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Abstract 

The current trend is towards ever-increasingly rigorous control performance requirements for grid-connected inverters. 
Therefore, a proportional integral derivative control method of the quantum genetic algorithm and particle swarm 
optimization was proposed, which can achieve stable and efficient operation of microgrids. The total harmonic distortion of 
the improved controller was 1. 03%, which was 1. 98% lower than the traditional method and far below the national standard 
of 5%; The prediction accuracy was on average 82%, 51%, and 54% higher than the other three classic algorithms; After the 
improvement of sag, the smoothness of microgrid switching was increased, avoiding severe shaking. The convergence time 
was 68. 3%, 54. 5%, and 35. 5% shorter, and the average convergence algebra was improved by 60. 1%, 67. 2%, and 87. 
3%, respectively. The control step response only approached 1. 5 after 0. 4 seconds, which was 75% longer than the improved 
time, and the overshoot was 0. Accordingly, the proposed method is able to be utilized for the regulation of actual microgrid 
grid-connected inverters, achieving effective voltage control in dynamic and complex environments. 
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1. Introduction

With the widespread attention to the concept of sustainable 
development, countries are conducting relevant research to 
reduce carbon emissions, among which the application of 
renewable energy is currently a research hotspot [1]. 
Microgrids is a new type of renewable energy storage and 
composite device [2]. As a distributed power source, the 
performance of microgrid inverters is correlation with the 
efficient and steady run of microgrids. Proportional integral 
derivative (PID) controllers have more flexible parameter 
adjustment control and simpler results, making them more 
adaptable and robust than traditional controllers [3]. However, 
the parameter adjustment of traditional PID controller usually 
depends on experience or trial and error method, which is 
difficult to adapt to dynamic loading conditions and 
environmental factors, so its adjustment performance is often 
unsatisfactory in the face of complex nonlinear systems. 

* Corresponding author. Email: quyunqing1@126.com 

Secondly, the traditional tuning method has limited ability to 
deal with the delay and instability of the system, resulting in 
large overshoot and slow response time. In addition, with the 
increase of system scale and complexity, it is difficult for a 
single PID algorithm to meet the control requirements of 
multiple-input multiple-output (MIMO) systems, which 
makes it difficult to effectively optimize and ensure the 
stability of system performance. Therefore, this study applies 
PID controller to the control of microgrid grid connected 
inverters. Applying various algorithms to PID parameter 
optimization can significantly improve the control 
performance of microgrid grid connected inverters. Many 
studies have combined various algorithms to optimize PID 
parameters and made certain research progress [4].  

With the development of machine learning, the 
combination of PID control and various algorithms has been 
widely studied. Zhang X et al. (2024) proposed a hybrid 
algorithm HPSO based on particle swarm optimization (PSO) 
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and simulated annealing (SA) for PID controller parameter 
optimization. This method introduced adaptive weights and 
dynamic learning factors to improve the global optimization 
ability of PSO algorithm. Combined with SA mechanism, 
Metropolis criterion and cooling mechanism were used to 
guide the population to accept the inferior solution, avoid the 
local optimal, and enhance the global search ability. The 
experimental results showed that HPSO algorithm had faster 
convergence speed and stronger global search ability, and the 
PID parameters optimized by HPSO algorithm had lower 
overshoot and better steady-state and dynamic response [5]. 
Issa M (2023) proposed a hybrid algorithm AOA-HHO based 
on arithmetic optimization algorithm (AOA) and Harris eagle 
optimization algorithm (HHO) for PID controller parameter 
selection. By combining AOA with HHO algorithm with 
efficient development mechanism, the development ability of 
AOA in search space was improved, and local optimization 
was avoided by introducing disturbance and variation factors. 
The method was applied to select PID parameters to control 
two engineering applications: DC motor regulation and a 
three-tank level sequence system. Experimental results 
showed that AOA-HHO algorithm was superior to AOA and 
other comparison algorithms in PID parameter optimization 
[6]. Li X et al. (2025) proposed a proportional-integral-
differential (SGD-PID) algorithm based on adaptive 
stochastic gradient descent to solve practical scenarios where 
system and channel parameters are difficult to determine. 
Experimental results showed that the proposed adaptive 
power control scheme could effectively improve the 
performance of the system under different channel conditions 
[7]. Sandeep Y et al. (2024) realized the simulation and 
control of both arms by combining a PID controller with a 
transcendence controller to reduce the error of sine wave and 
periodic trajectory. At the same time, dynamic factors such as 
buoyancy, gravity and hydrostatic pressure acting on the 
underwater vehicle were modeled in the integrated 
SIMULINK model. The study revealed some significant 
tracks of the left and right fingertips, and employed effective 
adjustment methods such as Ziegler-Nicholas (Z-N), genetic 
algorithm (GA), ant colony optimization (ACO) and PSO. By 
PSO, integrating time multiplied by absolute error standard 
was used to improve the trajectory tracking accuracy [8]. Patil 
RS (2023) proposed a systematic review method to 
comprehensively evaluate the tuning effect of intelligent and 
naturally inspired algorithms in response to the lack of 
specific quantitative comparison of PID controller tuning 
methods in industrial applications. Using intelligent 
algorithms such as fuzzy logic (FL), artificial neural network 
(ANN), and adaptive neural fuzzy reasoning system (ANFIS), 
and evolutionary algorithms such as GA, PSO, differential 
evolution (DE), ant colony optimization (ACO), artificial bee 
colony (ABC), firefly algorithm (FA), cuckoo search (CS), 
harmonious search (HS), gray wolf optimization (GWO), 
literature comprehensive analysis was conducted. The 
research results reveal the effectiveness of different tuning 
methods in industrial applications and provide guidance for 
practitioners and researchers by comparing the performance 
of different algorithms [9].  

The application of improved algorithms to PID parameter 

optimization research has also made some progress. He Y et 
al. (2023) proposed an improved butterfly optimization 
algorithm (WDBOA) with wind-driven mechanism to 
address the shortcomings of the butterfly optimization 
algorithm (BOA) in its ability to balance exploration and 
utilization. The WDBOA is applied to the parameter 
optimization of PID controller. Experimental results showed 
that compared with other PID controllers using GA, pollen 
propagation algorithm (FPA), cuckoo search (CS) and BOA 
tuning, the WDBOA-based PID controller had better control 
performance [10]. Teekaraman Y et al. (2024) proposed a 
neural fuzzy identification system with partial integral 
controller (NFISPID), combining selective voltage pulse 
width modulation and hybrid artificial beehive swarm 
optimization for the importance of automated control of smart 
grids. By introducing a secondary controller to deal with 
abnormal situations in the power grid, this method was tested 
in the MATLAB environment for efficiency. The results 
showed that the system had higher efficiency in all parameter 
values and could stabilize the power grid faster than other 
existing controllers [11]. Ray P K et al. (2024) proposed a new 
hybrid algorithm combining PSO and GWO driven PID 
controller and cascade PI-PD controller to solve the problem 
of frequency deviation and cross-line power flow deviation in 
multi-microgrid interconnection systems. Simulation results 
showed that the proposed PSO-GWO-based PI-PD controller 
outperformed other technologies on settling time, overshoot 
and other performance indicators [12]. Pervaiz et al. (2022) 
suggested a PSO optimized PID with on chaos theory, which 
utilized chaotic mapping to contribute to the diversity of 
solutions. This method could effectively optimize the 
superiority of solutions in complex environments and prevent 
falling into local optima [13].  

In summary, although the application of the prior art in the 
control of microgrid grid-connected inverters has achieved 
certain results, there are still some obvious limitations. For 
example, many algorithms rely on traditional optimization 
methods (such as PSO, GA, etc.), which may fall into local 
optimal solutions when dealing with complex nonlinear 
systems, resulting in unsatisfactory optimization results. 
Although some improved algorithms (such as HPSO, AOA-
HHO, etc.) attempt to improve global search capabilities by 
combining multiple strategies, they still face challenges when 
dealing with dynamic environments and system uncertainties. 
Therefore, simply relying on the superiority of these 
algorithms can not fully solve many problems in practical 
applications. Meanwhile, the current research does not pay 
enough attention to the real-time feedback and adjustment 
ability under dynamic environment, which leads to the 
unsatisfactory control effect under high load changes and 
system disturbances. In the face of these limitations, an 
improved quantum genetic algorithm (QGA) based on PSO 
is introduced. The main reason for combining QGA and PSO 
is that QGA can realize more efficient global search and 
overcome the limitations of traditional GA by utilizing the 
superposition and entanglement characteristics in quantum 
computing, while PSO has good local search ability and fast 
convergence characteristics. Therefore, the combined QGA-
PSO can not only improve the search accuracy and the 
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convergence speed of the algorithm, but also enhance the 
adaptability and stability of the control system when dealing 
with complex dynamic environments. The innovation of this 
study is to introduce PSO into the optimization process of 
QGA, which can effectively balance the search accuracy, 
while ensuring convergence accuracy and efficiency. After 
optimizing the PID parameters, the droop control is improved 
to achieve smooth and stable switching of the microgrid.  

2. Methods and Materials

This section constructs a quantum improved QGA, where
the adaptive function of the GA is adjusted and applied. 
Meanwhile, the PID controller has been improved with droop 
control to enhance the smoothness of grid connected current 
switching. Finally, PSO is used to optimize the QGA, further 
adjust the algorithm parameters, and obtain a hybrid 
algorithm with stronger search performance. The main reason 
for selecting PSO to enhance QGA is that PSO has strong 
global search ability and can avoid falling into local optimal 
solution. Compared with other optimization algorithms, such 
as GWO algorithm and whale optimization algorithm (WOA), 
PSO has higher search efficiency in high-dimensional space, 
and its adaptive adjustment mechanism can better optimize 
the evolution process of QGA. In addition, PSO has less 
parameter adjustment requirements and is suitable for 
combining with QGA, thus improving the overall 

performance and stability of the algorithm. In terms of 
computational balance, although PSO will increase the 
computational complexity, it can effectively improve the 
solving accuracy through proper parameter configuration and 
algorithm improvement.  

2. 1 Smooth Switching Control Method for
Grid Connected Inverters Based on QGA-PID

The control of voltage and current in wind solar energy 
storage microgrid systems is crucial for the steady of grid 
connected inverters [14-16]. PID is a classic control method 
that combines the weighted sum of proportional, integral, and 
derivative components to control a system [17-19]. The PID 
controller has adjustable parameters, which makes it easy to 
implement, but in complex and nonlinear systems in the 
power grid system, traditional PID controllers may have 
shortcomings such as long response time and large overshoot 
[20-22]. Therefore, the study combines quantum improved 
GA to adaptively adjust the parameters of PID controller and 
improve the control ability of the model. Quantum computing 
has been adopted to improve GA by utilizing quantum 
entanglement properties to optimize complex problems and 
construct QGA, to enhance the search efficiency. With the 
research objectives of this section, Figure 1 illustrates the 
QGA-PID’s structure.  
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Figure 1. Schematic Diagram of QGA-PID Control Model Structure 

Figure 1 shows the flow of a control system. First, a given 
trajectory is entered, based on which the system performs 
position control and attitude control. Subsequently, the motor 
control signal is obtained through the motor speed inverse 
transformation, and the control signal is further calculated 
according to the motor model. Next, the aircraft mathematical 
model is used to predict and correct the control effect. Finally, 
the system adjusts the control strategy through the actual 
attitude feedback signal and the actual position feedback 
signal to ensure that the aircraft runs according to the 
expected trajectory [23-25]. In the process of global 
optimization of PID parameters by QGA, it is first necessary 
to encode representative problems, clarify the PID parameters 
that need to be optimized, and define them as shown in 
equation (1).  

( )( ) ( ) ( )p i d
de tu t K e t K e t dt K

dt
= + ∫ +

(1)
In equation (1), ( )u t  represents the control input; ( )e t

is the error; pK
, iK , and dK  are the proportional gain,

integral gain and differential gain. After the optimization 
objective of the PID controller is clarified, QGA is 
constructed. Firstly, QGA is initialized, and the chromosome 
encoding is shown in equation (2).  

2 2 1i iα β+ =
(2)

In equation (2), 
2

iα and 
2

iβ are the probability 
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amplitude of the quantum bit being in the 0 state and 1 state; 
the sum of the probability amplitude of the quantum bits is 1. 
Then, through the rotation gate, the quantum individual is 
updated, and the ground state quantum is adaptively adjusted, 
iterating towards the optimal direction, as illustrated in 
equation (3).  

1
( )

F
u t

=
(3) 

In equation (3), F   represents the updated adaptive 
function, which is inversely proportional to the objective 
function ( )u t . To ensure genetic diversity, the genes of the
parent chromosome are crossed and mutated to achieve gene 
exchange and generate new chromosomes. The crossover rate 
is shown in equation (4).  

*
1 1 1

*
1 1 1

( , , , , , , )

( , , , , , , )
k k k n

k k k n

v v v v v v

u u u u u u
− +

− +

 =


=

 

  (4) 

In equation (4), 1 2( , , , )nu u u u=   and 

1 2( , , , )nv v v v=    represent two different parental 
chromosomes, and genes are randomly selected on the 

parental chromosomes for crossover mutation; 
*u  and *v

represent two newly generated chromosomes, respectively; 
k  represents the currently selected chromosome breakpoint,
with a breakpoint range of 1 ~ n . The mutation probability
of the genetic operator determines the quality of the next 
generation of new chromosomes, as shown in equation (5).  

* max

min

Δ( , ), (0,1) 0
Δ( , ), (0,1) 1

k
k k

k k
k k

x t U v random
x

x t v U random
 + − =

= 
− − = (5) 

In equation (5), kx   represents the currently selected

chromosome cutting point; *kx  represents the new cutting

point after crossover mutation; min max[ , ]k kU U   represents
the currently available range of chromosome cutting points; 

1,0random（ ）  represents the range of randomly selected

cutting points; kv   represents the currently randomly

selected cutting points within min max[ , ]k kU U   range; 
Δ( , )t y  represents the arbitrarily distributed data in [0, ]y .
After optimizing the PID parameters, the inverter switching 
process is smoothed to avoid system impact, as shown in 
equation (6).  

start end end start( ) 1 cos
2 2

u u u u tu t
T
π+ −   = + ⋅ −   
   (6)

In equation (6), startu and endu represent the control
inputs at the initial and end; T   represents the switching 
time. As the main power grid fails, smooth switching of 
microgrids is the core to ensure stable operation. Sag control 
is a commonly used method for smooth switching of 
microgrids, but its sag coefficient cannot be adjusted in real 
time, resulting in weak anti-interference of the grid. Therefore, 
QGA-PID is used to improve traditional sag control, as shown 
in Figure 2.  
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Figure 2. Structure Diagram of Quantum Genetic PID Droop Controller 

In Figure 2, the droop controller uses three identical power 
sources and microgrids in parallel, connected to a transformer 
and a common point. The difference of the voltage is used as 
the control input, and the QGA is applied to find out the 
proper parameter solution as the output. Equation (7) 
illustrates the proper solution.  

( ) ( ) ( )p pJ i e i de iα β= +∣ ∣ ∣ ∣
(7) 

In equation (7), ( )J i  represents the optimal parameter

solution; pα   and pβ   both represent weighting

coefficients; ( )e i  represents overshoot.
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2. 2 Optimized QGA-PSO Microgrid Control
Method

In the previous section, the construction and optimization 
process of QGA-PID were detailed, achieving stable, precise, 
and global control of photovoltaic microgrid inverters [26-28]. 
However, due to the large number of nonlinear and real-time 
changing nonlinear parameters in actual optical storage 

systems, the control process is very complex. Simple QGA-
PID control has limitations in accuracy, response time, and 
adaptability when dealing with complex working conditions 
[29]. Therefore, this study introduces PSO to further optimize 
QGA, to obtain a more powerful global optimization 
algorithm. The PSO exhibits superior global search 
capabilities and a more rapid convergence rate in comparison 
to the conventional QGA. Its process is shown in Figure 3.  
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Figure 3. Schematic Diagram of PSO Flow 

Figure 3 shows the flow of PSO. The first step is 
initialization, setting the initial position and speed for each 
particle. Then, the objective function of each particle is 
calculates, the velocity and position of each discoverer 
particle is updated based on the objective function value. The 
following particle then updates the position of the followers 
based on the motion of the exploring particle. During this 
process, some particles are randomly selected as 
replacements and their positions are updated. Has the optimal 
solution been reached? Has the optimal solution been reached? 
If yes, then classify, otherwise continue iterating. Finally, the 
process ends [30-31]. The first step in its construction process 
is to initialize the controller parameters obtained by the QGA-
PID algorithm, providing initial optimization space for PSO. 
The process of parameter selection of optimization algorithm 
includes the initialization stage, the definition of fitness 
function, the updating of particle velocity and position, the 
selection and mapping of alternative particles, and the setting 
of iteration and termination conditions. In the initialization 
stage, the number of particles, initial position and speed are 
set to lay the foundation for the search process. The fitness 
function is used to evaluate the effect of the algorithm and 
guide the selection of the best parameters. The particle speed 

and position update mechanism ensure the exploration and 
utilization of the algorithm, and enhance the optimization 
efficiency. Selecting and replacing poorly performing 
particles can increase the diversity and avoid the algorithm 
falling into local optimality. Through several iterations, the 
PID parameters are continuously optimized to achieve higher 
control performance. The initialization of the location and 
speed of the particle swarm is illustrated in equation (8).  

min max min

min max min

(0) (0,1) ( )
(0) (0,1) ( )

i

i

x x rand x x
v v rand v v

= + × −
 = + × − (8) 

In equation (8), (0)ix   and (0)iv   respectively

represent the location of the i  th particle; minx   and

maxx   respectively are the upper and lower limits of the

control parameters; minv   and maxv  are the upper and
lower limits of the velocity. There is a discrepancy of the 
predicted and actual response values of the PSO to the power 
grid system. The framework of the control model is shown in 
Figure 4.  
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Figure 4. Schematic Diagram of QGA-PID Control Model Optimized by PSO 

Figure 4 shows the schematic diagram of the QGA-PID 
control model optimized by PSO. The model's state 
monitoring module is responsible for collecting information 
about the current state of the system in real time to provide a 
basis for subsequent processing. Using this information, the 
optimal solver computes the optimal objective function 
constraints. The feedback correction module then corrects the 
objective function according to the resulting constraints and 
passes the optimized result to the MC controller. The whole 
process also includes a predictive model to enhance the 
predictive power of the system and ensure the accuracy of the 
control effect. Through the collaboration of these modules, 
the model can be effectively optimized to achieve better 
performance. The calculation of particle fitness is shown in 
equation (9).  

1 2 3ISE IAE ITAEif w w w= × + × + × (9)
In equation (9), if   is the fitness value of the i  th

particle; 1w , 2w , and 3w  all represent weight factors;
ISE , IAE , and ITAE are the integral squared error,

absolute error, and time absolute error. The fitness value 
function can be combined with multiple performance 
indicators to comprehensively evaluate the quality of 
particles. The weights are adaptively adjusted, as shown in 
equation (10).  

max min
max

max
( *) *

*
t t

t
ω ωω ω −

= − ×
(10) 

In equation (10), ( *)tω  is the inertia weight at time t ;

maxω   and minω   represent the inertia weight’s largest

and smallest value; max*t  and *t   are the largest
iteration and the current iteration. As the inertia coefficient 
decreases, the search accuracy of the algorithm gradually 
improves. The speed update is shown in equation (11).  

1 1 2 2( 1) ( ) ( ( )) ( ( ))i i i i iv t v t c r p x t c r g x tω+ = + − + −

(11) 
In equation (11), ( 1)iv t +   is the speed of the i  th

particle at 1t +  ; ω   represents inertia weight; 1c   and

2c   respectively represent particle acceleration constants;

1r   and 2r   respectively represent random numbers,

ranging from [0, 1]; ip   represents the historical optimal
location of the i  th particle; g   represents the global
optimal position. The particle position is adjusted with the 
updated particle velocity, and the resulting position update is 
expressed in equation (12).  

( 1) ( ) ( 1)i i ix t x t v t+ = + + (12)
In equation (12), ( 1)ix t +  is the position of the i th

particle at time 1t + ; ( )ix t  is the location of the i th
particle at time t . Better QGA-PID control parameters are
searched. To determine whether the algorithm needs to be 
terminated, the convergence condition of the algorithm is 
shown in equation (13).  

best best( 1) ( )f t f t+ − <∣ ∣ ò (13)
In equation (13), best ( 1)f t +   and best ( )f t

represent the optimal fitness values obtained by the algorithm 
at 1t +   and t  , respectively; ò  is the pre-set
convergence threshold in the algorithm. When the absolute 
value of the fitness difference between adjacent time steps is 
less than the preset threshold, the current solution is the 
optimal solution, as shown in equation (14).  

, ,p i dK K K g∗ ∗ ∗ =
(14)

In equation (14), pK∗
 , iK∗

 , and dK∗
  respectively

represent the PID controller parameters optimized by PSO. 
By utilizing the local search capability of PSO to optimize the 
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QGA-PID controller, the performance is further improved, as 
shown in equation (15).  

(1 )U a Q a P= × + − ×
(15) 

In equation (15), U   represents the parameter values 
obtained by QGA and PSO mixed optimization; Q  
represents the parameter update values obtained by QGA; 
P  represents the parameter update values obtained by PSO; 
a  represents the mixed weight coefficient, which aims to 
update the step size ratio. The mixed optimization flowchart 
of QGA-PSO for PID controller is shown in Figure 5.  

 
Figure 5 shows the optimization process based on PSO and 

neural network. First, neural network architecture is designed 
as the basis of the entire system, defining the structure and 
hierarchy of the network. The PSO is then initialized to 
explore the optimization space. The global optimization step 
of PSO is to calculate the fitness value of each particle and 
update the individual optimal solution and the population 
optimal solution according to the fitness value. To enhance 
the searching ability, the adaptive mutation operation is 
introduced to make the particles jump out of the local optimal 
solution. Then, it will check whether the iteration is complete, 
and if not, it will continue the optimization process. After 
each round of optimization, the first M particles with the best 
fitness are selected and passed to the neural network for local 
optimization to further fine-tune the network parameters. 
Finally, the best result is selected as the final optimization 
result. By combining global optimization and local 
optimization, the performance and accuracy of neural 
network in complex audio signal recognition can be 
effectively improved. In practical applications, hardware 
limitations and challenges posed by computing requirements 
must also be taken into account. Specifically, the complexity 

and real-time computing capability of the algorithm require 
the system to have high processing performance and 
computing resources, especially in MIMO systems and 
dynamic environments, which need to quickly process large 
amounts of data and perform complex calculations. In 
addition, the hardware implementing this optimization 
method needs to support high-frequency data acquisition and 
processing to ensure that the control strategy can respond to 
system changes in a timely manner. Therefore, in practical 
applications, dealers and operators need to evaluate the 
corresponding hardware configuration during the system 
design phase to ensure the effective implementation of the 
algorithm and meet the performance requirements. This will 
help to promote the practical application of QGA-PSO 
method in microgrid grid-connected inverters, and improve 
its feasibility and practical value. 

In the above optimization process, QGA and PSO achieve 
efficient PID parameter tuning through synergistic effect. 
First, QGA uses the superposition and entanglement 
properties of qubits to encode PID parameters and generate a 
diverse solution space through global search, which helps 
avoid stalling at locally optimal solutions. The PSO then fine-
tuned the search process by introducing a collaborative 
mechanism for its particle population, with each particle 
updating its speed and position according to its historical best 
position and global best position. The global search capability 
provided by QGA is combined with the local search 
capability of PSO to optimize the objective function, ensuring 
that the particles quickly adapt and converge to the optimal 
control parameters in a complex dynamic environment. This 
structured interaction not only improves the optimization 
speed and accuracy, but also enhances the stability of the 
algorithm when dealing with nonlinear and uncertain 
problems, making the final tuned PID controller show better 
performance in microgrid-connected inverters.
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Figure 5. QGA-PSO Hybrid Optimization Flow Chart 

EAI Endorsed Transactions 
on Energy Web 

| Volume 12 | 2025 |



Y. Qu 

3. Results 

The control performance of QGA-PID proposed by the 
research was tested, and Total Harmonic Distortion (THD), 
response error, convergence accuracy, and speed of grid 
connected current were used as evaluation indicators. Other 
traditional algorithms were compared and analyzed, and the 
actual control effect was compared with the PID controller 
before improvement.  

3. 1 Performance Testing of Smooth 
Switching Control for Grid Connected 
Inverters Based on QGA-PID 

The parameters of the research model were selected as 
follows: the sampling rate of the audio signal was set to 44.1 
kHz, and the audio depth was set to 16 bits, which can balance 
the resolution and processing efficiency of the signal to meet 
the needs of most audio signals. The threshold for note 
recognition was set to 0.01. The minimum note length was set 

to 80 ms to ensure that sustained information about the note 
is captured while avoiding excessive noise misjudgment. The 
learning rate of the neural network model was set to 0. 001. 
The population size in the PSO was set to 50 and the 
maximum number of iterations was 100. To test the controller 
constructed by the proposed method, a simulation was 
conducted on the microgrid system. The experimental 
equipment used Intel Core i5 2. 80 GHz CPU, 2.96 GB of 
memory, and Windows 7 operating system. Firstly, the 
application effect of the improved QGA-PID controller in 
microgrid systems was verified, while the traditional QGA-
PID controller was used for comparative analysis, and system 
stability was adopted as the evaluation index. The results of 
the frequency dependent THD of the grid connected current 
in the power grid system were shown in Figure 6. In Figure 6 
(a), the THD of traditional QGA-PID was 3. 01%. In Figure 
6 (b), the THD of the improved QGA-PID was 1. 03%, which 
was 1. 98% lower than the traditional method and far below 
the national standard of 5%. The results indicated that the 
proposed method could decrease the THD value and had high 
superiority in improving current quality, with better harmonic 
control capability than traditional methods.  
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Figure 6. Analysis of QGA Current Harmonic Control Before and After Improvement 

To verify the response accuracy of the proposed QGA, 
three similar algorithms, Adaptive GA (AGA), Standard GA 
(SGA), and Optimized GA (OGA) were used for comparative 
analysis. The discrepancy of the predicted response value and 
the true response value of PID control parameters was used 

as an evaluation index. The stability of voltage control 
response of the power grid system applied to PID parameter 
control with various algorithms varied with control time. In 
Figure 7 (a), the proposed method had the highest prediction 
accuracy, with the predicted value coinciding with the true 
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height, with a difference of only 2%. In Figure 7 (b), AGA 
performed the worst with a prediction error of 84%. The error 
values of SGA and OGA in Figures 7 (c) and 7 (d) were at an 
intermediate level, at 53% and 56%, respectively. The 
prediction accuracy of the proposed method was 82%, 51%, 

and 54% higher than the average of AGA, SGA, and OGA. 
Therefore, the proposed algorithm had superiority in 
predicting PID control parameters and controlling the voltage 
response of microgrids.  
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Figure 7. Comparative Analysis of Prediction Accuracy of Various Algorithms 

The smoothness of voltage and power curves was adopted 
as evaluation indicators. The QGA-PID control methods 
before and after improvement were compared and analyzed. 
In Figure 8 (a), before and after the 1. 7s microgrid switching, 
after the improvement of droop control, the smooth switching 
voltage always fluctuated within the range of [-250, 250] 
without severe shaking; However, the conventional voltage 
curve showed sharp fluctuations, with two extreme points of 
-300 and 300 respectively. In Figure 8 (b), the power was 
divided into photovoltaic power supply, battery, and load 

voltage. The photovoltaic and load voltages remained 
constant at 4.5 kW and 5 kW, respectively, without significant 
fluctuations. The battery remained at -6.5kW from 0-0.5s, and 
at two time points beyond 0.5s and 2s, the power rapidly 
increased, taking over some of the power supply, but there 
was no significant fluctuation and remained in a steady 
increasing trend. Therefore, after the sag improvement, the 
steady and power quality of the microgrid connected system 
could be effectively controlled.  
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Figure 8. Comparison of Switching Control Effects of Microgrids Before and After Sag Improvement 
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3. 2 Analysis of the Practical Application 
Effect of QGA-PID Controller Optimized by 
PSO 

To verify the superiority of the improved PSO, WOA was 
adopted, and three different datasets, Iris, Wheat, and Wine, 
were used for comparative analysis. In Figure 9, the proposed 

method converged to the optimal solution at a faster rate in 
different datasets, and the convergence curve was always 
below WOA. In Figure 9 (a), the proposed method began to 
converge to 0.02 after 58 iterations. In Figure 9 (b), the 
convergence effect of the two methods was slightly poor, and 
the proposed method started to slowly converge to 0. 1 when 
the number of iterations reached 65. In Figure 9 (c), the 
proposed method converged to 0.18 after 78 iterations.  
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Figure 9. Comparison of MSE Convergence Curves of Various Algorithms 

To verify the superiority of PSO over QGA improvement, 
PSO with Local Dynamic Inertia Weight (PSO-LDIW), 
Adaptive Weight PSO (AWPSO), and PSO with Inertia 
Control (PSO-IC) with local dynamic inertia weight were 
used for comparative analysis. Four algorithms were applied 
to two functions for performance testing, and the average 
generation values of each algorithm were used as evaluation 
indicators. In Figure 10 (a), in the f1 test function, when the 
iteration increased, the average convergence algebra of the 
proposed method was the lowest, at 64, while the average 
convergence algebras of PSO-LDIW, AWPSO, and PSO-IC 

were 78, 94, and 167, respectively, which were 60.1%, 67.2%, 
and 87.3% higher than the proposed algorithm. In Figure 10 
(c), the proposed algorithm had the fastest convergence speed 
with a convergence time of 1.23, which was 68.3%, 54.5%, 
and 35.5% shorter than the convergence times of PSO-LDIW, 
AWPSO, and PSO-IC, respectively. In Figures 10 (b) and 10 
(d), the average convergence algebra and convergence time 
trends of each algorithm in the f2 test function remained 
unchanged compared to those in the f1 test function. 
Therefore, the proposed method had high global search 
capability and solving efficiency.  
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Figure 10. Comparative Analysis of Solution Performance of Various Algorithms 

The Improved Whale Optimization Algorithm (IWOA) 
and the Nelder Mead Whale Optimization Algorithm 
(NMWOA) were used for comparative analysis. Each 
algorithm was applied to four different functions and repeated 
experiments were conducted at population sizes of 50 and 150, 
respectively. The convergence accuracy of each algorithm 
was used as an evaluation metric. In Figure 11 (a), under a 
population size of 50, the proposed algorithm showed the best 
convergence performance in all four tests. Among them, the 

convergence accuracy of the test function f1 reached the 
highest 97%, which was 5% and 9% higher than IWOA and 
NMWOA, respectively. In Figure 11 (b), under a population 
size of 150, the proposed algorithm still had the best 
convergence accuracy among all functions. Compared with 
the test results of a population size of 50, the difference was 
within 5%. Thus, the proposed method had high convergence 
accuracy and reliability in different test functions.  
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Figure 11. Comparative Analysis of Convergence Accuracy of Various Algorithms in Different Test Functions 
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To test the improved PID controller, a comparative 
analysis was conducted on the PID controller before and after 
improvement under four different operating conditions. The 
rotation angle step size was adopted as an evaluation index. 
As the testing time increases, the step response curves of PID 
control before and after improvement are illustrated in Figure 
12. In Figure 12 (a), the rotation angle step size of the 
proposed method began to converge to 1 at 0. 1s and remained 
stable with increasing testing time; The control step response 
of the PID before improvement only approached 1.5 at 0.4s, 

which was 75% longer than the time after improvement. In 
addition, there was a sudden change in the rotation angle step 
size at 0.4s, and the overshoot reached 14.3%, which only 
stabilized after more than 1s. In Figures 12 (b), 12 (c), and 12 
(d), the test results of the two methods in operating conditions 
2, 3, and 4 were consistent with operating condition 1, and the 
trend of the step response curve did not change significantly, 
with a difference of less than 3%. As a result, the improved 
PID controller had superior performance compared to before, 
with higher response speed and smaller overshoot.  
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Figure 12. Comparison of PID Control Performance Before and After Improvement 

4. Discussion and Conclusion 

To improve the control performance of microgrid 
connected inverters, a control method combining PSO and 
QGA-PID was proposed to optimize the algorithm's search 
capability, stability, and accuracy for optimal parameters. The 
THD of the improved QGA-PID controller was 1.03%, which 
was 1. 98% lower than the traditional method and far below 
the national standard of 5%; The prediction accuracy of 
control parameters was 82%, 51%, and 54% higher than the 
average of AGA, SGA, and OGA; After the improvement of 
droop, the smooth switching voltage always fluctuated within 
the range of [-250, 250], and the photovoltaic and load 
voltages remained at 4.5kW and 5kW respectively. The 
battery remained at -6.5kW from 0-0.5s without severe 

shaking; The proposed method began to converge to 0.02 
after 58 iterations, which was 0.03 and 0.08 higher than the 
PSO and WOA before the improvement, respectively; The 
average convergence algebras of PSO-LDIW, AWPSO, and 
PSO-IC were 78, 94, and 167, respectively, which were 
60.1%, 67.2%, and 87.3% higher than the proposed algorithm; 
The convergence accuracy was 5% and 9% higher than 
IWOA and NMWOA, respectively; The control step response 
of the PID before improvement only approached 1.5 at 0.4s, 
and the control step response only approached 1.5 at 0.4s, 
which increased the time by 75% compared to the improved 
time, and the overshoot was 0. Therefore, the QGA-PSO 
optimization method proposed in this study can significantly 
improve the control performance of microgrid-connected 
inverters, especially in dynamic environments with frequent 
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fluctuations. Its efficient PID parameter tuning not only 
improves the response speed and stability of the system, but 
also reduces the total harmonic distortion (THD) below the 
safety standard, ensuring improved power quality. For 
practical applications, this means being able to better cope 
with the instability brought about by renewable energy access, 
thereby enhancing the ability of microgrids to contribute to 
the grid. At the same time, the reliability and adaptability of 
the method make it widely used in different microgrid 
configurations and operating conditions, and improve its 
market acceptance and implementation economy. 

The proposed method had significant advantages over 
other classical algorithms in the PID parameter optimization 
process. In practical applications, compared with using GA or 
PSO methods alone, the improved QGA-PSO utilized the 
global search capability of quantum computing and the local 
optimization ability of PSO to achieve local refinement 
search while also improving global solving ability. It could 
effectively reduce steady-state errors and achieve higher 
output voltage accuracy. Compared to traditional WOA, it 
had more diversity in convergence speed, reduced the 
possibility of falling into local optima, and had a higher 
convergence rate [32]. In terms of control stability, the 
proposed method, improved by droop control, had faster 
response time and response stability compared to the hybrid 
algorithm of fuzzy logic and differential evolution [33]. In 
terms of PID control performance, the proposed method had 
higher adaptability to dynamic and complex environments 
compared to neural network-based PID controllers, and the 
training process of the algorithm was simpler, resulting in 
faster search speeds. Therefore, the proposed method 
outperformed other traditional and hybrid methods in terms 
of control accuracy, convergence speed, stability, and 
response time, and could be effectively applied in practical 
control scenarios of grid connected inverters. The proposed 
QGA-PSO optimization method shows significant 
performance advantages in theory, but it may still face many 
challenges and limitations in practical grid-connected 
inverter applications. First of all, the dynamic characteristics 
and uncertainties of the microgrid may make it difficult for 
the control algorithm to work stably in real-time applications, 
especially in the face of instantaneous load fluctuations or 
fault events, the response time and accuracy of the control 
strategy will be tested. Second, in terms of hardware 
implementation, the need for computing resources may limit 
the roll-out of the approach in resource-poor or cost-sensitive 
environments. In view of the above limitations, future 
research can focus on the following directions. Firstly, how to 
extend the QGA-PSO optimization algorithm to deal with the 
dynamic characteristics and uncertainties of microgrid should 
be discussed. Considering the feasibility of hardware 
implementation, more lightweight algorithm implementation 
can be studied to meet the needs of resource-poor or cost-
sensitive environments. The introduction of advanced 
machine learning technology for intelligent decision-making 
will help optimize control strategies under more complex 
operating conditions, ensuring the reliability and practicality 
of microgrids. 
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