
EAI Endorsed Transactions  
on Energy Web Research Article 

1 

Fault Diagnosis of Distributed Energy Distribution 
Network Based on PSO-BP 
Xiaokun Han1,*，Dongming Jia1，Xiang Dong1，Dongwei Chen1  

1State Grid Beijing Electric Power Maintenance Branch, Beijing, 100073, China 

Abstract 
With the increasing scale of distribution network at distribution time, its complexity grows geometrically, and its fault 
diagnosis becomes more and more difficult. Aiming at the slow convergence and low accuracy of traditional 
backpropagation neural network in dealing with single-phase ground faults, the study proposes a backpropagation neural 
network based on improved particle swarm optimization. The model optimizes the weights and acceleration constants of 
the particle swarm algorithm by introducing dynamic coefficients to enhance its global and local optimization seeking 
ability. It is also applied in optimizing the parameters of backpropagation neural network and constructing the routing 
model and ranging model for fault diagnosis about distributed energy distribution network. The simulation results revealed 
that the maximum absolute error of the improved method is 0.08. While the maximum absolute errors of the traditional 
backpropagation neural network and the particle swarm optimized backpropagation neural network were 0.65 and 0.10, 
respectively. The fluctuation of the relative errors of the research method was small under different ranges of 
measurements. At 8.0 km, the minimum relative error was 0.39% and the maximum relative error was 2.81%. The results 
show that the improved method proposed in the study significantly improves the accuracy and stability of fault diagnosis 
and localization in distribution networks and is applicable to complex distribution network environments. The method has 
high training efficiency and fault detection capability and provides an effective tool for distribution network fault 
management. 
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Introduction 
Due to the distributed energy distribution network 

(DEDN) has a wide distribution of lines as well as a 
complex structure, the requirements for fault diagnosis (FD) 
are increasing. In distribution network (DN), the most 
common fault types include single-phase ground faults 
(SPGF) [1-2]. Failure to accurately diagnose and localize 
faults in time can seriously affect power operation, which in 
turn affects people's normal life and hinders socio-economic 
development [3-4]. Therefore, efficient and accurate FD 

methods are of great research significance for DEDN. 
Current FD for DEDN is commonly used in deep learning 
techniques as well as heuristic algorithms for detection. 
When faced with the issue of duplicate and incomplete fault 
data in DN, Tan X et al. employed rough sets and 
backpropagation neural networks (BPNN) to forecast and 
evaluate the data. In the experimental results, the prediction 
accuracy was around 80% for the unprocessed data. In 
facing the prediction of preprocessed data, its prediction 
accuracy was around 96% [5]. For larger scale DEDN 
structures, Ling C et al. suggested a grid prediction model 
based on quantum particle swarm (PS) optimization 
algorithm and wavelet neural network. The model reduced 
the influence of parameters on the prediction results by ∗Corresponding author. Email: HhxKunkun@163.com 
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correcting the evolutionary and aggregation factors, and 
achieved high prediction accuracy and good generalization 
ability in the experiment [6]. Zhang P et al. proposed an FD 
method for motor drive system optimized by BPNN. To 
balance the algorithm search approach, the adaptive 
gravitational constant factor was primarily introduced by the 
method. In the experimental results, the method performed 
well in the FD of motor drive systems [7]. However, there 
are still some limitations in the above studies, and the 
convergence speed of the algorithm still has room for 
improvement in complex DEDNs, while the fault 
localization accuracy needs to be further improved. The 
network structure and settings have a significant impact on 
the algorithm's performance, and it performs poorly when 
addressing complicated nonlinear situations. A 
backpropagation neural network with improved particle 
swarm optimization (IPSO-BPNN) is therefore proposed in 
the paper as an FD model of DEDN to address the issues of 
low fault localization accuracy and slow convergence speed. 
The study's originality is the use of dynamic coefficients to 
optimize the PSO algorithm's weights and acceleration 
constant (AC), and the wavelet packet transform (WPT) is 
employed to extract the quantity of the defect feature. The 
study aims to provide an efficient and accurate solution for 
FD and localization of DNs to enhance the operational 
reliability and stability of DNs. 

1. Methodology

1.1 IPSO-BPNN fault diagnosis model 
construction for distribution network 
Identification of the fault type, fault location, and fault cause 
that arises in the DN are all included in the field of FD of 
DNs. The process includes detecting anomalies as well as 
localizing the fault location. The accuracy of FD depends on 
the effectiveness of fault routing (FRou) and the precision of 
fault ranging (FRan). FRou is the process of further refining 
on the basis of FD to determine in which specific line or 
branch the fault occurs. The goal is to quickly isolate the 
faulted portion and reduce the impact on the rest of the 
distribution system. The distance between the faulted point 
and the measurement point is determined by FRan using 
measurement data and algorithms. This information must be 
paired with the FD's findings and the particular line 
information that FRou has supplied [8-9]. In current DN of 
SPGF detection studies, the BPNN algorithm is usually used 
for detection. The specific results of BPNN are shown in Fig. 
1. 
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Figure 1. BPNN structure 

The BPNN network structure contains three sections in Fig. 
1. The input layer (IL), which makes up the first section, is
mostly in charge of receiving data from outside sources and
sending it to the hidden layer (HL). The HL, which makes
up the second layer, is primarily in charge of carrying out
the crucial processing and computing. It nonlinearly
transforms the input data through weighted summation and
activation functions to extract features and patterns so as to
provide more useful information for the output layer (OL).
The third section is the OL, which is mainly responsible for
producing the final prediction or classification results. The
BPNN expression is shown in Equation (1) [10].

𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖 = ∑ 𝑊𝑊𝑖𝑖𝐿𝐿𝑗𝑗 + 𝛽𝛽𝑖𝑖𝑚𝑚
𝑗𝑗=1 (1) 

The 𝑖𝑖-th node's input is shown in the HL by equation (1). 
The input of the IL's 𝑗𝑗-th node is 𝐿𝐿𝑗𝑗. 𝑊𝑊𝑖𝑖,𝑗𝑗 is the weight that 
separates the IL's 𝑗𝑗-th node from the HL's 𝑖𝑖-th node. 𝛽𝛽 is 
the 𝑖𝑖-th node of the HL's threshold value (TV). 

𝑦𝑦𝑖𝑖 = ∅(𝑛𝑛𝑛𝑛𝑛𝑛𝑖𝑖) = ∅(∑ 𝑊𝑊𝑖𝑖,𝑗𝑗
𝑚𝑚
𝑗𝑗=1 𝐿𝐿𝑗𝑗 + 𝛽𝛽𝑖𝑖 (2) 

In the HL, the output of the 𝑖𝑖-th node is represented by 
equation (2). The HL's excitation function (EF) is denoted 
by ∅. 

𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘 = ∑ 𝑊𝑊𝑘𝑘,𝑖𝑖
𝑚𝑚
𝑜𝑜=1 𝑦𝑦𝑖𝑖 + 𝛼𝛼𝑘𝑘    (3) 

Equation (3) represents the input of the 𝑘𝑘-th node in the 
OL. 𝑊𝑊𝑘𝑘,𝑗𝑗 is the weight between the 𝑘𝑘-th node of the HL 
and the 𝑘𝑘-th node of the OL. ka  is the TV of the 𝑘𝑘-th 
node of the OL. 

𝑀𝑀𝑘𝑘 = 𝜔𝜔(𝑛𝑛𝑛𝑛𝑛𝑛𝑘𝑘) = 𝜔𝜔(∑ 𝑊𝑊𝑘𝑘,𝑖𝑖
𝑚𝑚
𝑖𝑖=1 𝑦𝑦𝑖𝑖 + 𝛼𝛼𝑘𝑘) (4) 

The output of the 𝑘𝑘-th node in the OL is represented by 
equation (4). The EF of the OL is 𝜔𝜔. The output of the OL's 
𝑘𝑘-th node is 𝑀𝑀𝑘𝑘. An error is always produced when the 
neural network is operating. Equation (5) displays the 
expression for the total error 𝐸𝐸(𝜃𝜃) produced during the 
BPNN's operation. 

𝐸𝐸(𝜃𝜃) = 1
2
∑ (𝑀𝑀�𝑘𝑘 − 𝑀𝑀𝑘𝑘)22
𝑖𝑖=1     (5) 
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In Equation (5), 𝑀𝑀�𝑘𝑘  denotes the actual value and 𝑀𝑀𝑘𝑘 
denotes the output value. Two fundamental processes make 
up the BP network algorithm: backpropagation of errors and 
forward propagation of data. To ascertain whether the error 
signal needs to be propagated backward, the data is first 
propagated forward to the end, and the output values are 
then compared to the predicted values. The entire iterative 
process continuously corrects the weights and thresholds, 
and the cycle continues until the model is trained to the 
maximum iterations when the training stops. In BPNN, the 
determination of the network topology is crucial. The 
learning samples dictate how many input and output nodes 
there should be. On the other hand, the nodes in the 
intermediate layer is typically chosen by using empirical 
calculations, which causes the topology to not be unique. An 
overly complex topology reduces the training and testing 
efficiency. Furthermore, a structure that is too 
straightforward could cause crucial information to be lost 
and prevent a stable convergence of the training process. 
Therefore, the algorithm has a high dependence on the 
selection of the sample set and the adjustment of the 
parameters [11-12]. To solve the limitations of the BPNN, 
the study uses the PSO algorithm to improve the BPNN and 
enhance the selection of BPNN parameters and the training 
efficiency of the model. The PSO algorithm achieves 
optimization by simulating the behavior of the group. Each 
individual moves in the search space, updates its position 
and velocity, and continuously adjusts to find the optimal 
solution through communication with other particles and 
self-awareness. It is assumed that the number of particles 𝑛𝑛 
and form a population in 𝑑𝑑-dimensional space, and the 
population is denoted by 𝑥𝑥 = (𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2 , . . . , 𝑥𝑥𝑖𝑖𝑖𝑖) . 𝑣𝑣 =
(𝑣𝑣𝑖𝑖1 , 𝑣𝑣𝑖𝑖2, . . . , 𝑣𝑣𝑖𝑖𝑖𝑖) displays the particle population velocity. 
Equation (6) shows the modified particle population position 
[13]. 

�
𝑣𝑣𝑖𝑖𝑖𝑖𝑘𝑘+1 = 𝑤𝑤𝑣𝑣𝑖𝑖𝑖𝑖𝑘𝑘 + 𝑐𝑐1𝑟𝑟1(𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 ) + 𝑐𝑐2𝑟𝑟2(𝑝𝑝𝑔𝑔𝑔𝑔𝑘𝑘 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 )

𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘+1 = 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘 + 𝑣𝑣𝑖𝑖𝑖𝑖𝑘𝑘+1
)   (6) 

In Equation (6), 𝑝𝑝𝑖𝑖  denotes the optimal particle 
individual. 𝑝𝑝𝑔𝑔 denotes the global optimum. 𝑤𝑤 denotes the 
particle inertia weights and 𝑐𝑐 denotes AC. 𝑟𝑟 denotes the 
random function in the interval [0,1]. PSO frequently results 
in the algorithm falling into a local optimum because of its 
low convergence performance when searching for the best 
answer. The algorithm's low accuracy and slow convergence 
speed are still present in the late iteration. In view of the 
limitations of PSO, the study introduces a dynamic 
coefficient to optimize the weights of the algorithm. Its 
primary goal is to increase the algorithm's early weight 
coefficients in order to improve the particles' capacity for 
global optimization. The method's main expression is given 
in Equation (7). In the later stage, the procedure includes 
reduced weight coefficients to improve the particles' 
capacity for local optimization. 

𝑤𝑤(𝑡𝑡) = 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 + (𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑤𝑤𝑚𝑚𝑚𝑚𝑚𝑚) ∗ (𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚−𝑡𝑡)
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

(7) 

In Equation (7), 𝑡𝑡 represents the iterations. AC is used as 
an auxiliary weight coefficient in the PSO algorithm, and its 
optimization can strengthen the algorithm's own and the 
whole optimization ability. AC is often divided into two 
types, of which 𝑐𝑐1 is mainly for individual optimization and 
𝑐𝑐2  is mainly for overall optimization. Its specific 
optimization is shown in Equation (8). 

�
c1(t) = c1max −

(c1max−c1min)∗t
tmax

c2(t) = c2min −
(c2max−c2min)∗t

tmax
(8) 

By processing AC, then the premature maturity of the 
algorithm can be suppressed. With these improvements, the 
flow of the IPSO-BPNN algorithm proposed in the study is 
shown in Fig. 2. 
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Figure 2. Flow chart of IPSO-BPNN algorithm 

First, the algorithm determines how many nodes are in each 
layer of the BP network in Figure 2 based on pertinent 
parameters. It also determines how many dimensions the PS 
algorithm has and sets the learning factor, population size, 
and iterations. Secondly, it calculates the fitness value 
through the fitness function of PSO, and searches for the 
individual optimum and the global optimum of the 
algorithm. Then, the optimal value is constantly updated and 
adjusted, and when the fitness value meets the set conditions, 
the algorithm stops iterating, otherwise, the algorithm 
iterates again. The model constructed above is used for FD 
of DEDN, which includes FRou and FRan. 

1.2 Fault routing and fault ranging 
model construction based on IPSO-
BPNN 
In the FRou problem, the fault characteristic quantities need 
to be extracted, which include transient energy component 
extraction, fifth harmonic (5thH) characteristic component 
extraction, and zero-sequence active component (ZSAC) 
characteristic extraction. When a SPGF occurs, the 
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distributed inductance and capacitance of the line generates 
an inrush discharge current, which makes the zero-sequence 
current (ZSC) value of the transient process much larger 
than the steady state value [14]. The transient ZSC signal 
will be divided into different frequency bands by wavelet 
decomposition. The transient energy characteristic band in 

the study is the frequency band having the highest energy. 
The energy calculation formula for each frequency band is 
shown in Equation (9) [15]. 

𝐸𝐸 = ∑ (𝛿𝛿𝑗𝑗𝑢𝑢)2𝑄𝑄
(9) 

In Equation (9), 𝛿𝛿 denotes the decomposition coefficient 
under the sub-band. 𝑗𝑗 is the decomposition layers, 𝑢𝑢 is the 
node number, and 𝑄𝑄  denotes the number of sampling 
points. The fault current at the system grounding point is 
decomposed to contain mainly fundamental and odd 
harmonics, and the fundamental is affected by the arcing 
coil compensation, and the study selects the 5thH as the 
characteristic quantity. Mainly because due to the small 
content of harmonic currents, their changes are not 
significantly characterized. The 5thH is calculated as shown 
in Equation (10). 

𝐻𝐻 = ∑ 𝐻𝐻(𝑛𝑛)𝑄𝑄      (10) 

In Equation (10), 𝐻𝐻(𝑛𝑛) denotes the magnitude of the 
5thH amplitude. The study takes the average value of one IF 
cycle of zero-sequence (ZS) active power as the fault 
characteristic quantity, and its calculation formula is shown 
in Equation (11). 

𝑃𝑃 = ∑ 𝑃𝑃(𝑛𝑛)/𝑛𝑛𝑄𝑄
(11) 

In Equation (11), 𝑃𝑃(𝑛𝑛) denotes the magnitude of the ZS 
active power signal amplitude. Fig. 3 displays the study's 
FRou model, which is based on the upgraded PSO-BN. 
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Figure 3. Fault line selection model based on IPSO-BPNN 

In Fig. 3, the model divides the ZSC signal into two kinds 
of information, which are transient information and steady 
state information. The transient information is converted 
into transient energy components by wavelet transform. The 
steady state information is then converted into the fifth 
harmonic component (5thHC), which is converted into the 

ZSAC with the ZS voltage signal [16-18]. The above fault 
characteristics are trained by the improved PS neural 
network constructed in the study and the output of wire 
selection results. The FRan model of DEDN needs to obtain 
fault samples and thus realize fault distance prediction. The 
model first processes the ZSC at the fault point (FP) to 
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obtain the fault characteristic quantity. The way is mainly 
through the fast Fourier transform and WPT to process the 
three components. Simultaneously, the impact of the phase 
angle and grounding resistance size on the fault 

characteristic quantity are gathered and utilized as the 
algorithm's input value. Ultimately, the method is applied to 
determine the fault distance. Fig. 4 displays the particular 
model.
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Figure 4. Fault location model based on IPSO-BPNN 

In Fig. 4, a SPGF induces transient characteristic signals in 
the system, and there is some correspondence between 
these signals and the location of the FP. This means that by 
analyzing these transient signals, the location of the FP can 
be inferred. The traditional wavelet transform has some 

limitations in high-frequency signal processing, and the 
WPT overcomes this deficiency. Therefore, the transient 
wavelet energy of the fault signal is calculated as shown in 
Equation (12).

𝜀𝜀 = ∑ (∑ [𝑆𝑆(4,𝑖𝑖)(𝑚𝑚)]2𝑚𝑚
𝑢𝑢=1 )16

𝑗𝑗=0     (12) In Equation (12), denotes the subband coefficient. In the
fault condition, the amplitude of the ZSC fundamental
component and ZS reactive component in the line will be
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significantly larger than that of the normal line. The phase of 
these components will be opposite to that of the normal line. 
Due to these characteristics, the ZSC of the faulted line is 
very obvious compared with the sound line, which helps to 
identify the fault. The ZS reactive component and the ZS 
fundamental component can be obtained by collecting a 
cycle of fault signal and performing Fourier transform and 
wavelet transform. These two transform methods can 
effectively analyze the frequency and time-frequency 
characteristics of the signal and help identify and diagnose 
the fault. 

2. Result

2.1 Algorithm performance test for 
IPSO-BPNN 

The study will perform simulation tests on the constructed 
model. The simulation experiment is realized by MATLAB 
software to construct a DN result model with DN line fault 
model. Fig. 5(a) represents the DN structure model. The 
experiments are set up for the DN related parameters. The 
frequency of each element of the DN is set to 50 Hz, and the 
resistance size in the line is set to 0.45 Ω/km. The 
inductance is set to 0.9426 mH/km, and the capacitance is 
set to 0.091 nF/km. In the parameters of the ZS line, the 
resistance size is set to 0.70 Ω/km. The inductance is set to 
4.1356 mH/km, and the capacitance is set to 0.037 nF/km. 
The length of five lines is in an equidistant series. The first 
line is 10km long and its tolerance is 2km. Fig. 5(b) 
represents the line FRan model. The model grounding 
resistance is varied in the range of 100Ω to 1000Ω. The 
variation of fault phase angle is 0°, 45° and 90°. The step 
size of the fault location variation is set to 0.5km. 

(b) Line fault location model
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(a) Distribution network structure model

Figure 5. Distribution network structure model and 
fault line structure diagram 

The study begins by training the constructed algorithm. 
The relevant parameters need to be set first. It is also 
analyzed by comparing the traditional PSO algorithm, the 
PSO algorithm with improved inertia weights, and the PSO 
algorithm with improved inertia weights and learning 
factors. The study notates the above three methods as 
Method A, Method B, and Method C, respectively. Table 1 
displays the three approaches' parameter configurations. 

Table 1. Model parameter settings 
Parameter 
type Method A Method B Method C 

Population 
size 20 20 20 

Maximum 
iterations 300 300 300 

Weight 
coefficient / wmax=0.9; 

wmin=0.4 
wmax=0.9; 
wmin=0.4 

Learning 
factor 

C1=1.5; 
C2=1.5 

C1=1.5; 
C2=1.5 

Cmax=2.5; 
Cmin=0.5 

Speed [-1,1] [-1,1] [-1,1] 
Position [-5,5] [-5,5] [-5,5] 

To verify the performance of the three methods, the study 
is tested and analyzed through four test functions. Among 
these, the nonlinear optimization techniques are tested using 
the classical mathematical function known as the 
Rosenbrock function. The benchmark test function that has 
been used to assess how well the optimization techniques 
work is the Rastrigin function. The Griewank function is 
used to test optimization algorithms to evaluate their search 
ability, convergence speed, and ability to handle multi-peak 
functions in high-dimensional spaces. Ackley function has 
global optimization ability in high dimensional space. Fig. 6 
displays the particular test findings. 
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(c) Griewank function test results
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(d) Ackley function test results
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Figure 6. Fitness values of different test functions 

Fig. 6(a)-Fig. 6(d) represent the adaptation results for the 
four functions. In Fig. 6(a), the fitness value of Method C is 
at [0.0001,0.001]. The fitness values of Method B and 
Method A are in [0.001,0.01]. In Fig. 6(b), the adaptation 
value of Method C is close to 0.00001. Both Method B and 

EAI Endorsed Transactions 
on Energy Web 

| Volume 11 | 2024 |



Fault Diagnosis of Distributed Energy Distribution Network Based on PSO-BP 
 

7 
 

Method A are close to 0.0001. In Fig. 6(c), the three methods 
show a clear gap, with Method A adaptation value close to 1 
and Method B adaptation value at [0.01,0.1]. Method C 
adaptation value is at [0.0001,0.001]. In Fig. 6(d), the fitness 
values of Method A and Method B are in the [0.001,0.01]. 
The fitness values of Method C, on the other hand, are at 
[10-7,10-8]. Fig. 6 shows that Method C outperforms 
Method A and Method B on all test functions with lower 
adaptation values and better performance. Fig. 7 displays the 
training outcomes of the research-proposed approach in the 
DN FRou stage training. 
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Figure 7. Results of distribution network fault 
diagnosis training 

 
Fig. 7 represents the performance test of different 

methods in FRou training of DN. Fig. 7(a) represents the 
results of the training steps (TSs) for the three methods to 
train until the training error is satisfied. The TSs for the 
traditional BPNN is in the range of 18. The TSs for PSO-
BPNN is around 12. The TSs for the research proposed 
algorithm is around 7 times. Fig. 7(b) represents the 
variation curves of particle fitness for the three methods. The 
adaptation value of the traditional algorithm is 0.0855. The 
PSO-BPNN particle adaptation value is 0.0814. The IPSO-
BPNN particle adaptation value is 0.0800. The outcomes 
display the research-proposed IPSO-BPNN performs 
optimally, with the fastest training speed and the lowest 
value of the particle adaptation, and has the best 
performance in terms of adaptation. 

The comparison between the Tai Chi Teaching Assistance 
System and traditional learning methods and other 
technology-assisted approaches provided insightful 
perspectives on its advantages and areas for improvement. 

2.2 Fault diagnosis analysis of 
distribution network based on IPSO-
BPNN algorithm 
The study assumes two DN fault states. State 1 is the route 
L1 ground fault, and set this time the resistance size is 10Ω, 
A-phase angle size is 30 °. The FP is 2km away from the bus. 
State 2 is to set L1 as an overhead route and a ground fault 
occurs. At this time, the grounding resistance is 100Ω. The 

A-phase phase angle is 90°, and the FP is 5km away from 
the bus. The results of the ZSC waveforms in the model of 
state 1 are shown in Fig. 8. 

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
Time /s

El
ec

tri
c 

cu
rr

en
t /

A 20
15
10
5
0
-5

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
Time /s

El
ec

tri
c 

cu
rr

en
t /

A 6
3
0
-3
-6

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
Time /s

El
ec

tri
c 

cu
rr

en
t /

A 10
5
0
-5

-10
0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Time /s

El
ec

tri
c 

cu
rr

en
t /

A 5
3
1
-1
-3
-5

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
Time /s

El
ec

tri
c 

cu
rr

en
t /

A 5
3
1
-1
-3
-5

(a) L1 zero sequence current waveform in state 1 (b) L2 zero sequence current waveform in state 1
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(e) L5 zero sequence current waveform in state 1

 

Figure 8. Results of zero-sequence current waveform 
in state 1 

 
Figs. 8(a)-Fig. 8(e) represent the ZSC waveforms of DN 
lines L1-L5 under the condition of state one, respectively. 
Among them, the transient energy component of L1 is 
significantly higher than the other lines, which is 2.4489. 
This indicates that there is a large energy fluctuation on line 
L1, which may indicate a fault or abnormal condition of the 
line. The transient energy components of L2, L3, L4 and L5 
are lower, which are 0.0829, 0.1207, 0.1884 and 0.314, 
respectively. Given the smallness of these numbers, it is 
likely that these lines are functioning normally and that there 
is little energy fluctuation on them. At 142.316, L1 has the 
highest 5thHC value. The 5thHCs of L2 to L5 decrease 
sequentially and are 25.1523, 33.275, 38.098, and 45.7912, 
respectively. The results indicate that there are high 
harmonic currents in the L1 line, which may affect the 
power quality. In terms of ZSAC, the ZSAC of L1 is 4.484 
kW significantly higher than the other lines, which indicates 
the presence of significant unbalanced loads or ground faults 
in the L1 line. The results of the ZSC waveform in the state 
two model are shown in Fig. 9. 
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Figure 9. Waveform result of zero-sequence current in 
state 2 

 
Fig. 9(a)-Fig. 9(e) represent the waveforms of the ZSCs of 

DN lines L1-L5 under the condition of state II, respectively. 
Among them, the transient energy component of L1 is 
0.3082. The transient energy component of L2 is 0.003, 
indicating that there may be energy fluctuations on the L1 
line, which may indicate a fault or abnormality. The L2 
energy fluctuation is minimized and the operation status is 
relatively normal. For the 5thHC, the 5thHC of L1 is 
137.452, indicating that there is a high harmonic current on 
this line, which may affect the power quality. In terms of 
ZSAC, L1 has the highest ZSAC of 3.9399 kW, which is 
significantly higher than the other lines. This indicates the 
presence of significant unbalanced loads or ground faults on 
line L1. Absolute error (AE) and relative error (RE) are used 
in the study's performance evaluation to confirm the model's 
efficacy in FRan. Among the results of AE for different 
models are shown in Fig. 10. 
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Figure 10. Absolute error results of different models 
 

In Fig. 10, the ranging results of the BP algorithm have a 
large error variation, with a maximum AE of 0.65. The 
ranging error results of the PSO-BPNN are relatively stable, 
with a maximum AE of 0.10. The ranging results of the 

research-improved algorithm are the most stable, with a 
maximum error of 0.08. The outcomes display that the 
BPNN has poorer stability and a larger error when in FRan. 
Compared with the BPNN, the PSO-BPNN ranging error is 
significantly reduced, and its ranging accuracy and stability 
are improved. The IPSO-BPNN has the best performance 
and the smallest error in FRan, with high accuracy and 
stability. The study compares the RE results of different 
algorithms for different fault distance lengths, as shown in 
Table 2. 

Table 2. Relative errors of distance measurement by 
different algorithms 

Fault 
distance 
(km) 

PSO-BP Relative 
error IPSO-BPNN Relative 

error 

3.0 2.9353 2.20% 3.0790 2.57% 
3.5 3.5000 0.00% 3.5890 2.48% 
4.0 4.0574 1.41% 4.0889 2.17% 
4.5 4.4797 0.45% 4.5893 1.95% 
5.0 4.8189 3.76% 5.0299 0.59% 
5.5 5.4699 0.55% 5.5713 1.28% 
6.0 6.4025 6.29% 6.1736 2.81% 
6.5 6.5850 1.29% 6.6015 1.54% 
7.0 6.6991 4.49% 7.0776 1.10% 
7.5 7.8938 4.99% 7.5956 1.26% 
8.0 7.9579 0.53% 8.0311 0.39% 

 

In Table 2, the RE of the PSO-BPNN algorithm varies 
greatly over the range of fault distances from 3.0 km to 8.0 
km. At 3.5 km, the minimum RE is 0.00%. At 6.0 km, the 
maximum RE is 6.29%. The REs of the IPSO-BPNN 
algorithm are generally lower and less variable over the 
same range of fault distances. At 8.0 km, the minimum RE is 
0.39%. At 6.0 km, the maximum RE is 2.81%. The results 
display that the RE of the IPSO-BPNN is lower than that of 
the PSO-BPNN at different fault distances, indicating that its 
ranging accuracy is higher and the error is smaller. The RE 
of PSO-BPNN algorithm fluctuates more under different 
distances, showing greater instability. The RE of the IPSO-
BPNN algorithm is more uniformly distributed, showing 
higher stability and reliability. It works well for FRan 
activities that call for a high degree of stability and accuracy. 

3. Discussion 
In the above experiments, the IPSO-BPNN outperforms the 
traditional BP algorithm and PSO-BPNN in terms of FD and 
ranging accuracy. The resultant data indicated that the 
maximum AE of the IPSO-BPNN was 0.08. While the 
maximum AE of the traditional BP algorithm and the PSO-
BPNN algorithm were 0.65 and 0.10, respectively. 
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Moreover, the RE of the IPSO-BPNN algorithm fluctuated 
less at different fault distances At 6.0 km, the maximum RE 
was 2.81%. At 8.0 km, the minimum RE was 0.39% and the 
maximum RE was 2.81%. The study presented the results 
from a variety of perspectives. The first aspect addressed by 
the study was the effectiveness of algorithm improvement. 
The limitations of the traditional BPNN were addressed by 
optimizing the parameters of the BPNN using PSO. By 
achieving a balance between local and global search 
capabilities, this enhancement increased the network's 
accuracy and training efficiency. Concerning the findings of 
the second algorithm comparison, the enhanced algorithm 
needed less training iterations to reach convergence, and the 
shorter training duration was more beneficial for real-time 
applications. The enhanced algorithm demonstrated 
enhanced accuracy in the identification and isolation of 
faults, thereby reducing the impact of faults on DNs and 
ensuring the timely restoration of service. Srinivasa Rao T C 
et al. used adaptive purification strategy to improve the 
neural network for FD of power system and also used 
wavelet decomposition to extract the fault signal features 
and obtained high prediction accuracy in experiments. This 
was consistent with the research strategy and both improved 
the model prediction accuracy [19]. The third was the 
DEDN management aspect. The high accuracy and 
efficiency of the IPSO-BPNN algorithm can significantly 
improve the fault management process. By quickly and 
accurately identifying fault locations, operators can isolate 
and repair faults more efficiently. Zhang L et al. proposed a 
model for PS optimization to identify neural networks for 
prediction and classification of transmission line faults. The 
model utilized PSO to optimize the neural network 
parameters and improved the accuracy of the model for fault 
identification and classification. These studies had same 
conclusion [20]. Consequently, the scalability of the IPSO-
BPNN algorithm renders it suitable for large and intricate 
DN complexes. Moreover, its capacity to adapt to diverse 
fault conditions renders the model broadly applicable. 

Conclusions 
With the increasing complexity and size of power systems, 
the traditional BPNN faces many challenges in DN of SPGF 
detection, such as slow convergence and easy to fall into 
local optima. Therefore, improving the accuracy of FD and 
localization plays an important role in the development of 
DEDN. An IPSO-BPNN algorithm was developed to 
enhance the weights and AC of the PSO algorithm by 
introducing dynamic coefficients to enhance its global and 
local optimality searching ability. Based on the IPSO-BPNN 
algorithm, this algorithm was used to optimize the 
parameters of the FRou, FRan, and BPNN models. In the 
simulation results, the model proposed in the study showed 
good FD accuracy and stability, which can be applied in 
complex DEDN environments and provides an effective tool 

for DN fault management. Although the IPSO-BPNN 
algorithm shows significant advantages, the study still has 
shortcomings. For example, the algorithm needs to be 
further analyzed for its real-time and adaptability during 
practical application. In future research, the diagnosis of 
extended fault types and the impact of network topology 
changes on the performance of the algorithm are the focus 
of research. 
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