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Abstract 

With the aggravation of environmental pollution problems and the reduction of non-renewable energy sources such as oil, 
new energy vehicles have gradually become the focus of attention, and the application of their power batteries has become 
more and more widespread. The state of energy (SOE) of the power battery is an important basis for energy scheduling. 
Therefore, the study used computer technology to develop an analogous model of the power battery and evaluated its 
properties at various temperatures in order to precisely analyze the performance of the battery under thermal conditions. At 
the same time, to address the limitations in parameter estimation, the study uses the improved Kalman filter (KF) 
algorithm to optimize it. The results revealed that the estimation errors of the improved cubature Kalman filter (CKF) 
algorithm were reduced by 0.52%, 2.91% and 3.10% compared with the traditional CKF algorithm, EKF algorithm and 
UKF algorithm, respectively. In summary, the research on computer modeling and parameter estimation of the 
performance of new energy vehicle power batteries under hot working conditions provides important support and 
reference for the efficient operation and safety of new energy power batteries under hot working conditions. 
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Introduction 

Amidst the swift advancements in social and economic 
spheres, China's vehicle ownership rate keeps rising. 
Concurrently, the burden of energy consumption and 
environmental contamination has mounted, and people's 
awareness of clean energy has progressively expanded. 
Traditional fuel vehicles need to consume oil, which not 
only consumes a large amount of non-renewable energy, but 
also emits exhaust fumes causing serious environmental 
pollution and greenhouse effect [1]. The primary power 
battery (PB) for new energy vehicles (NEVs) is now a 
lithium ion battery (LIB) because of its many benefits, 
including low self-discharge rate, high energy density, and 

extended service life [2]. However, LIBs also have some 
limitations, such as being severely affected by temperature, 
insufficient range, and unstable operation under complex 
working conditions [3]. These factors put NEVs at a 
disadvantage in comparison with traditional fuel vehicles, 
and many people still prefer to buy fuel vehicles. Therefore, 
it becomes imperative to improve the performance of PBs 
for NEVs. The performance of lithium battery (LB) is 
significantly affected by a variety of uncontrollable factors 
during the operation of automobiles, especially in high 
temperature environments and complex working conditions. 
Thus, to guarantee safe and dependable driving, a precise 
assessment of the battery's state of energy (SOE) is required. 
However, current estimation methods are affected by 
measurement errors, model uncertainty, and system noise, 
which make it difficult to meet the needs of NEVs. The 
Kalman filter (KF) algorithm is a recursive filtering 
technique that has been widely used in the parameter ∗Corresponding author. Email:  Zzhanghhhua@163.com 
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estimation (PE) field because it can obtain the optimal 
estimation of the current state of the dynamic system by 
utilizing both the observation of the current moment and the 
state estimation of the previous moment [4]. Therefore, in 
this context, the study innovatively utilizes computer 
technology to construct the equivalent model of PB and the 
improved KF algorithm to enhance the accuracy and 
efficiency of PE. Therefore, the computer modeling and PE 
study of the PB performance of NEVs under thermal 
operating conditions is aimed at obtaining a higher accuracy 
SOE estimation, which provides a strong support and 
reference for the safe and reliable operation of NEVs. 

1. Literature Review
Since LIBs have a high single operating voltage, small

size, low weight, high energy density, and a long cycle life, 
they are frequently employed in NEV power systems. Many 
researchers and scholars have conducted in-depth studies on 
LIBs and achieved a series of results. To maintain the steady 
and healthy operation of the LIB energy storage system, 
Zhang M. and other researchers suggested a method of 
measuring the health state of LIB using impedance 
spectroscopy. The technique can measure the battery 
impedance over a broad frequency range, which reflects the 
battery's aging state. The method's ability to swiftly and 
reliably evaluate the battery's health status is demonstrated 
by the results [5]. Xu J et al. proposed a soft-solvent based 
electrolyte design strategy in order to design an ideal 
electrolyte with safe characteristics. The strategy balanced 
between sufficient salt dissociation and desired 
electrochemical properties under weak Li+-solvent 
interaction and showed effectiveness with an average 
Coulombic efficiency of more than 99.9% [6]. To improve 
the lifetime and safety of high-energy LIBs, Song Y's 
research team proposed the use of electrode material 
modification, electrolyte optimization, and diaphragm 
design to suppress the electrode crosstalk mechanism. The 
results showed that the method effectively suppressed the 
crosstalk phenomenon and improved the lifetime and safety 
of the battery [7]. Huang Z and other researchers suggested 
replenishing the lost lithium during long-term cycling by 
adding more active lithium ions to the battery, which would 
increase the energy density and cycle life of LIBs. The 
method required no change in the main electrode materials 
or battery structure and could be compatible with most 
current LIB production lines, and the results showed the 
feasibility of the method [8]. 

KF algorithm works as an important role in PE of PB. To 
reduce the noise of accelerometer and gyroscope sensors, 
researchers such as Alfian R I proposed to use the KF 
algorithm to process the sensor data and optimize the noise 
attenuation effect. The results showed that the method 
effectively reduced the noise of the sensor output [9]. To 
increase the state-of-charge estimate accuracy, Luo Y and 
other researchers presented a solution that combines the KF 

algorithm with time-varying battery parameters. The method 
experimentally obtained battery parameter data at different 
temperatures, state-of-charge levels, and discharge 
multiplicities, and utilized these data to update the battery 
parameters in the matrix of the KF system. According to the 
findings, the technique successfully raises the state of 
charge's estimation accuracy [10]. Through the use of aging 
experimental data from LIBs, Xu W et al. examined the 
capacity degradation characteristics of batteries in order to 
improve their efficiency and safety performance. They then 
identified the equivalent circuit model (ECM)'s online 
parameters using the adaptive double extended KF 
algorithm. The outcomes indicated that the maximum error 
of the battery charge state estimation of this method is only 
2.03%, which is effective [11]. To enhance the robustness 
and accuracy of the indoor positioning system, Feng D and 
other researchers proposed to use the KF algorithm to build 
an integrated indoor positioning system by combining ultra-
wideband and inertial measurement units. Base stations 
were reasonably deployed in this system, and the 
relationship between the accuracy factor and the geometric 
distribution of base stations was considered. The results 
demonstrated that the method realized the design of a 
positioning system with high robustness and continuous 
tracking capability [12].  

In summary, although there are abundant research results 
for the LIB and KF algorithms, there are relatively few 
studies on computer modeling and PE for the PB 
performance of NEVs under hot operating conditions. 
Therefore, computer modeling and PE for PB performance 
of NEVs under hot operating conditions are investigated 
with a view to obtaining higher accuracy of battery SOE 
estimation. 

2. Computer modeling and
parameter estimation study of
power battery under HWCs

2.1 Equivalent modeling of power 
battery 

There are significant differences in the voltage 
characteristics of LBs at different temperatures, which 
directly affect the lifetime and performance of the battery 
[13]. Therefore, when thinking about extending the lifespan 
and maximizing performance of LBs, it's critical to examine 
the SOE performance of the battery under hot working 
condition (HWC). The chemical processes of the battery's 
active materials are what drive the charging and discharging 
of PBs in NEVs, which is basically a transfer between 
electrochemical and electrical energy [14]. However, the 
chemical reactions are highly susceptible to temperature 
fluctuations, which can significantly influence the reaction 
rate and the generation of side reactions in the battery. This, 
in turn, affects the performance of the battery [15]. The 
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chemical reaction principle of LB charging and discharging 
is shown in Figure 1. 
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Figure 1. The chemical reaction principle of lithium 
battery charging and discharging 

As shown in Figure 1, chemical reactions such as ohmic 
polarization, concentration polarization, and electrochemical 
polarization between the electrolyte and the active material 
are generated during the charging and discharging process of 
LB [16]. At low temperatures, the rate of ionic activity in the 
electrolyte slows down, which can lead to a decrease in the 
output power of the battery [17]. Furthermore, low 
temperatures may cause lithium dendrites to grow in the 
electrolyte, which could short circuit the battery internally 
and, in extreme situations, even compromise battery safety 
and life [18].. As the temperature increases, the rate of ionic 
activity increases and the battery output power increases. 
However, if the temperature rises above the critical point, 
the electrolyte releases a significant amount of heat, which 
renders the active materials less safe. This can result in 
internal short circuits and battery explosions, which pose a 
serious risk to the battery's safety. To guarantee the safety of 
the battery while it is being used, it is vital to take into 
account how well the battery performs under HWC. To gain 
insight into the changes of PB under different temperature 
conditions, it is necessary to use computer technology to 
construct an equivalent model of the battery for simulation 
and analysis. Common equivalent models include internal 
resistance model (IRM), RC model and Thevenin model. 
Thevenin model can only describe the battery's ohmic 
polarization, and the RC model can replicate the chemical 
reaction phenomenon of the battery polarization. The IRM is 
limited in its ability to precisely simulate battery properties. 
However, a single set of RC models cannot simulate both 
polarization phenomena simultaneously. To obtain a more 
accurate simulation of battery performance, it is therefore 
examined to incorporate a set of RC circuits based on the 
classic RC model in combination with the Thevenin model. 
In Figure 2, the enhanced RC ECM is displayed. 
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Figure 2. Improved RC ECM 

Figure 2 shows the improved RC ECM. 1R  and 2R  are 
the polarization resistors. 1U  and 2U  are the terminal 
voltage (TV), and 1C  and 2C  are the polarization 
capacitance (PC). 0R  denotes the ohmic internal resistance 
of Thevenin model. ocU  and LU  are the open circuit voltage 
(OCV) and the battery TV, respectively. I  is the current. 
Equation (1) shows the SOE calculation formula for PB. 
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In Equation (1), , 1L kU + denotes the cell TV at the moment

1k + , i.e., the SOE of PB. , 1oc kU + denotes the OCV at the

moment 1k + . 1,kU  and 2,kU  denote the TV at moment k . 

kSOE  denotes the cell SOE at the moment k . kα  denotes 
the measured noise. Since the OCV of the equivalent circuit 
under HWC varies greatly, it is investigated to characterize 
the OCV for analytical judgment in order to estimate the 
battery performance more precisely. The SOE objective 
function of the OCV under HWC is shown in Equation (2). 

( ) 0
1

n
i

i
i

OCV SOE SOEβ β
=

= × +∑                       (2) 

In Equation (2), ( )OCV SOE  denotes the SOE objective

function of the OCV. iβ  denotes the coefficients of the i th 
objective function. n  denotes the total number of multiple 
objective functions, and 0β  denotes the initial coefficients. 

EAI Endorsed Transactions 
on Energy Web 

| Volume 11 | 2024 |



H. Zhang 

2.2 Parameter optimization study 
based on KF estimation algorithm 

The KF algorithm can estimate the state of the system in 
an optimal way by weighted combination of a priori 
information and measurements. In battery SOE estimation, 
the KF algorithm can combine the physical model and the 
actual measurement data to dynamically update the state 
estimation and compensate for noise, thereby enhancing the 
estimation's precision and stability [19]. Thus, the study 
utilizes the KF algorithm for PE optimization. The cubature 
Kalman filter (CKF) algorithm in the KF algorithm is a 
nonlinear filtering method, which solves the problem of 
poor filtering estimation for high-dimensional systems [20]. 
The CKF algorithm is suitable for filtering methods for 
discrete systems. In SOE estimation of PB, the algorithm 
can utilize the state of the previous moment at each iteration 
for the estimation of the state of the next moment. 
Considering the accuracy of the estimated parameters, the 
study utilizes the CKF algorithm for PE. Figure 3 illustrates 
the battery performance estimation pipeline with the CKF 
technique. 
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Figure 3. Battery performance estimation process 
based on CKF algorithm 

In Figure 3, in the battery performance estimation process 
based on the CKF algorithm, the parameter initialization is 
performed first, and then the volume point calculation in the 
CKF algorithm is executed and the volume points are 
propagated. Subsequently, the predicted value of the state is 
calculated based on the propagated volume points and the 
error covariance matrix (CM) is calculated. On this basis, a 
time update is performed, followed by an update based on 
the measured values. After updating, the Kalman gain is 
calculated using the state estimates and the updated matrix 
data. Finally, the state estimates of battery performance are 
derived from the calculation of Kalman gain. The state 
variable matrix based on the CKF algorithm is shown in 
Equation (3). 

1k k k kx Ax BI ε+ = + +                                                     (3) 

In Equation (3), 1kx +  denotes the state variable matrix at 
the 1k +  moment. A  and B  denote the state transfer 
matrix and input matrix, respectively. kI  denotes the current 
at the moment k  and kε  denotes the process noise. 
Equation (4) displays the observed variable matrix's 
expression. 

[ ]1 , 1 00,1,1k oc k k ky U x IR α+ += + − +                             (4) 

In Equation (4), 1ky +  denotes the matrix of observed 
variables at the 1k +  moment. The observed variable matrix 
and the state variable matrix show how closely the current 
state and the battery performance estimation based on the 
CKF method are related. But sudden changes in the current 
cause the algorithm to track poorly, which compromises the 
precision and effectiveness of the SOE estimation of the PB. 
To address this limitation, the study improves the CKF 
algorithm by utilizing fuzzy theory on its basis. By 
combining the CKF algorithm with fuzzy theory to construct 
a fuzzy controller, the dynamic adjustment of Kalman gain 
can be realized. The introduction of the fuzzy factor enables 
the system to respond to sudden current changes more 
flexibly, thus improving the efficiency and accuracy of the 
PE. Equation (5) displays the CM of the enhanced CKF 
method based on the fuzzy factor. 
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In Equation (5), 1k kP −  denotes the CM based on k  

moments and 1k −  moments. T  denotes the matrix 
transpose. g  and G  denote the simulated and observed 
values of the end voltage, respectively. λ  and ξ  denote the 
output and observation noise variance of the fuzzy 
controller, respectively. Figure 4 displays the SOE 
estimation framework diagram based on the upgraded CKF 
method. 
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Figure 4. SOE estimation framework diagram based 
on improved CKF algorithm 

The SOE estimation framework, which utilizes the 
improved CKF algorithm (ICKFA), first initializes 
parameters such PC and polarization resistance in the 
created enhanced RC ECM, as shown in Figure 4. Then, 
time updating and measurement updating are performed and 
combined with a fuzzy controller to obtain the estimated 
value of SOE. Subsequently, an updated computation is 
carried out using the current and TV observed values to 
generate the most likely energy estimate. This estimated 
value is used for the next iteration and is input to the time 
update process of the SOE estimate to perform the 
correction of the SOE estimate. Through such a process, the 
value obtained is the result of the correction of the two 
states, which allows to improve the estimation accuracy. 
 

3. Result 

3.1 Experimental environment setup 
The investigation carried out an experimental 

environment established for HWC in order to validate the 
effectiveness of SOE estimation based on the ICKFA. To 
monitor the battery temperature, the study placed four 
temperature sensors on each of the four sides of the LB to 
collect temperature data. These four sensors are labeled as 
temperature measurement points (TMP) 1 to 4 and are 
located at the front, side, bottom and center of the battery, 
respectively. To simulate HWC, the study creates different 
temperature environments using a Model LW-150 high and 
low temperature tester. The battery test system is model 
NBT5V100AC8-T, and the collected data information is 
sent to a computer via a communication module for display 
and storage. The computer system used is Ubuntu 16.04.7 
LTS, with 32GB of RAM and Intel Core i7-9700 processor. 
The used LB has a voltage setting range of 0-5V and a 
current setting range of 300mA-100A. Its rating is 17Ah. 
Table 1 displays the precise setup of the experimental setup. 

Table 1. Specific experimental environment 
configuration 

 
Experimental equipment Model/Configuration 

Temperature sensors Mark temperature 
measurement points 1 to 4 
respectively, located on the 

front, side, bottom, and 
center of the battery 

Test chamber LW-150 high-low 
temperature test chamber 

Battery test system Model NBT5V100AC8-T 
Computer system Ubuntu 16.04.7 LTS, 32GB 

RAM, Intel Core i7-9700 
Processor 

Lithium battery Rated capacity 17Ah, 
voltage range 0V to 5V, 
current range 300mA to 

100A 

3.2 Estimated performance analysis of 
power battery under HWC 

To validate the estimation performance of PB under 
HWC, the study utilizes the SOE estimation model based on 
the ICKFA to estimate the voltage during charging and 
discharging of batteries at different temperatures. Figure 5 
displays the variation curves of the electric capacity versus 
the voltage at different temperatures. In Figure 5(a), the 
voltage decreases gradually with the increase of temperature 
during the battery charging process. At the beginning of 
charging, the maximum voltage at -20°C is 4.2 V, while the 
minimum voltage at 40°C is 3.5 V. In Figure 5(b), contrary 
to the charging process, the higher the temperature, the 
higher the voltage in the discharging process. 
Comprehensively, it can be concluded that the SOE 
estimation model based on the ICKFA accurately estimates 
the voltage changes in the battery charging and discharging 
process, which indicates that it is able to efficiently perform 
PB performance estimation under HWC. 
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Figure 5. The capacitance and voltage fluctuation 
curves at various temperatures 

To further verify the performance of the estimation 
model, this study sets 1C multiplicity 2C multiplicity and 
3C multiplicity discharge multiplicity for experimental 
analysis, respectively. The estimation accuracy of each TMP 
under different discharge multiples is shown in Table 2. The 
SOE estimation model, which has a strong estimation 
performance, has estimation accuracy of more than 96% at 
various discharge multiples based on the ICKFA. The TMP 
3 is the most accurate, with an estimation accuracy of 
greater than 99%. This is because the point is positioned in 
the middle of the battery, meaning that the temperature it 
collects is more likely to represent the battery's actual 
temperature. This further confirms that the method has high 
estimation accuracy. 

 
Table 2. Estimated accuracy of temperature 

measurement points at different discharge rates 
 

Discharge rate  
Temperature measurement 

points 
No.1 No.2 No.3 No.4 

1
C 

Estimated value/℃ 32.0
8 

32.2
3 

32.2
6 

32.0
5 

Actual value/℃ 31.7
5 

31.8
1 

31.9
6 

31.1
6 

Estimation 
accuracy/% 

98.9
7 

98.6
9 

99.0
7 

97.2
2 

2
C 

Estimated value/℃ 38.7
7 

39.0
2 

39.0
5 

38.7
2 

Actual value/℃ 38.5
9 

38.7
6 

39.1
0 

37.6
3 

Estimation 
accuracy/% 

99.5
3 

99.3
3 

99.8
7 

97.1
8 

3
C 

Estimated value/℃ 45.1
7 

45.5
3 

45.5
9 

45.1
5 

Actual value/℃ 44.7
0 

45.1
2 

45.6
3 

43.7
4 

Estimation 
accuracy/% 

98.9
5 

99.0
9 

99.9
1 

96.8
7 

3.3 Performance validation of SOE 
estimation for power battery 

The study is conducted to conduct discharge tests at 25°C 
room temperature state and 40°C HWC, respectively, with a 
discharge multiplier of 1C, in order to validate the 
performance of SOE estimation based on the ICKFA. The 
simulated wave-forms of SOE estimation based on the 
ICKFA were plotted as shown in Figure 6. In Figure 6(a), 
the SOE of the PB shows a linear decrease with the increase 
of time at 25°C room temperature, which is consistent with 
the actual SOE change rule. In addition, the estimated and 
theoretical values show a high degree of overlap with each 
other, and their waveform curves are all within the boundary 
range. In Figure 6(b), the simulated waveform of SOE 
estimation still fluctuates within the boundary range at 40°C 
HWC. It shows that the SOE estimation performance based 
on the ICKFA has high robustness and good estimation 
effect. 
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Figure 6. SOE estimation simulation waveform based 
on improved CKF algorithm 

To further validate the performance effect of SOE 
estimation based on the ICKFA, the study statistically 
analyzed the estimation error (EE) of SOC at different 
temperatures, as shown in Table 3. At -20°C temperature, 
the maximum EE reaches 3.56% when SOC≤30%. While at 
10°C temperature, the lowest EE is only 0.26% for 
30%<SOC<80%. This indicates that the lower the 
temperature, the higher the EE, whereas at other 
temperatures, there is no significant change in the EE. The 
greatest EE of 0.82% for SOC ≥ 80% is seen at a high 
temperature of 40°C, suggesting that the SOE estimate 
utilizing the ICKFA still maintains a good estimation 
accuracy under HWC. 
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Table 3. Estimation error of SOC at different 
temperatures 

 

Temperature/
℃ 

Estimation error/% 
SOC≤30

% 
30%<SOC<80

% 
SOC≥80

% 
-20 3.56 1.06 2.12 
-10 3.06 1.03 2.06 
0 1.92 0.92 1.87 

10 0.77 0.26 0.64 
25 0.76 0.34 0.71 
40 0.79 0.46 0.82 

 
To validate the superior performance of SOE estimation 

based on the ICKFA, the study validates the method in 
comparison with other estimation algorithms. The other 
estimation algorithms include the traditional CKF algorithm, 
extended Kalman filter (EKF) algorithm and unscented 
Kalman filter (UKF) algorithm. Figure 7 displays the error 
variation curves for various estimate strategies. With the 
lowest EE curve and a rapid convergence state, the ICKFA is 
the most accurate and efficient estimator. While the greatest 
errors of the conventional CKF method, the EKF algorithm, 
and the UKF algorithm are 1.58%, 3.97%, and 4.16%, 
respectively, the maximum error of the ICKFA is 1.06%. 
The mistakes based on the ICKFA are decreased by 0.52%, 
2.91%, and 3.10%, in comparison to these algorithms. To 
summarize, the utilization of the ICKFA in SOE estimate 
results in enhanced efficiency and accuracy of estimation. 
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Figure 7. Error variation curves of different estimation 
algorithms  

4. Conclusions 
Due to the rapid development of NEV in recent years, 

there has been an emphasis on the investigation of PB 

performance. The study employs the revised KF algorithm 
to assess the state of PB and examines its performance under 
HWC. The outcomes revealed that the estimation accuracy 
of the SOE estimation model based on the ICKFA exceeded 
96% at different discharge multiplicities, with the highest 
estimation accuracy at the TMP No. 3, which all exceeded 
99%. This indicated that the ICKFA has high accuracy and 
reliability for the estimation of PB states. Under the high 
temperature condition of 40°C, the maximum EE was 0.82% 
at SOC ≥ 80%, which indicates that the SOE estimation 
based on the ICKFA can still maintain a high accuracy under 
different HWC. The ICKFA reduced its EE by 0.52%, 
2.91% and 3.10% compared with the traditional CKF 
algorithm, EKF algorithm and UKF algorithm, respectively. 
This indicated that the ICKFA effectively improved the SOE 
estimation accuracy and efficiency. In summary, the study of 
computer modeling and PE of the PB performance of NEVs 
under HWC achieved high accuracy and efficiency of 
battery performance estimation, which provides support and 
reference for the study of the PB performance of NEVs. 
However, the study only discusses the battery performance 
estimation under HWC and does not investigate the 
performance at extreme temperatures, so the results are not 
comprehensive enough, and this aspect needs to be further 
improved. 
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