhibiting pronounced 
non-linearity, time variations, and unidentified parameters. 
It encompasses numerous unmodeled dynamic components, 
making efficient control a formidable challenge [1] . 
Nowadays, the expanding power system, characterized by 
large-capacity units, high-voltage grids, AC and DC 
interconnections and the utilization of new energy sources, 
such as solar energy, has exacerbated challenges in terms of 
security and stabilization. The power system’s failure or 
random fluctuations, if not appropriately controlled, could 
precipitate system collapse, severely impacting daily life and 
potentially resulting in substantial economic losses. 
Consequently, effective control of the power system to 
ensure the stability and safety of its operation is of practical 
importance in the current[2][3][4][5][6]. 

Voltage frequency stands out as one of the most crucial 
indices of the power system. For the purpose of solving those 
problems effectively and provide reliable and stable power, 
the LFC design of power system is the key[7][8]. In this 
regard, the current more traditional method is based on the 
classical controller to curtail the regional control fault of the 
power system and improve the frequency response. 
Numerous scholars have delved into research on 
it[9][10][11][12]. However, for increasingly complex power 
systems, the traditional control methods have exposed 
problems such as slow response speed, low fault tolerance 
of the actuator and lack of robustness to parameter 
uncertainties. As a result, the optimal control method of load 
frequency has been spawned, capturing the interest of 
numerous scholars in recent years[13][14]. 

Optimal control, alternatively termed dynamic or 
process optimization, addresses the fundamental question of 
determining the optimal control law or control strategy 
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depended on the dynamic characteristics of the controlled 
system within defined constraints. This aims to enable the 
system to operate in accordance with specific technical 
requirements, ensuring it attains the optimal value as per the 
specified performance index or objective 
function[15][16][17]. 

Aiming at the optimal control of load frequency, Vahid 
Gholamrezaie proposes an optimal control way for the 
dynamic load frequency control model, and uses PSO 
algorithm to accelerate the response time of the 
model[18] .The optimal regulator theory for the LFC is used 
in[19]. LFC in an economic dispatch perspective is applied 
to[20]. Liu F combines economic indicators and stability 
indicators to build an optimal load control framework for 
restructuring power systems[21].The optimal robust 
regulator for system LFC issue was proposed by Rahmani M 
by using a two-level strategy[22]. 

However, in the case of solving the optimal control issue 
of the dynamic system, the above method requires real-time 
observation of the dynamic state of the system, and the 
traditional dynamic programming method is often plagued 
by the ‘ dimension disaster ‘ problem, which makes its 
application limited[23][24]. Meanwhile, the common 
dynamic programming algorithm assumes that the 
parameters of the system are completely known. For the 
power system, this assumption is not convenient to apply in 
real life. In order to overcome this challenge, adaptive 
dynamic programming technology[25]. came into being. It 
is a new control technology that integrates dynamic 
programming, reinforcement learning, adaptive control, 
optimal control and other theories and methods. It builds a 
more practical theoretical system that provides a broader 
perspective on the solution of such problems. Its core idea is 
to obtain the system state and input data in real time, and 
dynamically adjust the control strategy iteration process to 
adapt to the dynamic changes of the system, thereby 
enhancing the robustness and performance. 

Recently, the ADP method for discrete-time systems has 
garnered significant interest among numerous researchers, 
as follows : WeiQinglai(2010)[26], linxiaofeng(2011)[27], 
hamingmig(2023)[28], Ni, He, Zhong, and 
Prokhorov(2015)[29] and so on. Since many systems in 
practice can be modeled and represented as a continuous 
time system, adaptive dynamic programming algorithms for 
such systems have been widely studied, such: A model 
applicable to control parameters over a range is proposed in 
2022, bridging the local optimization problem[30], there are 
also scholars who combine dynamic planning and heuristic 
optimization according to the characteristics of continuous-
time systems to improve the overall performance of control 
and so on[31][32]. 

In the above literature review, we note that the 
application of adaptive dynamic programming in power 
system load frequency control is relatively limited. Such 
limitations and challenges may lead to poor performance of 
the system in dealing with complex low-frequency 
disturbances, and affect the stable operation and robustness 
of the system. In view of the existing situation, this paper 
aims to study the application of ADP in LFC of power 
system. 

The primary contributions of this paper are, first, the 
successful elimination of the dependence of traditional 
dynamic programming algorithms on a priori information 
about the system dynamics, paving the way for the 
application of the ADP algorithm. Second, real-time 
information about the states and inputs is incorporated into 
the iterative solution process of the Riccati formulation, thus 
eliminating the need for prior knowledge of the system 
matrix. Third, compared with the traditional method, the 
method can reuse the same state and input data in iterations 
at fixed time intervals, thus avoiding the difficult problem of 
dimensional catastrophe, making it more applicable to real 
power system states, and improving the algorithm’s 
computational adaptability and practicality. The innovation 
of this study primarily lies in the novelty of the algorithm 
itself. It is to be noted that the algorithms in this paper are 
model-free based, unlike traditional control methods that 
must require the system model to be known, and thus do not 
lend themselves to direct comparisons with these methods. 
Simulation results show that the algorithm is suitable for the 
complex LFC domain in power systems. In the context of 
the increasing complexity of power systems, this study is of 
great significance for understanding and applying more 
generalized ADP algorithms. 

The document’s structure is outlined as outlined below. 
In Section 2, a succinct introduction is provided, the policy 
iteration approach is applied to the conventional linear 
optimal control problem relevant to continuous-time power 
systems. Transitioning to Section 3, a new computational 
ADP approach is introduced, showcasing its convergence. 
Furthermore, an online algorithm with practical implications 
is presented. Section 4 delves into the application of the 
developed method to the optimal design of the regulator 
challenge in a power system. In Section 5, we conclude with 
some concluding remarks and discuss potential extensions. 

Notation 

We utilize R representing the real numbers set, ⊗ is the 
tensor product of matrices, • is the norm. Z + stands for the

positive integers and zero, and 1 1( ) [ ]T T T T
mvec A a a a= 

where n
ia ∈ are the columns of A. 

2. Materials and Methods

This paper will study a power system[33],which is well-
documented in existing literature. In the situation of normal 
power system operation, disturbances are generally of small 
magnitude and their impact on the state of the system is 
relatively limited. In view of this, the above system can be 
generalized as shown below. The model block diagram is 
shown in Fig.1: 

1 1
g g g

T T

P P X
T T

∆ = − ∆ + ∆   (1) 

1 p
g

p p

K
f f P

T T
∆ = − ∆ + ∆  (2) 
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EE K f∆ = ∆     (3)
1 1 1 1

g g
G G G G

X f X E u
R T T T Tτ

∆ = − ∆ − ∆ − ∆ +    (4) 

The above symbols are described as follows, gP∆ is the 
change of the generator output, f∆  represents the frequency 

deviation, E∆  means the integral control, gX∆   indicates 
the change of the regulator position, TT is the time constant 

of turbine, GT   is the time constant of governor , pT  is the 

time constant of the model, Rτ  represents the speed 

regulation. EK  and pK  represent the corresponding gain. 
For the convenience of readers, Table 1 provides the 
symbols used in the manuscript and their corresponding 
definitions for quick reference.

Fig. 1. Power system model sketch 

The above model (1)-(4) can be denoted as Eq. (5): 

x Ax Bu= +      (5) 

where, [ , , , ]T
g gx f P X E= ∆ ∆ ∆ ∆  , n mB ×∈  , n nA ×∈

are unknown matrix. mu∈  as the control data. 
extraordinary, this paper assumes that the system is stable. 
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The main objectives of this paper are to address the 
specified controller:  

u Nx= −      (6) 

Make the following evaluation index function minimum 

0
( )T TJ x Qx u Ru dt

∞
= +∫

 (7) 

where 0TQ Q= ≥  , 0TR R= >   with ( )1/2,  A Q
observable. 

Table 1: Notation and Corresponding Definitions 

Notation Definition 

gP∆ the change of the generator output 

f∆ frequency deviation 

E∆  integral control 

gX∆ the change of the regulator position 

TT    the time constant of turbine 

GT the time constant of governor 

pT the time constant of the model 

Rτ  the speed regulation 

EK the corresponding gain 

pK the corresponding gain 

In accordance with the linear optimal control theory 
proposed by Lewis and Symos, when the accurate 
information of matrices B and A is available, solving the 
renowned ARE provides the solution to the problem. 

1 0T TA M MA Q MBR B M−+ + − =   (8) 

where *M  is a matrix of positive definite symmetry,
consequently, an optimal feedback matrix *N  can be
obtained by using the following equation 

* 1 *TN R B M−=      (9) 

Since M in the above Riccati equation is nonlinear, 
directly solving M* can be challenging, particularly for 
matrices of substantial size. Nonetheless, numerous 
effective algorithms have been devised for the numerical 
approximation of the solution to equation (8). An example 
of such an algorithm is the one developed in the 70’s., which 
is elucidated below:  

Given 0
m nN R ×∈   is stable feedback matrix, and if a 

positive definite symmetric matrix iM  is a solution of the 
following equation[34]. 

( ) ( ) T
i i i i i iA BN M M A BN Q N RN− + − + +   (10) 

Where, iN , i =1,2, …, is updated by: 

1
1

T
i iN R B M−

−= (11) 

Among them, the subsequent characteristics are 
established: 

iA BN−  is Hurwitz, *
1i iM M M+≥ ≥  and 

* *lim , limi i i iN N M M→∞ →∞= =
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Based on the fact that it is very difficult to solve Eq. (10) 
without explicitly defining A, Vrabie et al. researchers used 
an approach through online information collection as shown 
in Eq.(12), which successfully reduces the difficulty of the 
problem and eases the designer’s workload.  

( ) ( ) ( ) ( )

( )

T T
i i

t t T T
i it

x t M x t x t t M x t t

x Qx u Ru dτ
+∆

− + ∆ + ∆

= +∫
     (12) 

where i iu N x= −   represents the system’s manipulated
command during[t, t t]+ ∆ . 

Owing to the online measurement of both x  and iu  ,a 
distinctive symmetric solution, denoted as iM  , can be 
uniquely ascertained in the presence of a persistent 
excitation (PE) condition. But, as evident from (11), 
Accurate understanding of the system matrix B remains 
essential for the iterative process. Furthermore, ensuring the 
PE condition may require resetting the state at each iteration, 
potentially posing challenges for stability. Another approach 
involves incorporating measurement noise, where the 
control input iu  is given by i iu N x e= − +  , with e 
representing measurement noise serves as the actual input 
data in equation (12). Consequently, the solution iM  
obtained from (12) differs from that obtained from (10). 
Additionally, following each revision of the control policy, 
it is necessary to gather information on both the state and 
input to facilitate the subsequent iteration This process may 
impede the learning pace, particularly in higher dimensional 
system. 

3. Results

In the previous chapter, we have mentioned that even
when the matrices A and B are completely known, solving 
Eq. (10) is also a big job and difficult to complete. This 
section proposes a data-driven solution to Eq. (10) that does 
not depend on the matrix pair (A, B) information.  

First, we assume that the stable N0 is known. And for 
i Z∈ + , the matrix iM satisfying (10) is obtained, and the

1
m n

iN ×
+ ∈  is obtained by 1

1
T

i iN R B M−
+ =  iterative 

updating. 

Therefore, we write system (5) as follows: 

( )i ix A x B N x u= + +    (13) 

where, i iA A BN= −

Then, according to the second section, the solution of 
equation (9) can be expressed as 

1

( ) ( ) ( ) ( )

    = [2( ) ( ) ]

    = 2 ( ) ]

T
i i

t t T T T T
i i i i i it

t t t tT T
i i it t

x t M x t x t t M x t t

u N x B M x x A M M A x d

u N x RN x d x Q xd

τ

τ τ

+∆

+∆ +∆

+

− + ∆ + ∆

− + + +

− + +

∫
∫ ∫

     (14) 

where Q =Q+NT
i i iRN

Remark 1. In Eq.(14), the term involving the unknown 
matrices A and B, denoted as ( )T T

i i i ix A M M A x+   is 
replaced by a term that can be obtained by online state 
measurements.  Also, the term T

nB M   is substituted with

1  iRN + , in which 1iN +  will be solved for later as an unknown 
quantity through an iterative formula containing iM . Hence, 
Eq. (14) eliminates the need for system matrices A and B for 
controller parameters solving. Besides, the state and input 
data of the system will participate in the subsequent 
iterations of the solution. 

Remark 2. It’s worth noting that in Eq. (14), equation is 
consistently maintained when both 𝑀𝑀𝑖𝑖 , 𝑁𝑁𝑖𝑖+1  adhere to the 
conditions specified in (10) and (11). and 𝑥𝑥 for system (13) 
with any u allows us to utilize 𝑢𝑢 =  −𝑁𝑁0𝑥𝑥 +  𝑒𝑒 as the input 
data for learning, where e represents the exploration noise. 
Importantly, this choice does not compromise the 
astringency of the learning procedure. 

Subsequently, we demonstrate that given a stabilizing
iN  , matrices ( )1i iM N +  , with 1i iM N +=  meeting (10)

and (11) can be only ascertained without knowledge of A or 
B. 

To achieve this, this paper introduces the following two 
operators: 

1 ( 1)
2ˆ n nn nM M

× +×∈ → ∈  , and
1 ( 1)
2

n nnx x
+

∈ → ∈   

where 

11 12 1 22 23 1
ˆ [ ,2 ,..., 2 , ,2 ,..., 2 , , ]T

n n nnM M M M M M M n M−=

2 2 2
1 1 2 1 2 2 3 1[ , ,..., , , ,..., , ]T

n n n nx x x x x x x x x x x x−=

Additionally, through the representation using the tensor 
product, we obtain ( ) ( )T T T

k kx Q x x x vec Q= ⊗  and 

1

1

( )

    =[( )( ) ( )( ) ( )]

T
i i
T T T T T

n i n i

u N x RN x

x x I N R x u I R vec N
+

+

+

⊗ ⊗ + ⊗ ⊗

Further, for positive integer l, we define matrices
1 ( 1)
2

l n n

xx

× × +
∆ ∈ ,

2l n
xxE ×∈  , l mn

xuE ×∈  ,such that 

1 0 2 1 1[ ( ) ( ), ( ) ( ),..., ( ) ( )]T
xx l lx t x t x t x t x t x t −∆ = − − − , 

1 2

0 1 1
[ , ,... ]l

l

t t t T
xx t t t

E x xd x xd x xdτ τ τ
−

= ⊗ ⊗ ⊗∫ ∫ ∫ , 

1 2

0 1 1
[ , ,... ]l

l

t t t T
xu t t t

E x ud x ud x udτ τ τ
−

= ⊗ ⊗ ⊗∫ ∫ ∫ , 

where 0 10 lt t t≤ < < <

Later, for any iN , (14) leads to the matrix form of the 
following linear equations: 
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1

ˆ

( ) i
k

i
i

M
vec N +

 
= 

  
ΞΘ    (15) 

where, 2[ ], 2 ( ) ( )T
xx xx n ii xu nE I N R E I R∆ − ⊗ − ⊗=Θ   ,

( )i xx iE vec QΞ = − . 

It is noteworthy, if matrix iΘ  possesses column full rank, 
the solution to (15) could be obtained by: 

1

1

ˆ
( )

( ) i
T Ti
i i i

i

M
vec N

Ξ−

+

 
= 

  
Θ Θ Θ      (16) 

Next, we will specifically introduce this ADP algorithm 
that solves iteratively without relying on the system 
parameters, and give the operation flow of the algorithm as 
follows Fig. 2. The paper also includes relevant discussions 
on the stability and convergence analysis to further validate 
the robustness and effectiveness of the proposed method. 

Fig. 2. algorithm flow chart 

A. Algorithm
1. Utilizes 0 u N x e= − +  ,where 0N  is steady and e 

denotes the noise. Iterate the computation of , ,xx xx xuE E∆
until the rank condition specified in (17) below is met. Set 
the initial value of i to 0. 

2. Calculate iM  and 1iN + from (16). 

3. Let i ← i+1, and return to Step 2 until

1i iM M ε−− ≤ for i≥1, where the constant ε > 0 is the 
small threshold is already defined. 

4. Utilize iu N x= − as the approximated optimal control
approach. 

Remark 3. The primary computational load in executing 
Algorithm is associated with the computation of matrices 
𝐸𝐸𝑥𝑥𝑥𝑥  and 𝐸𝐸𝑥𝑥𝑥𝑥 , which can be computed employing
1 ( 1)
2

n n mn+ +  integrator within the flow path for the 

accumulation of information regarding the input and state 

Remark 4. Practically, numerical error might arise during 
the computation of 𝐸𝐸𝑥𝑥𝑥𝑥  and 𝐸𝐸𝑥𝑥𝑥𝑥. Consequently, the solution 
to (15) might not be feasible. In such instances, the key to 
(16) could be interpreted as the least-squares solution to (15)

Subsequently, we demonstrate that Algorithm converges
given a certain rank condition 

Lemma 1. Provided an integer 0 0b > exists where for

all 0b b>

1, ( )([ ])
2xx xu

n nR mnEE +
= +  (17)

then iΘ has full column rank for all N +∈ . 

Theorem 1. Given a positive definite gain 0
m nN ×∈  , 

According to Lemma 1,both { } 0
Mς ς

∞

=
 and { } 1

Nυ υ

∞

=
 will be

obtained from (16) and will eventually approximate to the 
optimal values *M and *N individually. 

Proof. Given a stabilized feedback matrix iN . According 
to the iterative update formula (11) for N, the value of 1iN +  
will be uniquely determined if the solution to Eq. (10) is 
correctly obtained. By means of Eq. (14), we can determine 
that 𝑀𝑀𝑖𝑖 and 𝑁𝑁𝑖𝑖+1 can be constructed in the form of matrices 
as follows.  

ˆ    M
( ) ii vec N

Ξ
 

= 
 

Θ

where, T n nM M ×= ∈  and m nN ×∈

Subsequently, we promptly obtain ˆ ˆ
iM M=   and 

1( ) ( )ivec N vec N += . In accordance with Lemma 1, N and
TM M=  have the only values. Additionally, iM M=  and 

1iN N+ =  are distinctly confirmed

Hence, policy iteration using (16) is equivalent to the 
solution of (10) and (11). According to Theorem 1, 
convergence is thus demonstrated. Due to the length 
limitations of the article, more proofs of stability can be 
found in this reference[35]. 
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Remark 5. It is evident that Algorithm comprises distinct 
stages. Initially, Control input data contains noise for 
stability and data is documented in xx∆   xxE  and xuE  until 
the fulfillment of the rank condition in (17). Subsequently, 
devoid of the need for extra system details, the matrices xx∆ ,

xxE  and xuE  are iteratively utilized to execute the process. 
This results in a series of controllers converging towards the 
optimal control policy. 

4. Discuss

We investigate the design of this power system controller.
This system is a fourth-order linear system in continuous 
time. A and B of the system directly derived from[33], as 
shown below: 

[ ]

0.0665 8 0 0
0 3.663 3.663 0

6.86 0 13.736 13.736
0.6 0 0 0

0 0 13.736 0 T

A

B

− 
 − =
 − − −
 
 

=

To showcase the validity of the controller in the section 
3, here, the design of the optimal controller does not rely on 
the exact knowledge of A and B. Given the stability of the 
physical system, the initial N0 = 0. 

The weight matrix design is as follows: 

[30,0.1,0.1,1]Q diag=  

1 * 200R I=

The simulation platform required for the experiment is 
MATLAB2022b, and the CPU is Inter Core i5-11400H with 
2.70 GHz. Throughout the experiment, initial parameter of 
the state variables is arbitrarily determined in close 
proximity to the origin. The system input is characterized by 
the following exploration noise during the time interval from 
t = 0 to 5 s. 

100

1
100 sin( )j

j
e tω

=

= ∑      (18) 

where jω , with j = 1, . . ., 100, are randomly chosen from 
[-500,500]. 

At runtime, the algorithm automatically collects the 
system’s state and input parameter information every 0.01s, 
and the noisy data is removed after 5s. It converges after 16 
iterations, and the end of the program satisfies this condition

0
1

14.2i iM eM −
−− ≤ .

Fig. 3 illustrates the norm changes of the state during the 
process time. 

Fig. 3. The norm changes of the State during the 
process time. 

In Fig. 4, for the first 5 s, the changes in the system state 
parameters are more pronounced due to the presence of the 
detection noise. after 5 s, the noise is removed and the 
optimal controller is obtained, under which the changes in 
the four parameters of the power system finally converge to 
0, proving that the control is effective 

Fig. 4. Power system state parameter changes over 
time 

Fig. 5 and Fig. 6 show the convergence of 
iM  and

iN
to the optimum, respectively, and it can be seen that the 
paradigms of their differences from the optimum all 
converge to 0 at the end of the program, demonstrating the 
effectiveness and excellence of the algorithm 
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Fig. 5. The convergence process of iM  in the
algorithm 

Fig. 6. The convergence process of iN  in the
algorithm 

5. Conclusions

On the whole, this study addresses the LFC issue in
power systems by employing a computational strategy 
iteration approach with an online adaptive optimal controller 
designed for unknown power system dynamics. Using real-
time system data, even without knowledge of the power 
system matrix, we achieve iterative solutions for the 
algebraic Riccati equation, resulting in an optimal control 
strategy. Experimental simulations validate the practicality 
and potential value of this method in LFC for power systems. 
This approach offers a viable solution to the online adaptive 
optimal control challenge in the presence of unknown 
system dynamics, presenting a novel concept for adaptive 
control in power system load frequency regulation. 
Meanwhile, the control strategy based on reinforcement 

learning and data-driven has been applied in other practical 
industrial scenarios such as autonomous driving, robot 
control, etc. In future research, we will continue to explore 
the applicability of this method in larger-scale power 
systems and multi-regional scenarios. In addition, we plan to 
further study its robustness in combination with other 
algorithms to enhance its performance and ensure its 
scalability in more complex environments. 
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