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Abstract 
 
The prediction of wind energy generation is important to enhance the performance and dependability of renewable energy 
systems due to the rising demand for wind-generated electricity and advancements in wind energy technology 
competitiveness. This study leverages advanced machine learning (ML) and some other statistical and deep learning based 
time series forecasting models to enhance the accuracy of wind energy predictions. This comprehensive analysis includes 
nine ML models—Linear Regression, Random Forests (RF), Gradient Boosting Machines (GBM), Support Vector Machines 
(SVM), K-Nearest Neighbors (KNN), AdaBoost, XGBoost, Support Vector Regression (SVR), and Neural Networks—as 
well as Four time-series forecasting models—ARIMA, Temporal Convolutional Networks (TCNs), Long Short-Term 
Memory (LSTM) networks and GRU. Each ML model underwent rigorous cross-validation to ensure optimal performance. 
The assessment criteria utilized here comprised the Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean 
Absolute Error (MAE), and the R² Score. It was found that among the nine ML models, Random Forests, GBM and KNN 
consistently provided superior accuracy and robustness, making them the top choices for wind energy prediction whereas 
the performance of linear regression, SVM and SVR were very poor for the considered dataset. From the experiment, 
Random Forest, GBM, and KNN showed the best performance with low MSE values of 0.77, 1.95, and 1.51 respectively, 
while other models had MSEs above 7.5, with AdaBoost reaching 30. Their RMSEs (0.88, 1.40, 1.23) and MAEs (0.093, 
0.73, 0.10) also indicate strong predictive accuracy compared to the rest.In this paper, time series forecasting, TCNs, LSTM 
and GRU networks showed strong capabilities in capturing temporal dependencies and trends within the wind energy data. 
Visualization techniques were employed to compare model performances comprehensively, providing clear insights into 
their predictive power. Therefore, this present study offers a robust framework for researchers and practitioners aiming to 
leverage machine learning and time series forecasting in the realm of renewable energy prediction.  
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1. Introduction 

In recent years, there has been a growing focus on 
incorporating renewable energy sources into the power grid 
due to environmental concerns and the increasing demand 
for sustainable energy solutions [1]. Among these sources, 
wind energy stands out as a promising and rapidly growing 
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contributor to the global energy mix [2-5]. Renewable 
energy has experienced significant and rapid growth in 
recent years [1]. According to the GWEC 2024[2] report, 
in 2023 new installations of renewable energy were 510 
GW worldwide which is an increase of nearly 50% 
compared to 2022. Among these new renewable energy 
installations, wind energy contributed 117 GW alone to the 
electricity grid in a single year which shows the remarkable 
resilience and adaptability of the wind industry [2].Several 
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countries, including the United States and China, have 
implemented a range of regulatory techniques to promote 
the adoption and expansion of renewable energy [3-
6].Wind energy forecasting plays a pivotal role in the 
management and operation of wind farms, enabling 
stakeholders to make informed decisions regarding energy 
production, grid stability, and economic planning 
[7].Traditional forecasting methods based on physical and 
statistical models have been prevalent for decades. These 
methods often rely on meteorological data, historical 
patterns, and empirical relationships to predict future wind 
conditions. They are commonly classified into four 
categories: physical methods, statistical models, artificial 
intelligence techniques, and hybrid approaches [7-21]. 
With advancements in soft-computing techniques, AI-
based forecasting models often outperform physical 
methods and statistical approaches, owing to their strong 
capabilities in data mining and feature extraction [15, 
21].  However, with the advent of machine learning (ML) 
and deep learning techniques, there has been a paradigm 
shift towards more data-driven and adaptive forecasting 
approaches. However, predicting renewable energy output 
accurately is challenging due to the intermittent, chaotic, 
and unpredictable nature of renewable energy data. 
Numerous algorithms have been developed and reported in 
the literature to enhance the accuracy of renewable energy 
forecasts. 
Machine learning models, such as Support Vector 
Machines (SVM), Artificial Neural Networks (ANNs), and 
ensemble methods [17,18], have demonstrated their 
capability to capture complex relationships and nonlinear 
dynamics inherent in wind speed and power data. In 
addition to machine learning, deep learning techniques, 
including Long Short-Term Memory (LSTM) networks 
and Temporal Convolutional Networks (TCNs), have 
shown remarkable success in handling temporal 
dependencies and sequence modelling in wind data. There 
was some application of deep learning for wind power 
forecasting and ramp event prediction, emphasizing the 
effectiveness of recurrent and convolutional neural 
networks in capturing complex patterns [19]. Some deep 
learning approaches for wind speed prediction, showcased 
significant improvements in accuracy compared to 
traditional methods [22-38]. 
On the other hand, time series forecasting models such as 
Autoregressive Integrated Moving Average (ARIMA) [37-
41] have been extensively used in wind energy prediction 
due to their ability to model linear dependencies and 
seasonality in time series data. Statistical models strive to 
reveal the mathematical relationships in online time series 
data of renewable energy, utilizing techniques such as 
autoregressive moving average, Bayesian methods, 
Kalman filters, Markov chain models, and grey theory, 
which have been widely employed. statistical methods for 
wind power forecasting, underscoring advancements in 
probabilistic forecasting and their integration into 
operational systems. 
This introduction sets the stage for exploring how ML 
models and time series forecasting techniques have 

revolutionized wind energy prediction. It underscores the 
need for accurate forecasting methods to facilitate the 
efficient integration of wind energy into the grid, optimize 
operational strategies, and support sustainable energy 
initiatives. By leveraging advancements in data science and 
computational techniques, researchers and practitioners are 
poised to address the challenges of variability and 
uncertainty in wind power generation, ultimately 
contributing to a more reliable and sustainable energy 
future.  
This paper is organized as follows. Section 2 gives 
previous research work on wind energy forecasting by ML 
and other Time series forecasting models. In Section 3, 
Methodology and work plan is presented. We also present 
the performance matrices by all models and result 
analysis in Section 4. Finally, conclusions are drawn in 
Section 5.  

2. Literature Survey 

Wind power forecasting is crucial for optimizing energy 
production and grid stability. This survey explores the use 
of machine learning (ML) and time series models to predict 
wind power, focusing on their methodologies, 
advancements, and comparative performance. 
Considering statistical approach, Ayua and Emetere [12] 
evaluated wind energy potential in Yundum and Basse, 
Gambia, using Weibull and Raleigh distributions to model 
wind characteristics. Results showed Weibull performs 
better for Yundum, while Raleigh suits Basse, highlighting 
both locations' strong wind energy potentials. 
Sideratos [19] The paper proposes an advanced statistical 
method using ARIMA models enhanced with Artificial 
Neural Networks (ANN) to improve short-term wind 
power forecasting accuracy. Al- Pearre [39] reviewed 
statistical models for wind speed and power forecasting, 
focusing on their application and performance in renewable 
energy systems. Wang et al. [22] reviewed various wind 
power forecasting models, including physical, statistical, 
and ML-based approaches, providing insights into their 
strengths and limitations. Lin et al. [25] proposed a novel 
hybrid approach combining ML methods for short-term 
wind speed forecasting, achieving improved accuracy by 
integrating different modeling techniques. Colak et al. [26] 
surveyed data mining and ML Zeng techniques for wind 
power prediction, encompassing decision trees, neural 
networks, and ensemble methods, discussing their 
applicability and performance. Wang et al. [28] The paper 
presents a hybrid wind speed prediction model integrating 
data preprocessing, multi-objective optimization, and 
machine learning to enhance forecasting performance. 
Zeng et al. [29] discussed various ML approaches for wind 
speed forecasting, including decision trees, random forests, 
and gradient boosting machines, highlighting their 
effectiveness in capturing wind dynamics. Zafirakis et al. 
[27] conducted a comparative study on wind power 
forecasting methods, focusing on neural networks and 
support vector machines, evaluating their predictive 
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capabilities and suitability. Li et al. [17] proposed a short-
term wind power forecasting model based on SVM 
optimized with an improved dragonfly algorithm. Their 
study demonstrated high accuracy in predicting wind 
power. Zhang et al. [20] reviewed hybrid ML models for 
short-term wind speed forecasting, discussing 
combinations of algorithms that enhance forecasting 
accuracy. Manero et al. [18] conducted a comprehensive 
literature survey on wind power forecasting using ANNs. 
They reviewed various network architectures and training 
methods, highlighting ANNs' effectiveness in this domain. 
Deng et al. [21] explored deep learning methods, 
specifically recurrent neural networks (RNNs) and 
convolutional neural networks (CNNs), for predicting wind 
power and identifying ramp events demonstrating their 
applicability and performance. Bali et al. [23] explored 
deep learning approaches specifically for wind speed 
prediction, highlighting the effectiveness of these methods 
in capturing complex patterns. Daniel et al. [30] compared 
deep learning methods for short-term wind speed 
forecasting, evaluating the performance of different 
architectures and their suitability for wind energy 
applications. For time series-based forecasting Jursa [40] 
applied ARIMA models for short-term wind power 
forecasting, demonstrating their utility in capturing 
temporal patterns and enhancing forecasting accuracy. 
Yatiyana et al. [41] compares ARIMA and integrated 
ARIMA models for wind speed and power prediction, 
highlighting their strengths and weaknesses. Liu et al. [20] 
investigated TCNs for wind power prediction, showing 
significant improvements over traditional methods due to 
their ability to capture long-term dependencies. Longxiang 
et al. [34] applied LSTM networks for wind power 
prediction, highlighting their effectiveness in capturing 
temporal dependencies and improving prediction accuracy. 
Shahid et al. [36] proposed a hybrid LSTM model for short-
term wind power prediction, combining LSTM with other 
ML techniques to leverage their complementary strengths. 
Ma et al. [37] The paper proposes a meta learning-based 
hybrid ensemble model for short-term wind speed 
forecasting, combining multiple base learners to improve 
prediction accuracy. So, from the existing literature, it is 
seen that very few studies are performed to implement 
advanced machine learning (ML) and other statistical and 
deep learning-based time series forecasting models to 
compare and enhance the accuracy of wind energy 
predictions to effectively utilize the wind power through 
wind turbines. In this investigation 9 ML models and 4 
time-series forecasting models are employed to compare 
model performances comprehensively, so that clear 
insights into their predictive power can be achieved.  

3. Methodology and Models 

This forecasting is long-term forecasting that uses 
Seventeen years of data collected from Kaggle [42] and the 
results can be used directly for the planning of energy 
management. Various environmental factors were taken 

into consideration for forecasting for better accuracy and 
results. The dataset consists of 6,574 daily average 
readings from five weather sensors installed at a 
meteorological station situated in an open field at an 
elevation of 21 meters. The data was collected over a span 
of 17 years, from January 1961 to December 1978. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Block diagram of the prediction model. 

Workflow of the present work is shown in Figure 1. The 
first phase of proposed work plan is data collection and this 
step involves gathering relevant data from Kaggle. In 
present research work we choose the dataset from Kaggle 
[40] and calculated Wind power generated daily using the 
formula (0.5 ×ρ× [wind speed (m/s)]3 × Area), where the 
value of ρ(density) is considered 1.2 kg/m3 and area 1m2. 
We used this value as a predicted target for our ML models. 
In second phase, some pre-processing activities like 
handling missing values, normalizing/scaling features, 
creating additional features have been performed. After 
pre-processing in third phase, some popular ML models 
that are helpful specifically for prediction were 
implemented (such as Linear Regression, Random Forest, 
Gradient Boosting Machines, Support Vector Machines, 
K-Nearest Neighbors, AdaBoost, XGBoost, Support 
Vector Regression, and Neural Networks). Next in fourth 
phase the performance of the developed model is tested 
using various metrics such as accuracy, RMSE, precision, 
recall, etc. In fifth phase, to improve performance of 
various ML models, hyperparameter tuning is performed 
Cross-validation is a robust method for estimating the 
performance of machine learning models. It helps in 
reducing bias and variance by partitioning the dataset into 
multiple subsets and training/evaluating the model multiple 
times. So it is applied on various models. Finally, in the last 
phase of the figure1 ARIMA (Autoregressive Integrated 
Moving Average), LSTM (Long Short-Term Memory) 
Networks and Temporal Convolutional Networks (TCNs) 
were chosen for time series analysis of data to create a clear 
and informative visualization on our dataset, but ARIMA 
did not perform well on our dataset. 
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4. Result and Discussion 
 
After experimental analysis it has been found that the 
models like Linear Regression, SVM and SVR are 
having very high MSE, RMSE and MAE values as 
compared to other models. 

Table 1. Training and Test Score of evaluation 
metrics MSE, RMSE and MAE of different ML 

 Training Score Testing Score 

Model MSE RMS
E MAE MS

E 
R

MS
E 

M
A
E 

Random 
Forest 0.54 0.73 0.04 2.9

9 
1.7
3 

0.
16 

Gradient 
Boosting 0.975

863 
0.98
7858 

0.61
8375 

3.2
96
6 

1.8
1 

0.
78
1 

K-Nearest 
Neighbors 4.45 2.11 0.14 1.5

7 
1.2
5 

0.
19 

AdaBoost 24.88 8.74 1.89 24.
87 

8.5
2 

1.
5 

XGBoost 11.16 6.68 1.4 9.4
5 

5.6
2 

1.
36 

Neural 
Network 0.975

8 
0.98

7 
0.61

8 1.2 1.0
9 

0.
28 

Here in the Table 1 these evaluation metrics (MSE, RMSE, 
MAE) values are shown for some of the efficient models 
(out of nine only six can be moderately considered) for our 
dataset. From table 1it is clearly visible that four model’s 
(Random Forest, Gradient Boosting, Neural Network, 
KNN) performances were good during training and 
Testing. 

 
 

Figure 2. Train and Test MSE of all selected 
models. 

 

 
 

Figure 3. Train and Test RMSE of all selected 
models. 

 

 
 

Figure 4. Train and Test MAE of all selected 
models. 

Figures 2, 3 and 4 finally show the train and test MSE, 
RMSE and MAE respectively. It is clearly found that 
Random Forest, Gradient Boosting, Neural Network and 
KNN performances were good during training and testing in 
respect to their evaluation metrics values. 

Table 2. Cross Validation of evaluation metrics MSE, 
RMSE and MAE of different ML models 

From table 2, it has been found that the performance of the 
Neural Network got worse during cross-validation. From 
the above table it is clear that Random Forest consistently 
performed well across all cross-validation folds, indicating 
that it has low variance and high stability in predicting wind 

Model MSE RMSE MAE 

Random Forest 0.77008
2 

0.87754
3 0.0928 

Gradient Boosting 1.9536 1.3977 0.7253 
K-Nearest 
Neighbors 1.511 1.2293 0.1000 

AdaBoost 30.87 8.52 4.679 
XGBoost 7.45 5.014 0.9328 

Neural Network 9.13222 3.09 2.28 
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energy. The low error metrics suggest that the model 
captures the underlying patterns effectively. Gradient 
Boosting and KNN showed moderate performance in 
cross-validation, with slightly higher errors compared to 
Random Forest. 
As the models like Linear regression, SVM and SVR did 
not give a good output in respect to evaluation metrics they 
went for hyper parameter tuning but then also they are not 
suitable for predicting wind energy for our dataset. 
In the last phase of this study, popular Statistics based and 
deep learning-based forecasting models are applied for 
predicting wind energy like ARIMA, LSTM, GRU and 
TCN.  
LSTM and GRU come under RNN whereas TCN comes 
under CNN. But out of these Four, ARIMA model did not 
perform well on the dataset whereas LSTM and TCN suited 
well for predicting the energy generated corresponding to 
Wind speed. 

 

 
 

Figure 5. Training and Validation loss by LSTM 
model 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Training and Validation loss by TCN model 
 

 
 

Figure 7. Training and Validation loss by GRU 
model 

Fig 5, 6 and 7 represent training and validation loss by 
LSTM, TCN and GRU deep learning model. Here it has 
been found that training loss is low but high validation loss 
for all three models. The low training loss suggests that the 
model has effectively learned to fit the training data, but 
the high validation loss indicates its inability to generalize 
well. It indicates that the model is overfitting. 

 
 

Figure 8. Training loss comparisons for all models 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Validation loss comparisons for all models 
 

 
Figures 8 and 9 represent combined Training and 
Validation loss for all models respectively. From figure 8, 
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It has been found that during training the performance of 
TCN was best as training loss for this model gradually 
decreases as compared to other models. From figure 9 it 
can be concluded that, validation loss for LSTM model is 
consistent throughout the testing process. 
Another additional experiment is conducted using a dataset 
collected from [43] for the Kurnool City (Andhra Pradesh), 
India, covering the years 2021 to 2025 to evaluate the 
performance of the considered models. Our validation 
efforts were focused on all models that were used for 
previous dataset like Random Forest, Gradient Boosting 
Machines (GBM), K-Nearest Neighbors (KNN), SVR, 
AdaBoost and XGBoost, but for this recent dataset also the 
previous top three performing models like—Random 
Forest, Gradient Boosting Machines (GBM), and K-
Nearest Neighbors (KNN) performed well. Each model 
was retrained using the new dataset, and their performances 
were evaluated using MSE, RMSE, MAE and R² score. 

 
Table 3. Evaluation metrics MSE, RMSE and MAE 

of three best performing ML models considering new 
dataset 

 
 

ML 
Models 

MSE RMSE MAE R² 

Random 
Forest 5.345 2.312 0.261 

 

0.9994 

Gradient 
Boosting 
Machines 

(GBM) 

9.092 3.015 0.726 0.9989 

K-Nearest 
Neighbors 

(KNN) 
12.496 3.535 0.515 0.9985 

 

In table 3 a comparative analysis is shown to evaluate the 
performance of three machine learning models—Random 
Forest, Gradient Boosting Machines (GBM), and K-
Nearest Neighbors (KNN)—using common regression 
metrics. The Random Forest model achieved the best 
performance with the lowest MSE (5.345), RMSE (2.312), 
MAE (0.261), and highest R² (0.9994), indicating excellent 
predictive accuracy. Compared to GBM and KNN, it 
consistently outperformed across all metrics. 

 
 

 
 
 
 
 
 
 
 

 
Figure 10. MSE comparison of three different ML 

models 

 

 
 

Figure 11. MAE comparison of three different ML 
models 

 
 

 
 

Figure 12. RMSE comparison of three different ML 
models 

Figures 10-12 demonstrate that all three models retained 
high predictive accuracy and stability, validating their 
effectiveness on independent data from a different 
geographical and temporal setting. This confirms the 
generalizability and robustness of the selected models for 
wind energy prediction tasks across different regions and 
time spans. 

4.1. Sensitivity analysis 

To ensure the robustness of the model, sensitivity analysis 
[44, 45] has been performed for the high performing 
models (RF, GBM and KNN) considering the recent 
dataset for the Kurnool City (Andhra Pradesh), India, 
covering the years 2021 to 2025 [43]. 

As wind speed is an influential parameter for wind power 
generation, here for our experimental purpose wind speed 
is used as input feature and power as target variable. Each 
of the models is trained on the original data. Then the wind 
speed values were changed by +10%. Without performing 
cross validation, the prediction change is finally measured 
and MSE, RMSE, MAE are computed. 
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Table 4. Sensitivity analysis results 

Model 
MSE 
(actu

al) 

MSE 
(+10
%) 

RMS
E 

(actu
al) 

RMS
E 

(+10
%) 

MAE 
(actu

al) 

MAE 
(+10
%) 

Rand
om 
Forest 

5.34
5 

5.34
7 

2.31
2 

2.31
2 

0.26
1 

 

0.26
2 

Gradi
ent 
Boosti
ng 

9.09
2 

9.09
2 

3.01
5 

3.01
5 0.726 0.72

6 

KNN 12.4
96 

12.4
98 

3.53
5 

3.53
5 0.515 0.51

6 

Table 4 represents the comparison of model performance 
metrics before and after perturbing wind speed by +10%. 
The performance metrics remained nearly constant after 
perturbing the input feature (wind speed) by 10%. This 
indicates a high degree of robustness in all three models, 
particularly Random Forest and Gradient Boosting. This 
robustness suggests that these models are not sensitive to 
small variations in input data, which is a desirable property 
in real-world applications where sensor readings or input 
data may have slight variations or noise.  
In addition to ML model validation, deep learning-based 
time series forecasting methods are applied like—Long 
Short-Term Memory (LSTM), Gated Recurrent Unit 
(GRU), and Temporal Convolutional Networks (TCNs)—
to the new dataset. Training and Validation loss for each 
model was calculated. 

 

Figure 13. Training and validation loss for LSTM 
model 

 
 
 
 

 
 

Figure 14. Training and validation loss for GRU 
model 

 

Figure 15. Training and validation loss for TCN 
model 

In figure 13 it is seen that LSTM model showed good 
convergence with the validation loss remaining 
consistently lower than the training loss. In case of figure 
14, it can be noticed that GRU Model exhibited a similar 
pattern to the LSTM, with decreasing training and 
validation losses, and the validation loss staying below the 
training loss.  
Further in figure 15 it is found that TCN Model 
demonstrated a very rapid decrease in both training and 
validation loss in the initial epochs, converging to very low 
and stable values with minimal gap between them. 

Table 5. Comparison of Model Performance Based 
on Validation Loss, Stability, and Overfitting Risk 

Model Validation 
Loss Stability Risk of 

Overfitting 

GRU 
Moderate 
(~0.0025-

0.003) 
Moderate Mild 
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LSTM 
Lower 

(~0.0022–
0.0024) 

High Low 

TCN Very low Very high Very High 

Among all models shown in Table 5, overall LSTM is best 
because 

• It offers low and stable validation loss, reasonable 
training loss, and balanced learning. 

• TCN might appear better numerically, but the 
sharp drop and near-zero loss raise concerns. 

• GRU is acceptable but underperforms compared 
to LSTM. 

5. Conclusions 

This research highlights the significant impact of advanced 
machine learning and time series forecasting models on 
improving the accuracy and reliability of wind energy 
predictions, which is vital for meeting the increasing 
demand and enhancing the competitiveness of wind power 
generation. By evaluating nine different machine learning 
models and three-time series forecasting models through 
thorough cross-validation and multiple evaluation metrics, 
we identified the most effective approaches. Our results 
indicate that Random Forests, Gradient Boosting Machines 
(GBM), and K-Nearest Neighbours (KNN) consistently 
achieved the highest levels of accuracy and robustness, 
making them the most suitable choices for wind energy 
prediction. Conversely, Linear Regression, Support Vector 
Machines (SVM), and Support Vector Regression (SVR) 
performed poorly on the dataset. From sensitivity analysis 
it is noticed that for practical applications in wind energy 
systems, such robust models can contribute significantly to 
stable and reliable power output forecasting, supporting 
effective energy planning and grid management. In the 
realm of time series forecasting, both Temporal 
Convolution Networks (TCNs) and Long Short-Term 
Memory (LSTM) networks excelled in capturing temporal 
dependencies and trends within the wind energy data, 
demonstrating their strong predictive capabilities. In 
summary, this study provides a solid framework for 
utilizing machine learning and time series forecasting to 
improve wind energy predictions. The findings offer 
valuable insights and guidance for researchers and 
practitioners dedicated to enhancing the efficiency and 
reliability of renewable energy systems. 
Future works can explore using real-time and more diverse 
data sources to make models even more accurate. 
Combining different machine learning and deep learning 
models might also boost performance. Future study may 
also include the incorporation of explainable AI (XAI) 
frameworks to enhance transparency and interpretability, 
which is critical for real-world deployment and decision-
making by energy providers. 
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