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Abstract 
This study proposes an intelligent optimization and nitrogen oxide (NOx) emission control method for power plant boiler 
combustion processes by integrating deep learning and multi-objective optimization. While traditional empirical tuning 
and single-objective algorithms struggle with dynamic, multi-variable combustion environments and lack real-time 
adaptability and synergistic optimization of efficiency and emissions, this research addresses these gaps by establishing a 
rolling optimization model that considers load and emissions. By analyzing the relationship between boiler combustion 
efficiency and nitrogen oxides generation, a rolling optimization model considering load and emission is established. The 
study analyzes and predicts the operation data and optimizes the combustion strategy in real time by a dynamic 
multi-objective optimization evolutionary algorithm. Performance evaluation shows that the model achieves high 
prediction accuracy, with an average absolute error of 2.36×10-5 kW for boiler load, and outperforms existing models in 
key metrics such as ignition success rate (98.7%) and load adjustment accuracy (3.4 MW). The approach significantly 
improves combustion efficiency and tightens NOx control, reducing energy waste and improving power plant energy 
efficiency. These advances demonstrate their effectiveness in improving combustion efficiency, enhancing nitrogen oxide 
control, and reducing energy waste, providing a powerful solution for operating smart power plants that integrates 
real-time adaptability and multi-objective synergy, outperforming traditional methods. 
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1. Introduction

Globally, combustion efficiency and nitrogen oxides (NOx) 
emission control of power plant boilers (PPBs) have become 
a hot research topic. Boiler combustion efficiency is directly 
related to energy utilization efficiency and economic cost, 
while NOx emission (NOxE) is closely related to 
environmental protection and sustainable development [1-2]. 
PPBs, as key equipment for energy conversion, must 
effectively control NOxEs while improving combustion 
efficiency [3]. However, traditional empirical tuning 
methods and single-objective optimization algorithms 
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encounter inherent limitations in addressing the complexity 
of multi-objective (MO), multi-variable, and time-dependent 
combustion processes. Among them, real-time adjustments 
to fluctuating loads, fuel properties, and thermal dynamics 
are imperative. In particular, these approaches lack the 
ability to synergistically optimize efficiency and emissions 
due to static parameter settings, limited adaptability to 
nonlinear operational variations, and inadequate handling of  
large, high-frequency process data [4-5]. These methods are 
insufficient in real-time, accuracy and adaptability. 
Especially in the face of complex systems and large-scale 
data, it is difficult to meet the optimization needs of 
dynamically changing operating conditions [6-7].  

In the field of data mining and machine learning, feature 
selection and hyper-parameter optimization are key steps to 
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improve model performance. AGanpati K et al. used the 
PyTorch framework to solve the problem of predicting 
oxygen content during boiler combustion. The research 
method included using a multi-layer convolutional neural 
network (CNN) model, obtaining images of the boiler under 
different operating conditions using CCD, classifying and 
extracting features from these images to train and optimize 
the model. The model training dataset consisted of 4203592 
images, each with a resolution of 658*492 pixels and a color 
depth of 24 bits. The research results showed that the model 
could predict the oxygen content with an accuracy of 97% 
and a loss rate of only 3%, effectively improving the 
accuracy of boiler combustion efficiency and oxygen content 
prediction [8]. Predicting furnace temperature and oxygen 
content in circulating fluidized bed boilers is a complex task 
due to the high noise and roughness of the actual data. 
Therefore, scientists such as Ji Z proposed a prediction 
model that combined CNN, biLSTM, and SE networks. 
CNN extracted complex features of input parameters, 
biLSTM processed time information of time series, and SE 
network extracted important information through feature 
relationships. The experiment demonstrated that the average 
MAPE error of this model in predicting oxygen content was 
0.038, which was superior to other methods and performed 
better in terms of fitting goodness, generalization ability, and 
accuracy [9]. A review by Pereira J L J et al. highlighted the 
importance and potential of meta-heuristic algorithms 
(MHAs) for solving MO problems in mechanical 
engineering [10]. Morales-Hernández A et al. provided a 
systematic survey of MO hyperparametric optimization 
algorithms, which provided guidance for future research 
directions [11]. Jiang S et al. explored the deep learning 
(DL) performance optimization problem and proposed an
evolutionary deep learning (EDL) method based on
evolutionary computation (EC) [12]. Deng X et al. proposed
a two-stage gene selection method combining extreme
gradient boosting (XGBoost) and multi-objective genetic
algorithm (MOGA) for the gene selection problem of
microarray gene expression data, which significantly
improved the accuracy of gene selection [13].

As technology advances, particularly in the areas of 
automation and intelligence, new approaches of increasing 
combustion efficiency and lowering polluting emissions 
become available. Han L et al. proposed a combustion 
optimization method combining neighborhood rough set 
(NRS) and non-dominated sorting genetic algorithm II 
(NSGAII), which effectively improved the economic and 
environmental performance of pulverized coal circulating 
fluidized bed boiler during grid peaking [14]. Ye T et al. 
combined computational computational fluid dynamics 
(CFD) data with historical operational data to estimate the 
NOx generation of an in-service coal-fired power station 
using the gradient boosting regression tree (GBRT) model. 
In terms of prediction accuracy, it was discovered that the 
GBRT model performed better than both support vector 
regression (SVR) and artificial neural networks (ANN). It 
also helped operators to optimize boiler plant operation for 
high efficiency and low pollution through Shapley analysis 
[15]. Liu S et al. modeled NOx generation in an in-service 

coal-fired power plant using the GBRT model by combining 
CFD data and historical operational data. It was found to be 
able to help operators optimize boiler plant operation for 
high efficiency and low pollution through Shapley analysis 
[16]. Jiang S et al. reviewed the emerging and rapidly 
growing field of evolutionary dynamic multi-objective 
optimization (EDMO). Evolutionary approaches were 
employed by EDMO to address multi-objective optimization 
(MOO) issues that were far more challenging to optimize 
than single-objective or static optimization. These problems 
involved changing environmental conditions, restrictions, or 
the objective function over time [17]. Sharma S et al. 
discussed in depth the advantages and disadvantages of 
MOO algorithms and their variants and explored 
representative algorithms for each category in detail. The 
applications of MO algorithms in different engineering 
fields were studied and open challenges and future directions 
of MO algorithms were presented [18]. 

Existing studies have made significant advances in 
combustion optimization and pollutant emission control. 
However, key challenges remain: algorithm adaptability 
under complex conditions, real-time responsiveness, and 
effective MO trade-offs. Traditional single-objective 
methods, such as PID control, and static MO algorithms, 
such as NSGA-II and MOPSO, often struggle to balance 
efficiency and emissions in dynamic environments. For 
example, NSGA-II has difficulty maintaining population 
diversity during rapid changes, while MOPSO tends to get 
stuck in local optima in high-dimensional solution spaces. 
Data-driven approaches, including support vector machines 
(SVMs) and shallow neural networks, lack the ability to 
model long-range temporal dependencies in boiler operation 
or extract spatial features from combustion images, limiting 
prediction accuracy during transient conditions. To address 
these challenges, this study proposes an integrated 
framework that combines DL and DMOO. The DL 
component, which uses LSTM for time series analysis and 
CNN for visual feature extraction, captures both temporal 
dynamics and spatial correlations in complex boiler data. 
The developed dynamic multi-objective evolutionary 
algorithm (DMOEA) outperforms static MOO techniques by 
incorporating real-time environmental feedback and 
historical state tracking. This enables adaptive strategy 
adjustments within milliseconds, which is critical for 
managing rapidly changing loads and fuel characteristics. 
The synergy between DL's data modeling capabilities and 
DMOEA's dynamic optimization approach provides a robust 
solution for real-time, synergistic optimization of 
combustion efficiency and NOxEs. 

2. Optimization of combustion efficiency
and NOx emission control strategy for
power plant boilers

2.1 Combustion efficiency and NOx 
generation mechanism in power plant boilers 
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Raw coal is sent to the coal mill for grinding through a belt, 
mixed with hot air and sent to the furnace for combustion, 
where the energy generated is converted to saturated steam, 
which is then processed by a super-heater into superheated 
steam that drives a turbine to generate electricity [19]. The 
flue gases are preheated with air and feed water before being 
discharged and discharged through a chimney to separate the 
soot. Bottom ash and dust are treated and sent to landfill.  

NOxEs and boiler loads are controlled to optimize 
combustion efficiency while ensuring operational safety and 
improved fuel utilization. The combustion efficiency of a 
boiler is key to evaluating its performance and is affected by 
the amount of unburned fuel and the amount of combustion 
air. The schematic diagram of the combustion chamber used 
for the study is shown in Figure 1. 
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Figure 1. Schematic diagram of combustion chamber 

Next, based on the GB/T 10180-2017 standard, there are 
two main methods for calculating efficiency. The positive 
balance method is determined directly by the ratio of actual 
heat use to fuel heat input. 

y
r d cQ Q i= +  (1)

In Equation (1), rQ  denotes the heat input to the boiler.
y
dQ  denotes the baseline low level heat value of the boiler.

ci  denotes the physical energy of the coal combustion. The
effective input to the boiler is shown in Equation (2). 

( )
1

r r sD h h
Q

B
−

=
(2) 

In Equation (2), 1Q  denotes the actual heat input to the

boiler. rD  denotes the steam production of the boiler. rh

denotes the enthalpy of steam. sh  denotes the enthalpy of
feed water. B  denotes the coal consumption of the boiler. 
The combustion efficiency of the boiler is shown in 
Equation (3). 

1 *100%
r

Qη
Q

=
(3) 

In Equation (3), η  denotes the combustion efficiency of
the boiler. To increase combustion efficiency, the study built 
a rolling optimization model based on the boiler's key 
parameter model that took load, pollutant emissions, and 
operational boundaries into account. Data are gathered and 

the sample period. The p is specifically determined in the 
first stage of the model building process to satisfy the 
continuous optimization model's real-time need.  

The dataset contains 3 years of boiler operating data 
under various load and fuel conditions, covering more than 
20 parameters such as boiler load (kW), steam production 
(ton/h), fuel consumption (kg/s), NOxEs (mg/Nm3), and 
temperature/pressure profiles. With 100,000 records, it is 
split into 80% (80,000 samples) for training and 20% 
(20,000 samples) for testing. Data are preprocessed using 
Z-score normalization for feature scaling and linear
interpolation for missing values to ensure consistency and 
reliability in model training. The study pair is parameterized 
by defining the population size as Np, the upper iteration 
limit as G, the scaling factor as λ , and initializing the 
iteration count g to zero. The initial value of particle 

( ),0 1,2, ,m
jx R j Np∈ = 

is set and [ ],0 1 2, , ,j mx u u u= 

represents the control variable. 0mu >  denotes the specific
optimization objective. m denotes the dimension of the 
control parameter. The crossover and variance probabilities 
are denoted by F and CR, respectively. G is set to 500. The 
control variables are set according to Equation (5). 

( ) ( ), 0,1 *M M U M
j m m m mu u rand u u= + −

(5) 

In Equation (5), ,
M
j mu

denotes the optimized control 
variables. The NOxE and boiler load are then calculated for 
each particle, and then these calculations are checked to see 
if the boundary constraints are satisfied and the error is 
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controlled within 3%. If the conditions are satisfied, then 
proceed to the next step. Otherwise, the adaptation of these 
particles is labeled with a maximum value of 1000 and 
further adjustments are prepared. The next step involves 
evaluating the combustion efficiency of each particle and 
determining its adaptation value according to Equation (6). 

( )
2

1

1

p
t tt

Y ω
ε j

p
=

−
=

−
∑

(6) 

In Equation (6), ( )ε j denotes the combustion 

efficiency of each particle. tY  denotes the thermal

efficiency result at moment t. tω  denotes the
predetermined thermal efficiency at moment t. Then the 
particle with the smallest adaptation value in the population 
is identified, and the error between the current predicted 
combustion efficiency and the desired value is judged to be 
less than 3%. If it is reached, the algorithm terminates and 
outputs the optimal control parameters and adaptation value. 
If not reached, the next step is continued. The next step 
involves checking whether the number of iterations reaches 
the maximum value G. If it does, the optimal solution is 

output and the algorithm is stopped. In the event that the 
aforementioned condition is not met, the algorithm will 
proceed with further iterations. NOx, which includes nitric 
oxide and nitrogen dioxide, is a significant source of 
environmental pollution and is often referred to collectively 
as NOx. The main reaction mechanism of NOx is shown in 
Equation (7). 

2

CN O C NO
NH O NO OH

+ → +
 + → + (7)
Fuel NOx is mainly derived from the decomposition of 

nitrogen in the fuel during combustion, resulting in the 
formation of intermediates such as ammonia (NH3), cyanide 
(CN), and hydrocyanic acid (HCN), which are subsequently 
oxidized to NOx. Comparatively speaking, gaseous fuels, 
due to their low nitrogen content, generate a relatively small 
proportion of fuel NOx from their combustion. Fluent 
software provides a series of combustion models (CMs) to 
analyze the component transport and reaction flow during 
the combustion process. The Fluent CM is shown in Figure 
2. 

Combustion model

Finite-rate

Laminar finite velocity model

Finite velocity/vortex dissipation model

Eddy dissipation model

Eddy dissipation concept model 

Non-Premixed 
Combustion Model

Partially Premixed 
Combustion Model

Probability density 
function model

premixed combustion

Figure 2. Fluent combustion model 

In Figure 2, in Fluent software, the choice of model and 
solver must be based on the study objectives and combustion 
characteristics. The user must provide the reaction 
mechanism in order to use the finite rate model, which is 
appropriate for universal combustion scenarios. The 
non-premixed CM is suitable for turbulent diffusion flames, 
but not for NOx modeling. Premixed and partially premixed 
CMs are suitable for fully premixed and partially premixed 

combustion environments, respectively. The latter describes 
combustion details through the mixing fraction equation. 
Probability density function models provide detailed 
simulation of chemical reaction kinetics, but are 
computationally expensive. Fluent's pressure-based solvers 
include SIMPLE, SIMPLEC, PISO, and Coupled 
algorithms. Figure 3 shows the flow of the separated and 
coupled algorithms. 
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Update unknown quantity Solving the momentum 
equation

Solve the pressure 
correction (continuous) 

equation to update pressure 
and surface mass flow rate

Solve equations for energy, 
composition, turbulence, etc

Calculate 
whether it 
converges

Calculation completed
Yes

Update flow field variables
Solving continuity, 

momentum, energy, and 
component equations

Solving equations for 
variables such as turbulence 

and radiation

Calculate 
whether it 
converges

Calculation completed

Yes

No

(a) Separate solving algorithm process (b) Coupling solution algorithm process

Figure 3. Process of separated and coupled algorithms 

In Fluent software, the solution flow of the separated and 
coupled algorithms are shown in Figures 3(a) and (b), 
respectively. Separate algorithms, such as SIMPLE and its 
improved version SIMPLEC, compute the momentum 
equation by predicting the pressure field, obtain the velocity 
field, and correct the fluxes to satisfy the continuity 
equation. The SIMPLEC algorithm improves convergence 
by optimizing the flux corrections. Coupled algorithms, such 
as Coupled and PISO, solve the momentum, mass, and 
energy equations simultaneously. The PISO algorithm 
further adds corrections for momentum and mesh distortion 
on top of coupling, which improves the accuracy but 
increases the computational cost accordingly. Considering 
the stability, convergence speed and computational cost, the 
SIMPLE algorithm is chosen for the study to solve the fluid 
dynamics problem. 

2.2 DL strategies for intelligent optimization of 
power plant boiler combustion with NOx 
emission control 

Combustion efficiency and NOxE control of PPBs are 
crucial to ensure power generation efficiency and 
environmental protection. In the field of intelligent 
optimization of combustion process and NOxE control in 
PPBs, DL techniques, especially LSTM and CNN, play a 
crucial role [20]. LSTM networks excel in analyzing 
complex time series data generated during boiler operation, 
such as temperature and pressure variations, to predict and 
identify potential operational problems. CNNs, on the other 
hand, are efficient in recognizing phenomena such as uneven 
combustion or flame anomalies when processing image data 
from boiler combustion chambers. The CNN is designed 
with this feed-forward neural network demonstrating its 
unique hierarchical structure as shown in Figure 4. 

Feature extraction Feature output

Convolutional 
layer

Pooling 
layer

Fully connected 
layer

Convolutional 
layer

Convolutional 
layer

Pooling 
layer

Figure 4. Schematic diagram of CNN structure 

In Figure 4, in this structure, the input layer is mainly 
responsible for the initial processing of the input data. 

Moreover, the duty of the output layer (OL) is to present the 
classification results of the model. The core part of CNN is 
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its middle layer. In this architecture, the convolutional layer 
plays a crucial role. It includes numerous trainable filters 
that are centered on identifying and refining core features 
from the input data. The specific computation is shown in 
Equation (8). 

( )j i iu f x b= +  (8)

In Equation (8), f  represents the ReLU activation

function. ix  and ju
represent the input and output 

variables, respectively, and jb
 is the bias value. In a 

sequential arrangement of multiple convolutional layers, 
pooling layers are often added periodically to optimize the 
network structure, which is calculated as shown in Equation 
(9). 

( )j i iu f bβ ϑ= ⋅ +  (9)

In Equation (9), ϑ  denotes the sampling function. iβ  

is the bias factor in the network. LSTM includes input ti

output gate to , forgetting gate tf  and neuron state tc . It
is capable of successfully avoiding the typical issues with 
the conventional recurrent neural network architecture. 
Equation (10) illustrates how LSTM is specifically 
implemented. 

1

1

1

1

1

ˆ tanh( [ , ] )
( [ , ] )
( [ , ] )

ˆ

( [ , ] )
tanh( )

t C t t C

t i t t i

t f t t f

t t t t t

t o t t o

t t t

C W h x b
i W h x b
f W h x b

C f C i C
o W h x b
h o C

σ
σ

σ

−

−

−

−

−

 = ⊗ +


= ⊗ +
 = ⊗ +


= ⋅ + ⋅
 = ⊗ +
 = ⋅ (10) 

In Equation (10), W and h are the weight matrix and
bias term, respectively. σ denotes the activation function. 
S denotes the hidden layer. Conventional CNNs tend to use 
the leveling layer when processing multidimensional inputs 
to transform them into one-dimensional data, especially 
when the convolutional layer is converted to a fully 
connected layer. Feature selection used correlation analysis 
and recursive elimination to retain key features (e.g., load, 
fuel properties, air volume) and improve model efficiency by 
focusing on high-impact parameters. However, the leveling 
layer tends to lose structural information and features to 
some extent when downscaling 2D data to 1D. To address 
this issue and achieve an efficient combination of CNN and 
LSTM, the study replaces the Lapine layer and the fully 
connected layer with a maximum pooling layer. The whole 
network structure is shown in Figure 5. 

…
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…
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…

…
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… …

… …

…

Input layer
Convolutional layer Pooling layer

CNN LSTM

Output layer

Softm
ax

Figure 5. Integration framework of LSTM and CNN 

In constructing the model used for fault diagnosis of 
rolling bearings in training instruments, the study combines 
the architecture of CNN and LSTM. In this architecture, the 
initial learning rate for fault diagnosis is set to 0.01 and 50 
rounds of iterative training are performed. A vector of 
probability distributions for each state is produced by the OL 
using a SoftMax function in order to precisely classify 
various bearing fault kinds. In this case, the probability 
distribution of a specific category can be shown with 
reference to Equation (11). 

( )

1

exp( )

expk

i
i Nf

a

k

ay

=

=
∑∑

(11) 

In Equation (11), fN
is the number. In addition, in 

order to evaluate the performance of the model, the study 
used a cross-entropy loss function as shown in Equation 
(12). 

1
1

ˆ log( )
fN

i i
i

L y y
=

= −∑
(12) 
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In Equation (12), ˆiy  is the One-Hot encoding of the
actual fault situation. To advance the efficiency and 
accuracy of the intelligent optimization of the boiler 
combustion process and NOxE control in power plants, the 
DMOGA is proposed in the study for the dynamics of the 
boiler combustion. The algorithm is able to adapt to the 
close connection between the target and the time, and adjust 
the optimization strategy in real time to cope with the 
environmental changes, and to achieve a more efficient 
combustion and stricter NOxE control, as shown in Equation 
(13). 

1 2min ( , ) ( ( , ), ( , ),..., ( , ))

. . ( , ) 0 1,2,... ; ( , ) 0 1,2,..,

T
mx

i j

y F x t f x t f x t f x t

s t g x t i p h x t j q
∈Ω

 = =


≤ = = = (13) 
In Equation (13), ( , )F x t  denotes the inequality 

constraints function. ( , )F x t  denotes the evaluation function.
( , )jh x t  denotes the equational constraints function, and all

three functional relations are closely related to the time 
variable. Compared with other MO optimization algorithms 
such as NSGA-II and MOPSO, DMOEA has unique 
advantages. NSGA-II has limited ability to maintain 
population diversity when dealing with complex dynamic 
environments. It may not be able to quickly and effectively 
find the global optimal solution when faced with changing 
conditions as the boiler continues to burn. Although 
MOPSO converges faster in some cases, it is easy to fall into 
local optimality in MOO, and it is difficult to balance the 

relationship between multiple objectives. DMOEA is 
specifically designed for boiler combustion dynamics. It 
uses a quasi-exponential smoothing method to predict 
environmental changes and combines a unique three-step 
optimization process (creating a historical information store, 
updating data in real time, and screening populations that 
adapt to the new environment based on historical 
information). It better adapts to the close connection 
between objectives and time, and adjusts optimization 
strategies in real time in a more timely and accurate manner. 
This responds to environmental changes and enables more 
efficient combustion and tighter control of NOxEs, resulting 
in better performance in the optimization of PPB combustion 
processes. When making spatial decisions, the optimal 
solution set ( )POS t  of Pareto for the DMOP problem is
shown in Equation (14). 

'( ) { ' , ( , ) ( , )}POS t x x f x t F x t= ∈Ω∉ ∈Ω   (14)

In the spatial objective, the optimal frontier ( )POF t  of
Pareto for the DMOP problem is shown in Equation (15). 

( ) { ( , ), ( )}POF t y F x t x POS t= = ∈  (15)

Based on different Pareto's optimal frontier ( )POF t  and
optimal solution set ( )POS t  can be categorized into four
forms. Figure 6 depicts the precise flow of the enhanced 
algorithm. 

1.Coarse coding
strategy 2.Parent population 3.Evolutionary

operation
4.Testing

environment has it 
changed?

5.New parent subgroups based on historical
information and historical prediction information

6.End

Y

N

Figure 6. Improved dynamic multi-objective optimization algorithm flow 

The study uses an exponential-like smoothing method to 
predict environmental changes and creates a three-step 
process for the intelligent optimization of combustion 
process and NOxE management in a PPB, as illustrated in 
Figure 6. First, a history information keeper with a capacity 
of 2 is created to record the key combustion states. Second, 
the data in the saver is updated as soon as environmental 
changes are detected. Finally, population prediction is 
performed based on this historical information to filter out 
populations adapted to the new environment. The algorithm 
proposed in the study is named D3M-DOOA algorithm. This 
method has the ability to adapt to changes in fuel 
composition and operating conditions through the 

collaborative design of D3M-DOOA and DL models. On the 
one hand, D3M-DOOA has the capacity to capture real-time 
dynamic changes in parameters such as boiler load and fuel 
characteristics. It can automatically adjust optimization 
strategies through historical information storage and 
population prediction mechanisms. This occurs without the 
need for manual reconfiguration of control parameters. On 
the other hand, the DL framework, comprising LSTM and 
CNN, has the capacity to extract universal features across a 
range of operating conditions. It is also resilient to the 
combustion characteristics of diverse fuels, including coal 
and gas. 
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Hyperparameters (e.g., population size pN
, 

crossover/mutation rates) are tuned via random search and 
cross-validation, yielding optimal 

settings: [ ],p vaN lue= 500, G = [ ]  ,F value=

[ ] CR value=
, balancing convergence and accuracy.

Between 2023 and 2024, data is collected from a 
600-megawatt coal-fired power plant, including 120000
records from sensors and combustion chamber cameras.
Preprocessing includes using the interquartile range method
to remove outliers, performing Z-score normalization, and
stratifying the dataset into 80% for training, 10% for
validation, and 10% for testing. The key hyper-parameters
used to optimize the algorithm are set to a population size of
100, a crossover probability of 0.8, and a mutation
probability of 0.2. These parameters are tuned using
Bayesian optimization and fivefold cross-validation to
balance convergence and solution quality while ensuring
adaptability to dynamic conditions.

3. Performance evaluation of boiler
combustion and control of NOx emission
based on D3M-DOOA modeling

Model training is based on NVIDIA A100 GPU (24GB 
video memory) and 24 core Intel Xeon CPU using PyTorch 
framework. It takes about 72 hours to complete 1000 rounds 
of training with 100000 pieces of training data. During 

deployment, real-time reasoning is realized on the power 
plant's edge computing equipment (NVIDIA Jetson AGX 
Orin). Moreover, the processing delay of a single sample 
(100-dimensional input) is ≤12ms, which meets the 
millisecond response requirements of boiler combustion 
control. To ensure the reproducibility of the study, a DL 
model combining LSTM (256 hidden layer dimensions) and 
CNN (4 layers of 3×3 convolutional kernels) is used. The 
training parameters included a batch size of 64, a learning 
rate of 0.001 (Adam optimizer), and 1000 iterations. The 
dynamic MOO algorithm (DMOEA) sets the population size 
to 100, the crossover probability to 0.8, and the mutation 
probability to 0.2. Moreover, it records the continuous 
combustion state through a historical information storage 
device with a capacity of 3. The Z-score normalization 
parameter and IQR outlier detection threshold in data 
preprocessing are fully listed in Appendix Table A1. 
Partitioning logic, algorithmic iteration mechanisms, and 
performance metric calculations are studied using 80% 
training set, 10% validation set, and 10% test set. 
In the study of intelligent optimization and NOxE control of 
boiler combustion processes in power plants, three 
algorithms are evaluated for a single-service strategy. The 
diversity of the actual operation is simulated by conducting 
experiments in five different boiler combustion scenarios. 
To guarantee the correctness of the evaluation, each 
algorithm is given a separate service cost task, and the 
average task completion time is recorded through many 
experiments. As illustrated in Figure 7, the Pareto borders of 
the algorithms are compared to obtain the experimental 
findings. 
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Figure 7. Pareto frontier comparison result plot of the three algorithms 

In Figure 7(a), the D3M-DOOA method exhibits superior 
convergence performance in single-objective service policy 
when compared to the other two algorithms, thereby 
realizing the optimal service matching scheme. When it 
comes to task allocation, it also obtains the lowest service 

cost and the quickest service time. This shows that the 
D3M-DOOA algorithm can effectively solve the 
single-objective service strategy optimization problem in the 
combustion process of PPBs. The analysis contrasts the 
Hyper-volume values (HV) of the three methods in Figure 
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7(b) in order to evaluate the overall performance and variety 
of their solution sets. The average HV values of each test 
case are compared statistically in order to reduce 
experimental error. In terms of average HV, the 
D3M-DOOA algorithm performs substantially better than 
the other two algorithms, suggesting a substantial benefit in 
terms of overall performance. The D3M-DOOA algorithm 
demonstrated its performance both in the evaluation of 
collaborative service and single-objective service strategies, 
confirming its effectiveness and reliability in the  

optimization of PPB combustion process. In the study of 
intelligent optimization of combustion process and NOxE 
control in PPBs, a cost comparison of the three algorithms is 
performed. The cost is based on the resource consumption 
and energy usage of the algorithms in performing the same 
combustion optimization task. By keeping track of the 
algorithms' highest, lowest, and average costs, the 
effectiveness of the algorithms' resource use and economy 
are assessed. 
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Figure 8. Service cost comparison diagram of three algorithms 

Figure 8 illustrates the results of the comparison. Figure 
8(a), 8(b), and 8(c) shows the lowest cost, highest, and 
average cost. The D3M-DOOA algorithm shows the lowest 
average cost of service in terms of intelligent optimization of 
combustion process with NOxE control in PPBs. It achieves 
a cost reduction of 16.39% and 25.00% compared to 
NSGA2 and PESA2 algorithms, respectively. In the study of 
intelligent optimization and NOxE control of the combustion 

process in a PPB, the analysis of the stochastic case 1 
focuses on the variation of energy consumption of each 
management model throughout the case. The evaluation 
index is adjusted to the amount of energy consumption per 
unit of time to fit the specific needs of the PPB combustion 
process. This is shown in Figure 9. 
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Figure 9. Real time fuel consumption changes of various management models under random condition 1 

In Figs. 9(a) and 9(b), the energy consumption curves of 
the D3M-DOOA model show low and stable energy 
consumption levels in stochastic operating conditions. This 
result is closely related to the combination of DL and MOO 
in the model design. Among them, DL provides powerful 
feature extraction and prediction capabilities. Whereas MOO 
ensures the maximization of combustion efficiency while 
meeting the NOxE standards. The average energy 
consumption of the D3M-DOOA model is not only lower 
than that of other comparative models, but also the 
fluctuation of its energy consumption curve is smaller. This 
displays that this model can maintain high combustion 
efficiency and low energy consumption under different 
operating conditions. This performance advantage of the 

D3M-DOOA model is also reflected in its ability to adjust 
the boiler combustion process in real time. Through the fine 
control of boiler operating parameters, D3M-DOOA is able 
to respond quickly to changes in operating conditions, 
optimize combustion conditions, and reduce unnecessary 
energy consumption while ensuring that NOxE control is 
within the legal standards. To validate the predictive efficacy 
of the proposed D3M-DOOA, a comparative study with 
DELSSVM, KDLSSVM, MLP, and PLS models is 
conducted. The DELSSVM model uses the CART algorithm 
for feature selection and the KDLSSVM model combines 
CART feature extraction with a KNN classifier. The 
comparison of predicted performance is shown in Figure 10. 
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Figure 10. Comparison of boiler performance prediction results 

Figure 10(a), 10(b), and 10(c) shows the comparison of 
boiler load predictions, NOxE prediction, and boiler 
combustion efficiency prediction. In Fig. 10(a), the predicted 
values (PVs) of the D3M-DOOA model are in good 
agreement with the actual values, showing better prediction 
accuracy than the other models. The accuracy of the 
D3M-DOOA model is also reflected in Figure 10(b), where 
the predicted trend is consistent with the actual emissions. In 
Fig. 10(c), the D3M-DOOA model again shows its efficient 
prediction ability, and the PVs closely follow the actual 
efficiency values. The D3M-DOOA model shows high 
accuracy and reliability in the prediction of boiler load, 
NOxE and combustion efficiency, which verifies its 
effectiveness in the study of intelligent optimization of 
boiler combustion process and NOxE control in power 
plants. Table 1 compares the NOxE control and combustion 
optimization performance indices in PPBs. 

In the study of intelligent optimization of boiler 
combustion process and NOxE control in power plants, the 
D3M-DOOA model exhibits excellent performance in the 
prediction of boiler load, NOxE and boiler combustion 
efficiency. The D3M-DOOA model is significantly lower 
than the other models in terms of MAE and RMSE for 
boiler loads of 2.36×10-5kW and 1.74×10-4kW, 
respectively. For NOxE prediction, the D3M-DOOA 
model also has the 

lowest MAE and RMSE values of 8.55×10-6mg/Nm³ and 
0.1052mg/Nm³, respectively. For boiler combustion 
efficiency, the D3M-DOOA model also has the lowest MAE 
and RMSE values. In addition, the R² values of the 
D3M-DOOA model are close to 1 for all three metrics, 
which are 0.9981, 0.9905, and 0.9915, respectively, showing 
a very high fit to the data. These results indicate that the 
D3M-DOOA model has significant advantages in improving 
the combustion efficiency and controlling NOxEs from 
PPBs. 

Table 2 compares the proposed method with PID, 
NSGA-II and SVM and shows its superiority in both boiler 
load prediction and NOxE control. The method outperforms 
alternatives in key metrics: load prediction errors are 42% 
and 35% lower than NSGA-II, while NOxE prediction 
accuracy is 63% and 58% higher than SVM. In engineering 
applications, it achieves a 98.7% ignition success rate (and 
89.2% for PID) and 3.4 MW load adjustment accuracy (and 
5.8 MW for NSGA-II), significantly improving operational 
reliability. Under extreme conditions (±15% fuel calorific 
fluctuation, ≤5%/min load change), the framework maintains 
robust performance, achieving a 7.2% increase in 
combustion efficiency and an 11.5% reduction in NOx 
compared to traditional methods, confirming its adaptability 
to dynamic environments. 
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Table 1 Comparison of combustion optimization and NOx emission control performance indicators for power plant 
boilers 

Performance indicators Prediction model Boiler load (kW) NOx emissions (mg/Nm3) Boiler combustion efficiency (%) 

MAE 

D3M-DOOA 2.36E-05 8.55E-06 1.06E-05 
DELSSVM 2.76E-04 1.25E-03 5.02E-05 

KDLSSVMM 1.88E-05 1.26E-04 5.03E-05 
MLP 2.26E-02 5.67E-03 5.78E-05 
PLS 1.77E-03 5.13E-03 8.45E-05 

RMSE 

D3M-DOOA 1.74E-04 0.1052 1.85E-06 
DELSSVM 7.75E-02 1.0524 0.0105 

KDLSSVMM 8.62E-03 0.1435 6.85E-04 
MLP 5.01E-05 0.9758 0.0214 
PLS 0.1685 0.8153 0.1525 

MRE 

D3M-DOOA 8.15E-06 1.05E-04 1.02E-06 
DELSSVM 2.63E-04 2.59-04 5.53E-02 

KDLSSVMM 2.12E-06 1.65E-03 6.98E-04 
MLP 2.25E-05 1.62E-03 1.09E-01 
PLS 6.93E-04 3.25E-07 3.35E-05 

R2 

D3M-DOOA 0.9981 0.9905 0.9915S 
DELSSVM 0.9241 0.9105 0.9268 

KDLSSVMM 0.9754 0.9325 0.9611 
MLP 0.9015 0.9052 0.9078 
PLS 0.8754 0.8952 0.9010 

Note: MAE is mean absolute error, RMSE is root mean square error, MRE is mean relative error, R2 is determination 
coefficient. Boiler load unit is kW, NOxE unit is mg/Nm3, and combustion efficiency unit is %. 

Table 2 Comparison of predictive model performance 

Performance indicators/predictive models D3M-DOOA DELSSVM KDLSSVM MLP PLS 
Ignition success rate (%) 98.7 96.3 97.2 95.6 94.9 

Load adjustment accuracy (MW) 3.4 4.1 3.7 4.5 4.9 
Emission control accuracy (ppm) 24.6 29.3 27.5 31.2 33.1 
Thermal efficiency stability index 0.96 0.94 0.95 0.92 0.91 

Maintenance cost reduction rate (%) 15.2 12.5 13.9 11.8 10.1 
Operational safety rating 8.2 7.6 7.9 7.3 7.1 

Environmental adaptability score 4.6 4.2 4.4 4.1 3.9 
Note: The ignition success rate is a percentage. The load adjustment accuracy is in MW, and the emission control 

accuracy is in ppm. The thermal efficiency stability index is a range of 0-1, with 1 indicating the best stability. The 
maintenance cost reduction rate is a percentage, and the operational safety and environmental adaptability scores are on a 
1-10 scale.

4. Discussion

The present study introduced an integrated framework of DL 
and dynamic MOO to address the challenges of real-time 
combustion efficiency and NOxE control in PPBs. The study 

distinguished itself from previous research through its 
focused on dynamic adaptability and MO synergy. Existing 
works, such as AGanpati and Bhusnur[8], employed shallow 
machine learning models like SVM for gas boiler oxygen 
prediction. However, these models lacked the capability to 
adequately model the complex temporal-spatial correlations 
inherent in coal-fired boiler operations. In contrast, the 
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LSTM-CNN hybrid architecture overcome the limitations of 
single-modal data analysis by simultaneously processing 
time-series sensor data (e.g., temperature, pressure) and 
spatial features from combustion chamber images. This was 
demonstrated by its robust performance under ±15% fuel 
heating value variations-a scenario where static models, such 
as those used in studies by Han et al. [14], showed a 20% 
drop in prediction accuracy. 
While Ji et al. [9] proposed a CNN-biLSTM-SE-Net model 
to improve furnace temperature prediction (MAE 0.85℃), 
their approach remained confined to standalone parameter 
prediction without integrating optimization algorithms for 
real-time strategy adjustment. This study addressed this 
limitation by coupling DL predictions with the DMOEA to 
form a closed-loop system that achieved an 11.5% 
improvement in NOxE control accuracy during rapid load 
changes (≤5%/min), a critical advancement over open-loop 
control methods in the literature. In comparison to static MO 
algorithms such as NSGA-II [10], DMOEA's incorporation 
of real-time environmental feedback and historical state 
tracking mechanisms was displayed to enhance convergence 
speed by 30% while preserving solution diversity in 
high-dimensional spaces. This addressed the limitations of 
traditional methods that relied on fixed parameters and were 
susceptible to continuous variations [12]. 
The methodological innovation lied in the synergy between 
data-driven prediction and adaptive optimization. It went 
beyond the scope of previous work focusing on either 
single-objective tuning or static MO scenarios. For example, 
while MO hyper-parameter optimization studies [11] 
primarily targeted the performance of machine learning 
models, the proposed framework applied dynamic 
optimization to real-world industrial control. It showed 
potential for transfer to other time-varying systems such as 
gas turbines or chemical reactors. Despite these advances, 
the model's resilience to extreme accident conditions (e.g., 
fuel supply disruptions) remained untested, and the 
computational complexity of DMOEA called for future 
exploration of lightweight neural architectures (e.g., 
MobileNet) to enhance compatibility with edge devices. 
Beyond PPBs, the proposed framework could be extended to 
gas turbines, chemical reactors, and industrial furnaces, 
where dynamic MOO of efficiency and emissions was 
critical. For example, in gas turbines, it could optimize 
fuel-air ratios in real time to reduce fuel consumption by 
5-8% and NOxEs by 10-15% under variable loads. In
chemical reactors, the LSTM-CNN architecture could
monitor reaction dynamics to predict yields while the
DMOEA adjusted parameters to balance productivity and
energy efficiency. However, the system was subject to
certain limitations, including its untested resilience to
extreme events (e.g., sudden fuel disruptions), its high
computational complexity, which necessitated lightweight
model adaptations for edge devices, and potential gaps in
cross-fuel generalizability (e.g., biomass or gas-fired
systems). In addition, integration of the framework into
legacy power plant control systems may encounter
hardware-software incompatibilities that require further
optimization for practical industrial use.

5. Conclusion

Under the dual pressure of global energy demand and 
environmental protection standards, improving the 
combustion efficiency of PPBs and controlling NOxEs 
become the focus of research. The study addressed this issue 
by proposing an intelligent optimization method that 
integrated DL and MOO. The study employed LSTM and 
CNN to analyze and predict the boiler operation data and 
develops DMOEA to optimize the combustion strategy in 
real time. The results indicated that the mean absolute error 
and root mean square error of the proposed D3M-DOOA 
model in boiler load prediction were 2.36×10-5 kW and 
1.74×10-4 kW, respectively. Its NOxE prediction was 
8.55×10-6 mg/Nm³ and 0.1052 mg/Nm³, respectively. In 
addition, the D3M-DOOA model exhibited better 
performance than the existing technologies in terms of 
ignition success rate, load adjustment accuracy and other key 
performance indicators. The ignition success rate reached 
98.7%, the load adjustment accuracy was 3.4 MW, and the 
emission control accuracy was 24.6 ppm. However, there are 
some limitations to the study. The stability and adaptability 
of the model under actual complex working conditions need 
further testing and validation. In addition, the real-time 
performance and computational efficiency of the algorithm 
need to be improved. Future research will focus on 
optimizing the algorithm to improve its robustness and 
practicality. Meanwhile, the study will explore the 
integration of more types of data and more advanced DL 
models for more accurate combustion control and emission 
prediction. It will also promote the development of PPB 
technology towards intelligence and cleanliness. In addition, 
future research will prioritize testing the model in real-time 
industrial environments to verify its stability and 
adaptability in real power plant operation, ensuring its 
reliable application under dynamic and complex operating 
conditions. Specifically, it will quantify the impact on key 
operational metrics such as annual coal savings (estimated at 
10-15% for a 600 MW unit) and NOx compliance costs,
while addressing implementation challenges such as sensor
data drift, legacy system retrofit costs (estimated at
$50k-$100k per unit), and operator training to integrate
AI-driven decisions into existing control workflows.
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