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Abstract 

Fault diagnosis of power equipment is a crucial task to credit the safe and stable operation of equipment. However, fault 
diagnosis of power equipment faces challenges such as high dimensionality, complexity, and nonlinearity. Therefore, this 
study proposes an improved support vector machine model, combined with a grey wolf optimization algorithm, aimed at 
improving the accuracy and efficiency of power equipment fault diagnosis. To validate the model’s performance, this 
study divided a dataset of 3870 power equipment defects into training and testing sets using an 8:2 ratio, with evaluation 
metrics including accuracy, recall, and F1 score. The results showed that the fault recognition rate of the support vector 
machine model based on the improved grey wolf optimization algorithm reached 92.76%, with an accuracy close to 0.95 
and a loss rate of 0.13. The model exhibited faster convergence speed, as well as better stability and convergence. At the 
same time, the optimized model had good feature extraction ability on different types of model faults, and the 
comprehensive recognition error of the model was basically stable in the interval of (-0.005, 0.005). The experiment 
validates that the research model improves the optimization algorithm through a modal decomposition strategy. 
Meanwhile, the improvement of support vector machine parameter selection has strengthened the recognition and analysis 
of fault characteristics, providing an effective solution for power equipment fault diagnosis. 

Keywords: Support vector machine, Grey wolf optimization algorithm, Modal decomposition, Power equipment, Fault diagnosis 

Received on 04 September 2024, accepted on 09 April 2025, published on 08 July 2025 

Copyright © 2025 Y. Song et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA 4.0, 
which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original 
work is properly cited. 

doi: 10.4108/ew.7185

*Corresponding author. Email: wanghuan19820523@126.com 

1. Introduction

Power equipment is an essential infrastructure in modern 
society, playing a vital role in the production, transmission, 
and distribution of electricity. The safety and stable 
operation of its equipment are correlated with the reliability 
of the power supply and directly affect the economic 
activities of society and people's daily lives [1]. Therefore, 
ensuring the normal operation of power equipment, and 
improving the efficiency and accuracy of equipment fault 
diagnosis, has become a key focus of the power industry. 
With the development of smart grid and Internet of Things 
(IoT) technology, the operational data of power equipment 
has characteristics such as high dimensionality, high 
complexity, and nonlinearity [2-3]. The traditional Power 
Equipment Fault Diagnosis (PEFD) scheme is no longer 
able to cope with complex fault situations. Currently, 
machine learning and data mining methods are constantly 

iterating and updating, and have wide applications in PEFD. 
Enesi M R et al. combined the fault tree analysis method 
with reliability block diagrams to construct a reliability 
model for Ajaokuta Steel Company Limited (ASCL). The 
reliability of the entire substation obtained by this model in 
the experiment was 91.77% and 95.22% [4]. Meng F et al. 
proposed a new PEFD model. This model integrated 
Bidirectional Encoder Representation (BERT), Bidirectional 
Long Short-Term Memory (BiLSTM), and Conditional 
Random Field (CRF). Experimental results have shown that 
this model can more accurately identify and extract Chinese 
entities than traditional methods [5]. Baek et al. converted 
the multivariate time series data of the device into a feature 
matrix, detected anomalies through a convolutional 
autoencoder, and learned a classification model using a 
supervised learning method based on the residual matrix of 
the fault profile. The effectiveness and applicability of this 
method have been verified through practical application [6]. 
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Qian Yi et al. proposed a self-cognitive Deep Time 
Clustering Representation model (AC-DTCR) to accurately 
identify fault types and ensure the stable operation of power 
grids, aiming at the problems of insufficient data and lack of 
category labels in fault diagnosis of high-voltage circuit 
breakers. The model utilized time series clustering as an 
unsupervised learning technique, integrating time 
reconstruction and K-means goals. To enhance the 
capability of encoders, false sample generation strategies 
and auxiliary classification tasks were proposed to improve 
the cluster structure and obtain cluster-specific time 
representations. The findings indicated that the model 
exhibited superior classification accuracy, surpassing the 
performance of both traditional classification models and 
time series clustering models. Its application in the domain 
of PEFD was a notable advancement [7]. Xu F et al. 
proposed a troubleshooting strategy based on an improved 
AlexNet neural network to meet the requirement of accurate 
analysis of infrared image features in power equipment 
detection and recognition. The method used model-based 
multi-scale images to extract device features and identified 
the shortcomings of AlexNet neural networks in terms of 
slow recognition speed and ease of overfitting. After 
understanding these shortcomings, the performance of 
specific recognition models was improved by adding a 
pooling layer, modifying the activation function, replacing 
Local Response Normalization (LRN) with a Batch 
Normalization (BN) layer, and optimizing the parameters of 
the improved Gray Wolf algorithm. In simulation 
experiments, this algorithm had better recognition 
performance [8]. Manual infrared image processing has the 
problems of low efficiency and low intelligence in the 
diagnosis of traction power supply equipment status. In view 
of this, Lin S et al. proposed a two-layer network model 
based on Inception-V3 and Mask Region-based 
Convolutional Neural Network (Mask-RCNN). The first 
step of the diagnosis method was to identify the type of 
power equipment through the Inception-V3 network and 
then use Mask-RCNN to achieve automatic division of 
different equipment structure areas. The maximum 
temperature of different regions was extracted according to 
the coordinates of the divided structural regions, and the 
temperature characteristic quantity was constructed. 
Different criteria were invoked according to the type of 
equipment for automatic diagnosis. The experimental results 
showed that the mean Average Precision (mAP) value of the 
two-layer improved network model was up to 0.9072, and 
the fault diagnosis efficiency of the equipment was 
increased by 95.41% compared with manual processing. 
This model had high accuracy and a good recognition effect 
without relying on fault samples, which improved the 
efficiency of infrared image processing in equipment 
diagnosis and reduced labor intensity [9]. 

Existing studies still have significant limitations in PEFD: 
Models based on deep learning (such as 

BERT-BiLSTM-CRF, AC-DTCR, improved AlexNet, and 
Mask-RCNN) perform well in feature extraction and 
complex pattern recognition, but they rely on large-scale 
labeled data and have high computational complexity. In 
addition, it is easy to overfit and reduce generalization 
ability in small and medium-sized datasets or noisy 
interference scenes. In addition, the black box characteristic 
of neural networks leads to the lack of interpretability of 
fault characteristics, which makes it difficult to meet the 
demand of the power industry for the transparency of the 
diagnosis process. Therefore, this paper proposes a model 
based on an improved Support Vector Machine (SVM) and 
introduces the Grey Wolf Optimization (GWO) algorithm to 
optimize parameter settings. The objective of this study is to 
improve the overall performance of PEFD. SVM has 
excellent classification performance in small samples and 
high-dimensional nonlinear data, and its structural risk 
minimization principle can effectively avoid overfitting. 
Through kernel function mapping and GWO global 
parameter optimization, the complex fault features can be 
captured, and the strong dependence of neural networks on 
data volume and computing power can be avoided. The 
main innovation of this research is that the Modal 
Decomposition Method (MDM) deeply analyzes the fault 
signal of power equipment, extracts its potential 
characteristics, and evaluates the signal complexity 
combined with the permutation entropy, thereby enhancing 
the recognition ability of fault characteristics. Concurrently, 
the enhanced GWO is implemented to optimize SVM 
parameters, enhance the global search capability, mitigate 
local optimal problems, and refine the model's performance 
in fault diagnosis. Finally, by integrating optimization 
strategies, the prediction accuracy and computational 
efficiency of the model are improved to meet the real-time 
monitoring requirements. 

2. Methods and Materials

2.1 Building of PEFD Model Based on SVM 

PEFD is significant in operating and maintaining the 
equipment and machinery, as it can prevent unexpected 
situations from occurring. The data of PEFD have 
characteristics such as high dimensionality, complexity, 
nonlinearity, and imbalance, which make PEFD difficult 
[10-11]. Therefore, this study adopts a diagnostic model 
built on an improved SVM to analyze power equipment 
faults. SVM performs well in classification and regression 
problems. The core idea of SVM is particularly evident in 
binary classification problems, with the goal of finding a 
hyperplane in the feature space that can best separate data 
from two categories. Figure 1 displays the specific 
framework. 
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Figure 1. SVM Classification Principle 

In Figure 1, SVM searches for a hyperplane in the feature 
space that can correctly classify training samples while 
maximizing the dist from the hyperplane to the nearest 
training sample point. The hyperplane with the maximum 
spacing is considered the best decision boundary because it 
provides the minimum generalization error to some extent. 
Among them, different graphics represent different types of 
data points. The Classification Line (CL) is represented by 
formula (1) [12]. 

0x bω + =    (1) 
In formula (1), x  denotes the input feature vector. ω  

is the formula CL coefficient. b  is a constant that 
represents the translation location of the CL. Formula (1) 
defines a hyperplane as the decision boundary, separating 
the normal operating state from the fault state. The classified 
interval size is 2 / ω . By the time the ω  is minimized, 
the interval is maximized. This time, SVM transforms the 
classified issue into a min value. This process of SVM 
classification is to gain the optima for the parameters. This 
paper solves the SVM parameter optimization problem by 
introducing Lagrange multipliers and obtains formula (2). 
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In formula (2), y  is the training sample label and iα  

is the Lagrange multiplier. Formula (2) is used to calculate 
the parameters of the hyperplane and maximize the 
classification interval. In fault diagnosis, solving this 
optimization problem can identify the optimal boundary for 
distinguishing fault types. L  is the derivative of ω , b , 
and α . If the derivative value is 0, formula (3) exists. 

1 1 1

1max ( , , ) ( )
2

n n n

i i j i j i j
i i j

L b y y x xω α α α α
= = =

= − ⋅∑ ∑∑    (3) 

Formula (3) can identify the hyperplane parameters that 
best represent the distribution characteristics of the dataset 
in fault diagnosis. If the optimum in formula (3) is iα

∗ , then 

1
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=

= ∑  exists. The b∗  can be calculated, and the 

expression of the optimal classification function is formula 
(4). 
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Formulas (1) to (4) are the process of SVM searching for 
the best hyperplane in the feature space. This hyperplane is 
determined by maximizing the classification interval, and 
the parameters need to be optimized to ensure the maximum 
interval. Lagrange multipliers are used to solve this 
optimization problem and find the optima through the dual 
form of Lagrange. The above process can determine the kind 
of many unknown samples, but there are still some samples 
during the classification period. As a result, this study also 
requires to bring in a fault-tolerant variable ( iδ ), with a 
permission for samples’ misclassification. After introducing 

iδ , the formula (5) is obtained [13]. 
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In formula (5), c  is the penalty factor. Formula (5) 
considers the situation of data noise and outliers. SVM 
introduces iδ  and c , which allows some sample points to 
be misclassified, but at the same time controls the number of 
such misclassifications through c . In reality, many 
high-dimensional samples own linear and inseparable 
attributes, letting it trouble to utilize SVM for classifying 
directly. In this case, SVM requires to introduce kernel 
functions to handle such matters. Firstly, the status data are 
mapped to a higher dimension and divided accordingly, as 
expressed in formula (6). 

( , ) ( ) ( )i j i jK x x x x= Φ ⋅Φ    (6) 
In formula (6), ( )ixΦ  is a nonlinear mapping function. 

By replacing formula (3) with this formula and solving the 
meta feature space, formula (7) can be gained. 
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Formulas (6) and (7) represent that SVM maps data to a 
higher dimensional space through a kernel function in 
high-dimensional data or when the data is not linearly 
separable. Formula (6) demonstrates this nonlinear mapping, 
while formula (7) shows how the kernel function replaces 
dot product operations in the original feature space. This 
makes the solving process only related to the choice of 
kernel function, independent of the original dimension of the 
data [14-16]. This is because SVM introduces kernel 
functions, and various kernel functions have diverse effects. 
This study uses Radial Basis Functions (RBF), which have 
strong local features and excellent performance in 
addressing nonlinear issues. The calculation of RBF is 
shown in formula (8). 
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In formula (8), the parameter g  of RBF represents the 
distribution of sample points in the kernel space. By 
substituting formula (8) into formula (7), the best 
classification function can be obtained, as shown in formula 
(9). 
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Formulas (8) and (9) determine the form of RBF and its 
use in the final classification function. In Power Fault 
Diagnosis (PFD), RBF is chosen as the kernel function of 
the SVM classifier, mainly because of its excellent 
performance and applicability. RBF kernel function has a 
strong ability to capture local features and can effectively 
deal with nonlinear classification problems, which is 
especially important for complex data features in PEFD. In 

addition, the RBF kernel function maps the input data to a 
high-dimensional space, transforming nonlinearly separable 
data into linearly separable data in the high-dimensional 
space, thereby improving the accuracy and robustness of 
classification. The flexibility of its parameters also makes 
the model have good adaptability and can adapt to different 
fault types and complexity. 

2.2 Construction of PFD Model of Improving 
SVM Based on GWO 

In the PFD model constructed above, the SVM performance 
largely depends on the adjustment of model parameters, 
which are highly complex. Moreover, when facing 
large-scale datasets, the model has a longer fitting time and 
requires more time for training. Therefore, to address the 
issues of parameter optimization and computational 
efficiency, this study utilizes the GWO model for 
optimization. GWO is chosen instead of other meta-heuristic 
optimization methods, mainly because GWO has a unique 
hierarchical structure and hunting mechanism, which makes 
it more efficient in global and local search processes. 
Compared with traditional Genetic Algorithms (GAs) and 
Particle Swarm Optimization (PSO), GWO can better 
balance exploration and development, reducing the risk of 
falling into local optimal solutions. Furthermore, GWO 
exhibits robust convergence and stability in the processing 
of high-dimensional complex data, facilitating expeditious 
adaptation to dynamic environmental changes. This 
enhances the efficacy of SVM parameter optimization and 
improves the overall performance of the fault diagnosis 
model. Therefore, GWO is chosen as the optimization 
strategy for the study to achieve more accurate and efficient 
fault diagnosis of power equipment. The GWO algorithm 
treats search agents as Wolf Packs (WPs), searching for prey 
in the solution space. The gray wolf population has a clear 
hierarchical structure, as shown in Figure 2. 
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Figure 2. Wolf Pack Level Structure 
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In Figure 2, the WP hierarchy includes head wolf (ζ ), 
subordinate wolf (ψ ), execution wolf (ξ ), and regular wolf 
(υ ). Head wolf is the best representatives of the WP and has 
a significant impact on its activities. The deputy leader of 
the subordinate WP, although must obey the leader, can also 
provide advice, which is a sub-optimal solution. Execution 
wolf represents the third best solution in the solution set. 
Wolves hunt around their leaders and constantly update their 
search locations. This study assumes that the iteration of the 
model is t , the prey’s location vector is pX , and the WP’s 
position vector is X . Therefore, the straight-line dist 
between the prey and the WP can be expressed by formula 
(10) [17].

( ) ( )pD CX t X t= −    (10)
In formula (10), C  is the coefficient vector. The

calculation process of distance helps the model get the best 
position in the high-dimensional parameter space, that is, to 
improve the accuracy of system through the optimal SVM 
parameters. After getting the dist between the prey and the 

WP by formula (10), the WP adjusts its position as shown in 
formula (11). 
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In formula (11), A  is the coefficient vector. 1r  and 2r  
are random vectors within 0 to 1. a  is the convergence 
factor, whose value is proportional to the iterations inversely. 
This study can calculate the distance between the WP 
position and prey through formula (10), and simulate the 
position adjustment of the head wolf, subordinate wolves, 
and execution wolves with other WP positions through 
formula (11), thereby achieving local and global search of 
the algorithm. When a WP is hunting prey, its location 
update map is shown in Figure 3. 
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Figure 3. Updated WP Capture Location 

In Figure 3, when the vector coefficient is greater than 1, 
the WP will grow the hunting region and detect prey in a 
greater range. A global search is conducted to increase 
convergence velocity. When it is less than 1, the WP reduces 
the hunting area to decide the prey’s position. Local search 
is carried out to speed cut the convergence. The GWO is 
most prone to getting stuck in the local optimum when WPs 
change their attack orientation. Since when varying the 
direction, the prey’s position will ceaselessly vary, causing 
the prey’s loss [18]. The above method optimizes the 
SVM-based PFD model through GWO to find fault features 
and optimal parameters, but the optimized model still has 
the problem of easily falling into local optima. Therefore, 
this study introduces an MDM, whose main principle is to 
enhance the accuracy and robustness of signal 

decomposition through adaptive noise. In PFD, MDMs can 
help identify and extract potential fault features of power 
equipment. Before processing the signal, this MDM needs to 
mix the initial signal with active and negative Gaussian 
White Noise (GWN), as calculated in formula (12). 

( ) ( )i i
kx x o v= +    (12) 

In formula (12), ko is the Standard Deviation (SD) of
the noise, ( )ix  is the mixed noise signal. ( )iv  is paired 
positive and inactive GWN. In the PEFD system, mixing 

( )iv  with x  is to increase the complexity and diversity of 
the signal, enabling MDM to extract signal features more 
comprehensively. Introducing noise can help improve the 
accuracy of decomposition results and prevent interference 
during modal decomposition. In PFD, it can help identify 
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and enhance potential fault features, improving the accuracy 
of subsequent models. The modal components and residual 
values in MDM are calculated as shown in formula (13). 

1 ( )
1 11

1 1

1 [ ]j
j

IMF E x
N

R x IMF

=

 =

 = −

∑    (13) 

In formula (13), IMF  is the modal component, N  is 
the amount of modal decompositions, R  is the residual 
value of the component. E  is the undifferentiated modal 

component. By decomposing formula (13), the model can 
extract the major features of the fault signal, which is 
helpful for the extraction and analysis of fault features. In 
PFD, modal components typically contain important 
information about fault signals and occupy a vital position in 
the classification and identification of subsequent faults. 
Given the analysis of the total number, Figure 4 exhibits the 
specific process of the optimized model in PEFD. 
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Figure 4. Analysis of PEFD Based on Improved GWO-SVM Model 

In Figure 4, the process of improving GMO-SVM in 
PEFD mainly includes the following steps: First, the 
vibration signals of power equipment are collected, and 
MDM is used to process the signals to extract multiple 
intrinsic IMFs to better capture the characteristic 
information related to different fault types (such as aging of 
insulation materials, overheating, corrosion, etc.). Then, the 
feature selection of decomposed IMF is carried out by using 
complexity indexes such as pre-order entropy to preserve 
the signal features most relevant to fault features. Next, the 
parameters of the improved GWO are initialized and the 
fitness of each solution in fault diagnosis is evaluated, and 
its classification accuracy in different fault states is 
calculated. By iteratively updating the solution set, the 
GWO algorithm optimizes the key parameters of SVM and 
seeks the best parameter configuration to improve the fault 
diagnosis performance. Finally, after reaching the preset 
number of iterations, the optimized parameters are applied 

to SVM for classification, thereby identifying the fault types 
of power equipment and outputting the diagnosis results. 
This process effectively combines the feature extraction 
capability of modal decomposition with the optimization 
performance of the GWO algorithm to ensure the accuracy 
and reliability of PEFD. 

3. Results

3.1 Performance Verification Analysis Built on 
Improved GWO-SVM 

To verify the feasibility, the performance was analyzed 
through experiments. The specific experimental 
environment settings were as follows: The GPU is NVIDIA 
GeForce RTX 2060; The CPU selects Core i5-12400KF and 
Kingston FURY 32GB; The software platform completes the 

EAI Endorsed Transactions 
on Energy Web 

| Volume 12 | 2025 |



Fault Diagnosis of Power Equipment Based on Improved SVM Algorithm 

simulation analysis of the model through MATLAB. This 
study collected defect data from different power equipment 
in the early stage and collected a total of 3,870 pieces of 
power equipment defect data, which were used to construct 
the dataset required for simulation experiments. The 3,870 
power equipment failure datasets used in the study were 
derived from monitoring and maintenance records of 
multiple actual power equipment, including power 
transformers, generators, and line equipment. These data 
were accumulated by power companies and research 
institutions through long-term equipment monitoring, fault 
records, and experimental data to ensure the authenticity and 
reliability of the data. The dataset contained multiple fault 
types, including insulation aging, overheating, corrosion, 
short circuit, and poor equipment fit. Each type had 
corresponding multidimensional characteristics, such as 
vibration signals, temperature changes, voltage, and current 
characteristics. This dataset contained a total of 3,870 

records, corresponding to the equipment status of different 
fault types. Each record contained several features, such as 
vibration signals, frequency components, time-domain and 
frequency-domain features, etc. The specific dimension 
depended on the method of fault signal acquisition and the 
number of sensors. Although there may be some imbalance 
in the dataset on specific fault types, the study used 
oversampling or data enhancement methods to increase the 
number of rare fault samples to ensure that the model can 
effectively learn and identify these less common fault types. 
The dataset included training and testing sets in an 8:2 ratio, 
and the model performance was evaluated and analyzed 
based on accuracy, recall, and F1 score. Firstly, this study 
validated the the improved GWO (recorded as IGWO) using 
Sphere and Rastrigin test functions, and compared it with 
GA, PSO, and GWO [19-20]. Figure 5 shows the solution 
graph of the basic test function. 
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Figure 5. Graph of Benchmark Test Function Solution 

Figure 5 (a) shows the Sphere test function, which is 
relatively simple and smooth, mainly used for basic 
performance evaluation. Figure 5 (b) shows the Rastrigin 
test function, which introduces nonlinearity and multiple 

local optima, making it more difficult to solve and suitable 
for more complex algorithm performance validation. In 
accordance with these functions, Table 1 shows the mean 
fitness and SD fitness values of different algorithms. 

Table 1 Test results of Sphere function and Rastrigin function 

Test function 
Average fitness 
GA PSO GWO IGWO 

Sphere 2.12E-05 7.28E-09 9.67E-28 1.84E-41 
Rastigin 3.74 6.52 1.71E-12 0 

Test function 
SD fitness 
GA PSO GWO IGWO 

Sphere 4.83E-05 1.22E-08 1.37E-27 3.65E-41 
Rastigin 2.37 4.05 1.21E-11 0 

In Table 1, the average fitness in Sphere is 2.12E-05 for 
GA, 7.28E-09 for PSO, 9.67E-28 for GWO, and 1.84E-41 
for IGWO. The SD of IGWO in Sphere is 0. The average 
fitness of IGWO in Rastrigin is 3.65E-41, which has 
significant advantages compared to the other three 
algorithms. The SD of IGWO is also 0. This indicates that 
the research method performs well in dealing with complex 

optimization problems, and from the perspective of SD, the 
model fitness fluctuates less, showing that the algorithm has 
better convergence and stability. This study further analyzes 
the convergence and stability of the model, trains and tests 
the model through a dataset, and uses accuracy and loss rate 
as evaluation indicators. The result is shown in Figure 6. 
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Figure 6. Results of Model Accuracy and Loss Rate 

In Figure 6 (a), analysis of the training set results shows 
significant improvements in both convergence and stability. 
After about 75 iterations, the accuracy curve converges. 
When increasing the number of iterations, there is no 
fluctuation in the model, and the final accuracy value is 
around 0.85. From the results of the test set, the convergence 

velocity of the test set is faster, and the accuracy value 
during the iteration process remains stable at around 0.85. 6 
(b) shows the loss rate. The convergence speed of the test
set is significantly higher, but both show stable linear
changes, and the final loss rate value remains around 0.13.

0 100 200 300 400 500
0.3

0.5

0.6

0.7

0.8

0.9

Iterations

A
cc

ur
ac

y

(a) Model accuracy

0.4
GWO-SVM

GA-SVM

IGWO-SVM

0 100 200 300 400 500
0.3

0.5

0.6

0.7

0.8

0.9

Iterations

A
ve

ra
ge

-A
cc

ur
ac

y

(b) Model average-accuracy

0.4

PSO-SVM
GWO-SVM

GA-SVM

IGWO-SVM

PSO-SVM

Figure 7. Comparison of Accuracy and Average Accuracy of Different Models Under the Test Set 

In Figure 7 (a), the convergence velocity of the GA is 
relatively slow. The model only begins to converge after 
about 120 iterations, and its accuracy value is relatively low. 
IGWO has a fast convergence speed, with about 30 
iterations, and the model tends to converge. Among the 
comparison models, IGWO has the highest accuracy. In 
Figure 12 (b), the trend of the average accuracy line is 
roughly the same as that of the precision line. IGWO 
exhibits the best convergence speed and average accuracy. 

3.2 PFD Effect Analysis Based on Improved 
GWO-SVM Model 

This study roughly divides the defects in the fault dataset of 
power equipment into five types, including insulation 
material aging, overheating, corrosion, short circuit, and 
poor equipment matching. This study improves the 
GWO-SVM model to extract feature vectors of power 
equipment fault signals, as listed in Table 2. 
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Table 2. Fault Signals of IMF-1 to IMF-8 Eigenvector 

Fault type 
Permutation entropy eigenvector 

1 2 3 4 

Normal 0.6410 0.4948 0.3383 0.3485 

Aging of insulating material 0.5431 0.9894 0.7602 0.7713 

Corrosion 0.6612 0.5255 0.3449 0.3197 

Short-circuit 0.5312 0.9929 0.8008 0.8049 

Fault type 
Permutation entropy eigenvector 

5 6 7 8 

Normal 0.2619 0.3255 0.4427 0.5616 

Aging of insulating material 0.6918 0.6887 0.7289 0.7239 

Corrosion 0.2650 0.3478 0.4583 0.5647 

Short-circuit 0.7198 0.7227 0.7373 0.7077 

The displacement entropy of IMF components in Table 2 
is used to quantify the complexity characteristics of signal 
sequences under different fault states. The IMF component 
extracted by MDM reflects the energy distribution 
characteristics of signals in different frequency bands. The 
displacement entropy can effectively characterize the 
randomness and dynamic mutation characteristics of signals 
by analyzing the probability of sequence arrangement 
patterns in the IMF component. For example, the 
displacement entropy of IMF-1 to IMF-8 in normal state is 
generally lower than 0.6, which indicates that the signal 
complexity is low and the regularity is strong. The 
replacement entropy of IMF-2 and IMF-4 for short-circuit 
fault is close to 1, indicating that the fault leads to high 
frequency oscillation and chaos of the signal. A comparison 
of the difference in the displacement entropy distribution of 
distinct fault types enables the model to capture the 
characteristic response of insulation aging, corrosion, and 
other faults within a particular frequency band. This 
facilitates the provision of a highly distinguishable and 
robust fault characteristic input for the classifier. In Table 2, 
under normal operating conditions of power equipment, the 
characteristic values of IMF-1 to IMF-8 are generally low 

and do not change significantly, indicating the stability of 
signals under normal operating conditions. The eigenvalue 
of IMF-5 is 0.2619, which is the lowest among all states, 
indicating that signals in normal states do not undergo 
frequent complex dynamic changes. In the aging problem of 
insulation materials, with the increase of IMF, the 
characteristic values of IMF-2 to IMF-4 significantly 
increase, with the highest value being 0.7713. This indicates 
that the aging of insulation materials leads to higher entropy 
values in the system, reflecting more complex signal 
dynamics. In the corrosion problem, the eigenvalues of 
IMF-2 and IMF-4 indicate that the signal begins to show an 
increase in complexity in certain modes. In the short-circuit 
problem, the eigenvalues of IMF-2 and IMF-4 are 0.9929 
and 0.8049, respectively, indicating that the short-circuit 
fault has caused extremely high uncertainty and chaos. This 
indicates the difference in the distribution of permutation 
entropy feature vectors between normal and faulty states, 
proving that permutation entropy can be used as an effective 
feature for fault classification. The recognition results of the 
research model on 5 types of defect data are shown in Figure 
8. 
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Figure 8. Fault Recognition of Power Equipment Based on Improved GWO-SVM 

In Figure 8, the aging defects of the insulation material 
takes 7.3s, and 81 defect data are identified. The material 
overheating defect take 9.5s, and 75 defect data are 
identified. The material corrosion defect takes 14.3s, and 51 
defect data are identified. It takes 3.7s for the equipment to 
cooperate with defects, and 67 defect data are identified. 
The short-circuit defect takes 2.5s and identified 85 defect 

data. A total of 359 defect data are identified, with a defect 
recognition rate of 92.76%. This indicates that the 
constructed PEFD can effectively identify equipment defects 
and has excellent performance. This study validates the 
proposed model through a test set, and the accuracy, recall, 
and F1 score results are shown in Figure 9. 
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Figure 9. Performance Comparison Results of Different Models 

Figure 9 (a) shows a comparison of the accuracy of the 
models, where PSO-SVM has the slowest convergence 
speed, while GA-SVM has the lowest accuracy. The 
IGWS-SVM model performs the best in all performance 
indicators. In Figure 9 (b), the recall performance of 
IGWS-SVM is greatly better than that of the comparison 

model, while the recall performance of the other models is 
almost the same. Figure 9 (c) shows the F1 score, where the 
GA score is lower and the other three models have smaller 
differences, but IGWO-SVM still has the best F1 score 
value. Figure 10 shows the specific diagnostic performance 
of the comparison model for annoyance. 
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Figure 10. Prediction Error Results of Various Models 

In Figure 10, the error of the research model is basically 
stable within (-0.005, 0.005), while the errors of the other 
models are all in the (-0.01, 0.01), and there are even cases 
where the error is greater than 0.01. This means that 
improving the model can enhance the extraction of signal 
features through adaptive noise enhancement, combined 
with GWO for parameter tuning, thereby improving the 
overall performance. This design enables the model to not 
only learn effective features but also avoid local optimal 
value traps during the optimization process, resulting in 
lower prediction errors. To verify the scalability and 
robustness of the model in real scenarios, the study selects 
three substations under a provincial power grid company as 

case study objects, and collects their power equipment 
operation data from January 2022 to June 2023. According 
to the Signal-to-Noise Ratio (SNR), noise is divided into 
three levels (low noise: SNR=20 dB; Medium noise: 
SNR=10 dB; High noise: SNR=5 dB). Three types of 
sensors are adopted (Type A: high-precision industrial grade; 
Type B: conventional industrial grade; Type C: low-cost 
embedded) for mixed data. It includes 5 typical faults 
(insulation aging, overheating, corrosion, short circuit, poor 
fit) and 2 compound faults (overheating+corrosion, 
insulation aging+short circuit). The performance comparison 
results of the improved GMO-SVM model in real scenarios 
are shown in Table 3. 

Table 3. Improve the performance index of the GWO-SVM model in real scenarios 

Scene 
classification Noise level Sensor 

type 
Sample 
size 

Accuracy 
rate 

Recall 
rate 

F1 
score 

Fault identification time 
(s) 

Single fault 

Low noise Type A 650 0.943 0.921 0.932 8.2 
Moderate 
noise Type B 650 0.917 0.895 0.906 9.8 

High noise Type C 650 0.881 0.862 0.871 11.5 

Compound fault 

Low noise Type A 200 0.895 0.873 0.884 12.3 
Moderate 
noise Type B 200 0.862 0.841 0.851 14.7 

High noise Type C 200 0.829 0.802 0.815 16.9 
Sensor mixed data High noise A+B+C 1000 0.901 0.879 0.89 10.4 

The experimental results show that the improved 
GMO-SVM model exhibits remarkable noise robustness and 
sensor heterogeneity adaptability in real complex scenes. 
Under low noise (SNR=20 dB), the accuracy of the model 
remains at 0.943, and even under high noise (SNR=5 dB), 
the accuracy of the model remains at 0.881, which verifies 
the effective suppression of noise interference by the mode 
decomposition strategy. In the face of heterogeneous sensor 
data, the model achieves an F1 score of 0.871 in the 

low-cost sensor (type C) scenario, and the accuracy 
decreases by only 2.3% in the mixed sensor (type A+B+C) 
data, reflecting the scalability of its multi-source feature 
fusion. In particular, the recall rate of the model for complex 
faults (such as "overheating+corrosion") reaches 0.873, 21% 
higher than the traditional SVM, and the fault identification 
time is still controlled within 16.9 s under high noise, 
meeting the real-time requirements. Field cases further 
prove the value of the project: In the composite fault 
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diagnosis of a transformer in a 110 kV substation, the model 
has 24 hours of early warning, and the accuracy rate is 18% 
higher than that of the threshold alarm method, which fully 
verifies its robustness and deployment potential in the real 
power system. 

4. Discussion

The PEFD model based on the GWO-SVM algorithm 
proposed has shown excellent performance in experiments. 
This study analyzed 3,870 pieces of power equipment defect 
data, and the model's fault recognition rate reached 92.76%, 
with excellent performance in accuracy and F1 score. The 
prediction error in fault diagnosis was stable at (-0.005, 
0.005), which provides strong support for real-time 
monitoring and fault warning of power equipment. 
Experiments have shown that introducing modal 
decomposition can not only enhance signal sparsity and 
reduce noise interference but also extract more significant 
fault features through complexity indicators such as 
permutation entropy. Meanwhile, the GWO algorithm had a 
significant improvement effect on the parameter selection of 
SVM, enhancing the recognition and classification 
capabilities of SVM models. Although the improved 
GMO-SVM model performed well in PEFD, the model's 
performance may still be poor in some cases. Specifically, 
when there were samples with higher noise levels or less 
distinctive features in the dataset, the fault recognition rate 
of the model may decrease. For example, when the vibration 
signal of the power equipment was subjected to external 
interference or the working condition was unstable, the 
mode decomposition may not be able to accurately extract 
effective features, leading to misjudgment in the 
classification process. In addition, for rare fault types, 
insufficient data would also affect the learning effect of the 
model, resulting in reduced accuracy in identifying these 
rare faults. At the same time, the overall performance of the 
model may be affected if the model parameters do not 
converge fully or the initial solution is not chosen properly 
during the optimization of GWO. Compared with existing 
research, Huang Y et al. used traditional SVM for fault 
classification of power equipment, with an accuracy of 
about 85%. This method failed to introduce a global search 
algorithm during the parameter optimization phase, resulting 
in a compromise in classification performance on 
high-dimensional datasets [21]. This study improved the 
GWO algorithm to effectively avoid local optima during 
parameter optimization, thereby enhancing the overall 
performance of the model. This indicated that introducing 
efficient optimization algorithms was crucial for improving 
the applicability and accuracy of SVM in complex problems. 
Compared to another study based on deep learning, the 
model proposed by Alsumaidaee YAM et al. achieved an 
accuracy of over 95% on a specific dataset. However, when 
dealing with imbalanced samples and high-dimensional 
features, this model still faced significant computational 
burden and complexity [22]. In contrast, the improved 
GWO-SVM model used in this study has higher 

computational efficiency while ensuring accuracy, and can 
complete training and testing at a lower time cost. With 
respect to computational efficiency, conventional fault 
diagnosis methods frequently employ manual feature 
extraction and traditional machine learning algorithms. 
These methods entail extended training periods and are 
vulnerable to human factors, resulting in inefficiencies. The 
method proposed in this study accelerates the training 
process. Experimental results show that this model has a 
significantly shorter training time when processing 3,870 
power equipment defect data compared to traditional SVMs 
or other machine learning methods, enabling it to meet the 
needs of real-time monitoring in practical applications. With 
the rapid development of smart grid and IoT technology, the 
need for fault monitoring and diagnosis of power equipment 
becomes increasingly urgent. The improved model can 
effectively process high and complex power equipment 
operation data, has the characteristics of fast response and 
high accuracy, and can realize real-time fault identification 
and diagnosis in practical applications. The model extracts 
key features through modal decomposition and optimizes 
SVM parameters with the GWO algorithm, which not only 
makes fault detection more sensitive but also adapts to the 
change of equipment state in real-time, thereby significantly 
reducing the risk of major faults. By providing fast and 
accurate fault diagnosis, the research results provide strong 
support for the operation and maintenance management of 
power equipment and help to improve the reliability and 
safety of the power system. 

5. Conclusion

In the power industry, the normal operation of power 
equipment can provide a guarantee for energy supply, and 
PEFD is the foundation for smooth operations. Therefore, 
PEFD is an essential direction for improving the efficiency 
of power operation. Furthermore, this study proposed an 
improved GWO-SVM model targeted at lifting the model’s 
PEFD performance. This study validated 3,870 pieces of 
equipment defect data and accurately identified and 
classified different types of power equipment faults. The 
research model showed excellent accuracy and recall 
performance in the validation results. Although this study 
has achieved good results, there are still certain limitations. 
For instance, modal decomposition has a strong dependence 
on signals, and its performance may be affected by noise 
and interference. In the training data, if the noise level is 
high, modal decomposition may not be able to effectively 
extract the true fault features, thereby affecting the 
subsequent classification performance. Future research can 
further optimize modal decomposition by introducing 
dual-channel or multi-channel signal processing techniques, 
combining multiple modal decomposition algorithms to 
better filter out interference and extract real features. 
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