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Abstract

INTRODUCTION: The global energy transition, driven by the rapid growth of distributed renewable energy, stochastic
load profiles (e.g., EV charging spikes), and conflicting stakeholder objectives, has brought unprecedented complexities to
distribution network planning. Traditional deterministic methods fail to handle qualitative fuzziness (e.g., subjective
reliability thresholds) and quantitative uncertainty (e.g., sparse historical data), leading to inflexible and inefficient
solutions. This study addresses these challenges by developing a hybrid planning framework.

OBJECTIVES: This paper aims to solve the dual challenges of qualitative fuzziness and quantitative uncertainty in
distribution network planning, providing a systematic solution to accommodate distributed renewable energy, handle load
uncertainty, and balance conflicting stakeholder preferences through integrating fuzzy optimization theory and grey system
theory.

METHODS: The hybrid algorithm combines fuzzy optimization and grey system theory. Fuzzy optimization uses
triangular fuzzy numbers for load growth rates ([3%, 5%, 8%]) and trapezoidal fuzzy intervals for voltage constraints
([-10%, —5%, 5%, 10%]) with membership functions (threshold 2>0.8) to convert qualitative requirements into solvable
constraints. Grey system theory applies the GM(1,1) model for load forecasting (achieving 4.2% MAPE with 15-month
data) and grey relational analysis (GRA) for data-driven objective weighting to eliminate expert bias. An improved particle
swarm optimization (IPSO) algorithm is used for optimization, validated in a 33-node network with 8.5 MW PV and 6
MW wind capacity.

RESULTS: In the 33-node case study, compared to the deterministic genetic algorithm (D-GA), the hybrid algorithm
reduces lifecycle costs by 19% (from $8.91M to $7.23M), increases renewable energy accommodation by 24% (from 9.8
MW to 12.3 MW), and improves the system average supply availability index (ASAI) from 99.92% to 99.95%. Under
extreme uncertainties (£40% renewable output, £30% load shifts), cost deviations remain within 6% and reliability metrics
within 5%, demonstrating strong robustness.

CONCLUSION: This research presents a robust hybrid framework that bridges fuzzy qualitative reasoning and grey data
efficiency, effectively addressing both qualitative fuzziness and quantitative uncertainty in distribution network planning.
It provides a science-based tool for resilient grid design, with potential for extension to multi-energy system integration
and real-time optimization in future work.
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1. Introduction

The global energy transition, characterized by the rapid
proliferation of distributed renewable energy, the
electrification of end-use sectors, and the imperative for
carbon neutrality, has ushered in a new era of complexity
for distribution network planning. As the foundational
layer connecting transmission grids to millions of
consumers, distribution networks now must accommodate
unprecedented levels of uncertainty—from the
intermittent output of solar/wind generators to the
stochasticity of electric vehicle (EV) charging loads—and
reconcile conflicting stakeholder objectives that resist
precise quantification. Traditional planning
methodologies, rooted in deterministic assumptions and
single-source uncertainty handling, have become
inadequate for designing resilient, future-proof grid
frameworks. This paper addresses this gap by presenting a
hybrid planning algorithm that integrates fuzzy
optimization theory and grey system theory, offering a
systematic solution to the dual challenges of qualitative
fuzziness (e.g., subjective reliability thresholds) and
quantitative uncertainty (e.g., sparse historical data).

The global energy transition has introduced
unprecedented complexities into distribution network
planning, driven by the intermittent nature of distributed
renewable energy (DRE), stochastic load profiles (e.g.,
EV charging spikes causing 25-35% demand surges), and
conflicting stakeholder objectives (e.g., utilities targeting
$60-120/kVA CapEx vs. regulators enforcing 99.99%
reliability standards). Traditional deterministic methods,
reliant on precise data and rigid constraints, fail to handle
"soft" fuzziness (e.g., subjective "acceptable" voltage
stability) and "hard" uncertainties (e.g., sparse historical
data in emerging markets with <5 years of load records),
leading to inflexible solutions. For instance, deterministic
models exhibit 25-35% performance deviations under
extreme DRE fluctuations, while stochastic methods
require >10 years of hourly data for scenario analysis,
impractical in regions with rapid grid expansion.

This study introduces a hybrid framework that
synergizes fuzzy optimization and grey system theory to
address dual uncertainties. Fuzzy set theory models
qualitative ambiguities: triangular fuzzy numbers
represent load growth rates ([3%, 5%, 8%]), and
trapezoidal fuzzy intervals define voltage constraints
([-10%, —5%, 5%, 10%]) with membership functions
ensuring flexibility (e.g., allowing 8% voltage deviations
with 0.8 membership). Grey system theory tackles data
scarcity: the GM(1,1) model predicts loads with 15
months of data (MAPE 4.2%, outperforming ARIMA by
19%), while GRA objectively weights multi-objective
functions (e.g., assigning 25% higher priority to DRE
accommodation in high-renewable grids), reducing
planner bias by 30% compared to expert-based methods.
Through a case study on a 33-node network with 14.5
MW DRE capacity, this research demonstrates that the
hybrid algorithm achieves a 19% cost reduction (vs. D-
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GA), 24% DRE accommodation improvement, and 17%
ASAI enhancement. Its robustness under extreme
scenarios—limiting  cost/reliability ~ deviations  to
<6%/5%—addresses critical gaps in traditional planning,
offering utilities a scalable tool for adaptive grid design in
data-scarce, high-uncertainty environments. The proposed
algorithm integrates fuzzy optimization and grey systems
into a unified framework, as shown in Figure 1. Figure 1
illustrates the process of electric load forecasting and
optimization. Firstly, historical load and distributed
renewable energy data are collected. Subsequently, grey
load forecasting based on the GM(1,1) model and fuzzy
scenario generation using triangular fuzzy numbers are
carried out respectively. Then, a fuzzy model
encompassing objectives and constraints is formulated.
The grey relational weighting is employed to prioritize the
objectives. Next, an improved Particle Swarm
Optimization (PSO) algorithm is utilized for optimization
solving. Finally, the results are validated through extreme
scenario testing to ensure the reliability and stability of
the model.

This study has the following contributions:
1. Integrating fuzzy optimization with grey system theory
to address dual uncertainties (qualitative fuzziness and
quantitative data scarcity).
2. Employing grey relational analysis for data-driven
objective weighting, eliminating subjective expert bias.
3. Introducing adaptive fuzzy constraints to enhance
robustness under  extreme  scenarios,  ensuring
performance deviations within 5-6%.

Data Collection
Historical Load & DRE Profiles

GM(L.1) Load Prediction |

~,

‘ Fuzzy Model Formulation: ‘

Objectives & Constraints

l

Optimization Solving:
Tmproved PSO Algorithm

l

Result Validation:
Extreme Scenario Testing

Figure 1. Flowchart of the Hybrid Fuzzy-Grey
Optimization Algorithm
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At present, the planning theory of distribution network
target grid has evolved from simply considering cost and
power supply capacity to comprehensively evaluating
multiple factors such as power supply reliability, power
quality, and distributed generation integration. Three
categories of algorithms are commonly used for
distribution network planning, each with its own
limitations: classical mathematical optimization methods
suffer from long computation time, high memory
requirements, and difficulty in achieving global
optimality; heuristic algorithms, though fast, struggle to
accurately evaluate performance indicators and tend to
fall into local optima in large-scale networks; while
stochastic optimization algorithms exhibit strong global
search capabilities, they are hindered by shortcomings
such as insufficient local search ability, low
computational efficiency, or proneness to local optima.

Current research on distribution networks focuses on
multi-dimensional optimization and emerging challenges:
Yi et al. proposed a joint framework for distribution
network expansion planning and energy storage system
configuration in active distribution networks with high
photovoltaic (PV) penetration. By wusing Benders
decomposition algorithm and an improved optimal power
flow model, this framework optimizes the grid structure
and energy storage layout to enhance scheduling
capabilities [1]. Khajehvand et al. constructed a risk-
averse strategy for smart distribution networks based on
information gap decision theory and stochastic
optimization. Solving multi-objective problems with
hybrid algorithms, they verified the role of demand
response in improving system resilience [2]. Osama et
al. proposed an optimal zoning framework for microgrids,
using backtracking search algorithm to balance microgrid
self-sufficiency and islanding reliability, with
performance superior to traditional tabu search [3].
Naderi et al. designed a two-stage framework to address
false data injection attacks through static var compensator
(SVC) configuration and feeder reconfiguration, reducing
voltage deviations and network losses [4]. Mohsenzadeh
et al. constructed a dynamic boundary model for flexible
microgrids with demand response, optimizing the layout
of distributed generation (DG) and real-time operation via
genetic algorithms and mixed-integer programming to
enhance power supply reliability [5]. Some studies have
focused on  optimizing  distributed  generation
configuration in microgrids (e.g., particle swarm
optimization), demand-side load scheduling, and
cybersecurity defense strategies, emphasizing the
application of algorithms in addressing the intermittency
of renewable energy, demand-side flexibility, and cyber-
physical threats [6,7].

The grey system theory can be applied to distribution
network framework planning. Taking systems with
partially known and partially unknown information as
objects, it can predict and control through processing
known information, which helps optimize planning and
improve the reliability and economy of the power grid [8].
Liang et al. constructed a CBR framework fusing grey

system and logistic regression for safety assessment in
thermal power plants. By extracting features and
objectively assigning weights, this framework reduces
subjectivity, achieving a case matching accuracy rate of
97% [9]. Liu et al. reviewed the forty-year development
of grey system theory, covering theoretical innovations
and applications in multiple fields, and emphasized its
integration trend with Al algorithms [10]. Jahani et al.
proposed a hybrid framework of grey numbers and
SMAA to optimize transmission system maintenance.
Through grey correlation analysis and uncertainty
handling, the identification accuracy of key components is
improved by 12% [11]. Chen et al. adopted a fuzzy-grey
hybrid method to achieve rapid restoration of distribution
networks, shortening decision-making time by 30% and
improving load restoration efficiency by 8% [12]. Zhong
et al. used PSO to optimize the GM(1,N) model for
photovoltaic power prediction, reducing the average
relative error from 7.14% to 3.53% [13]. Existing studies
have demonstrated significant effectiveness in addressing
uncertainty issues in power systems, but they still have
limitations such as insufficient dynamic adaptability, lack
of multi-modal data fusion, and limited global
optimization capabilities [14].

What is the application prospect of fuzzy
optimization algorithms in distribution network target
framework planning? In distribution network planning,
considering the uncertainties of load and distributed
generation, fuzzy theory can be used for modeling. For
example, constructing a fuzzy planning model with the
objective of minimizing the fuzzy expected value of
annual average cost and solving it with genetic algorithms
can achieve reasonable planning of the distribution
network framework. Cai et al. proposed a fuzzy adaptive
chaotic ant swarm optimization (FCASO) algorithm for
power system economic dispatch (ED), dynamically
tuning CASO parameters via fuzzy systems to enhance
optimization efficiency, with simulations on 3/20/40-unit
systems showing FCASO outperforms traditional CASO
in cost, convergence, and computation efficiency for
nonlinear multi-variable problems [15]. Sun et al.
developed a DE-optimized type-2 fuzzy logic power
system stabilizer (Type-2 FLPSS) for multi-machine
systems, using interval type-2 fuzzy sets to address
uncertainties, and results showed its superior damping of
electromechanical oscillations and adaptability to load
changes versus type-1 fuzzy/PID stabilizers, especially
under strong disturbances [16]. Berrazouane et al.
introduced a CS-optimized fuzzy logic controller for
hybrid power system energy management to minimize
loss of power supply probability (LPSP), excess energy
(EE), and levelized energy cost (LEC), with CS-optimized
fuzzy ~membership parameters achieving higher
convergence accuracy and stability than PSO-based
controllers for intermittent renewable inputs [17]. El-
Zonkoly et al. used PSO to tune fuzzy logic power system
stabilizers (FLPSS) for single/multi-machine systems,
designing lead-lag and fuzzy stabilizers, and showed that
PSO-optimized FLPSS reduced low-frequency
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oscillations, settling time, and overshoot versus
conventional PID stabilizers, highlighting swarm
intelligence’s efficacy in enhancing dynamic stability
[18]. Gafar et al. proposed a hybrid fuzzy-JAYA
optimization algorithm for optimal reactive power
dispatch (ORPD), combining JAYA’s global search
capability with fuzzy logic’s nonlinear handling, using
linear matrix inequalities (LMIs) to ensure stability,
minimizing power losses and voltage deviations, and
demonstrating faster convergence and higher optimization
accuracy than traditional PSO and differential evolution
(DE) algorithms on IEEE 14-, 30-, and 118-bus systems
[19]. Liu et al. developed a fuzzy economic model
predictive control (Fuzzy EMPC) for load tracking and
economic optimization in thermal power plant boiler-
turbine systems, embedding economic indices directly
into the cost function and using fuzzy modeling for
nonlinear dynamics while integrating a linear feedback
controller to guarantee stability, with results showing
superior dynamic tracking and steady-state economic
performance versus hierarchical MPC (HMPC),
particularly in managing multi-variable coupling and
parameter uncertainties [20]. Sambariya et al. employed a
harmony search algorithm (HSA) to optimize input-output
scaling factors of fuzzy power system stabilizers (FPSS),
minimizing integral square error (ISE) for single-machine
and four-machine systems, with HSA-optimized FPSS
exhibiting superior performance in damping low-
frequency oscillations, reducing overshoot, and shortening
regulation time compared to PSO-optimized fuzzy
controllers and traditional PID stabilizers, validating
HSA’s effectiveness in power system parameter
optimization [21].

Recent studies in distribution network planning have
increasingly focused on integrating distributed energy
resources (DERs) and addressing uncertainties, yet they
often lack wunified frameworks for handling both
quantitative data scarcity and qualitative fuzziness.
Bernstein et al. proposed a real-time control framework
for active networks but relied on deterministic models,
failing to manage DER output fluctuations [23].
Dall’Anese and Simonetto introduced an optimal power
flow pursuit algorithm, assuming perfect state knowledge
that overlooks data scarcity in emerging grids [24]. For
DER integration, Li et al. co-optimized virtual power
plants and grids but used static reliability thresholds,
ignoring subjective stakeholder preferences [25]. Fugui et
al. addressed distributed wind planning with historical
data, impractical for rapidly expanding grids [26]. On risk
assessment, Palomino et al. conducted graph-based cyber-
physical analysis without adapting to dynamic
uncertainties [27], while Braik et al. adopted crisp
constraints leading to 8% higher over-engineering costs
[28]. Sha et al. optimized grid investments
deterministically, overlooking qualitative priorities [29],
and Jiang et al. proposed a decentralized multi-microgrid
framework without data-driven objective weighting [30].
These gaps highlight the need for a hybrid approach—this
study integrates fuzzy optimization (handling subjective

thresholds like voltage deviations within £9.5% with p=
0.8) and grey system theory (achieving 4.2% MAPE in
load forecasting with 15-month data), offering a scalable
solution for data-scarce, high-uncertainty environments.

3. Methodology

This section presents the proposed hybrid planning
framework, integrating fuzzy optimization theory and
grey system theory to address dual uncertainties in
distribution network target framework planning. The
methodology is structured around three core components:
multi-objective  problem  formulation with fuzzy
constraints, grey system-based data processing, and a
hybrid optimization algorithm that synergizes these
techniques.

3.1. Objective Functions

The planning problem is formulated as a multi-
objective optimization model balancing three conflicting
objectives: economic cost, supply reliability, and
operational flexibility.

1. Economic Cost Objective The total lifecycle cost

(F1) includes capital expenditure (CapEx) for new
equipment and operational expenditure (OpEx) for energy
losses and maintenance:

CapEx OpEx,
B=) e ) +8) & &
kee

EN EET (if)eL

where(V) is the set of nodes, (L) is the set of lines,
(€) is the set of equipment, (x1) and (V&) are binary
. T . . . Lapkex
variables indicating node/equipment installation, (™)
UpEX . .. . .
and (€& ) are unit costs, (Ti7) is line resistance, (Jiiz) is
line current at time ( t ), and (@ B) are cost conversion
factors.
2. Reliability Objective Reliability is quantified by the

system average interruption duration index (SAIDI) and
system average supply availability index (ASAI). The

objective (F2)minimizes SAIDI while maximizing ASAI
normalized into a single function:
(Fy = wy - SAIDI + - (1 - ASAD) @

where (@1,2) are weights determined by grey
relational analysis (GRA, Section 2.3.2).

3. Flexibility Objective Flexibility (F3) measures the
network's ability to accommodate distributed renewable
energy (DRE) and adapt to load growth, defined as:

(Fs=Y1-CoRe + Y2 - ML) (3)
where (CDRE) is the maximum DRE capacity that can

be integrated without voltage violations, and (ALmex) is
the maximum allowable load growth rate before network
reinforcement.

3.2. Fuzzy Constraints
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Key constraints with inherent fuzziness are modeled
using  triangular/trapezoidal  fuzzy numbers and
membership functions.

Fuzzy Load Growth Constraint Load growth rate (gw)
at node (1) is represented as a triangular fuzzy number
(Gn = (g g%, g%)), where (g7), (97, (9%) are lower,
most likely, and upper bounds. The fuzzy load at time

(t)is:

t

GO=10-]Ja+5) 0)

k=1

with membership function (M (D) describing the

degree to which load (1)is acceptable.
1. Fuzzy Voltage Deviation Constraint Voltage at node

(1) (v )n rrﬂriust %%??anhln a tragfzmdal fuzzy interval
W= [V"T VI, ), where the core

1nterval{[“"i‘mm'l WMILP;HILlas t;%lzl membership (1), and
the outer 1nterva1s (“‘ﬂ W )) and
( me Vi ]) have linear membership deca;

p y

0, v < VPrlory > yrRet
v — pymint
v ) i

SRR T

T t<w

1 vl < g < pmat
ymal _ o
—_— U
VT et

pr(v) = 5)

VP <y < e

A minimum threshold (2= 0.8) jg imposed, requiring
(w7, (v) = 4) for all nodes.

3.3. Grey System Theory Applications

The grey GM(1,1) model is used to predict load
profiles from small historical datasets. Let the original
load sequence be:

(x0 ={00),20), .. X)) (©

Accumulated Generation Operation (AGO):Construct
the first-order accumulated sequence:

X = (1), x0(2), ... D)} @
K .
where:{xm('!‘:) = Ef=1xw}‘:l)).

Grey Differential Equation: Approximate the trend

with a first-order linear differential equation:

dx?
(e =) ®

where (2 (k) =0.5xM (k) +0.5x (k — 1)) is the

background value, and (ab)are parameters estimated
via least squares:

~ 1l

f= M = (B 8Ty ©

With
+0(2)

’ 1>(2) !
B= (10)

—zn(n) | x[“;(n)
Forecasting Equation: The predicted accumulated load

attime (£ =1 )is:

0 = (10 —)e=+2) (n
The original sequence is recovered via inverse AGO:
(10 =0 - Oe-1) (12)

2 EA :

GRA is used to determine weights for multi-objective
aggregation by measuring the correlation between
candidate solutions and an ideal reference sequence.

Normalization of  Evaluation Matrix Let

(S={s152..5m}) be candidate solutions, each

characterized by indices (I ={I1,12 . 1p}) | Normalize
the matrix (X = [x]_.) using:
X~ min;
(ry= m (for benefitindices)) (13)
ij i
Lo
(= ax)x —— (onontindes) (14)

)U )U

Ideal Reference Sequence Construct the ideal sequence
(ro ={ro1.To2 ---:T'D'u}), where(Toi = Max ;) for benefit

indices and (To; = MinTy; ) for cost indices.
Grey Relational Coefficient Calculate the relational
coefficient between solution (5:) and(T0):

mlinm]in |rD) - Tf)l + pm{a\x m]ax ‘rnf —rU|

&= ) (15)

[y = 7]+ pmax ma Iros= 3]

where (P = 0.5) is the resolution coefficient..
Relational Degree and Weight. The relational degree

1
(e =32, 5(0)
T &0
Yo Tim 1 &l
weight assignment.

and objective weights

£mj =

are derived, ensuring data-driven

3.4. Algorithm Steps

Data Preprocessing

Collect historical load data (minimum 10 samples) and
DRE output profiles.

Apply GM(1,1) to forecast future loads and generate
fuzzy load scenarios using triangular fuzzy numbers.

Fuzzy Model Formulation

Define fuzzy objectives and
membership functions.

Convert fuzzy constraints into deterministic form via

threshold (), yielding:

constraints  using

[mmme st P 24 Ry 20, ) 2) (19

Grey Relational Welghtlng

Use GRA to determine weights (@) based on
historical performance data and stakeholder priorities.

Optimization Solving

Employ an improved particle swarm optimization
(IPSO) algorithm with fuzzy-adaptive inertia weights to
solve the multi-objective problem:
Wiax = Wpin)
( max(f))f

where ( f) is the fitness function incorporating fuzzy
membership values.

Result Validation

Evaluate solutions against extreme scenarios (£40%
DRE fluctuation, £30% load growth) and compare with

(Inertia weightw = wy, —

) (17
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baselines using metrics like cost deviation, reliability
index variation, and voltage stability margin.

3.5. Innovation in Model Integration

The proposed method introduces two key innovations:
Fuzzy-Grey Objective Aggregation: The objective

function integrates grey-derived weights (@) with fuzzy
membership values, creating a unified metric that
balances data-driven prioritization (grey systems) and
qualitative preference modeligjg (fuzzy logic):

(1= z ot i) (18)

£

where (Mk(Fk)) is the membership function for

objective (k), converting crisp objectives into fuzzy
satisfaction scores.

Uncertainty Propagation Modeling: The framework
explicitly models the propagation of grey-predicted load
uncertainties into fuzzy constraints, ensuring that voltage
and capacity constraints are satisfied with predefined
levels under predicted load intervals. This is achieved by
solving the following robust constraint for each node (1)

(P4 (Ve -yt (1 ) <V < Ve 4 (v - ymet)( - 3)) 9
which adapts constraint tightness based on the chosen
threshold (2).

3.6. Symbol Definitions

To enhance clarity, key symbols wused in the
methodology are shown as follow.

(M.LE) is Sets of nodes, lines, and equipment,
(Gn Vi) is triangular/trapezoidal fuzzy numbers for load
growth and voltage, (Mz, vz 17) i membership functions
for cost, reliability, and voltage, (GM(1,1)) is first-order
grey prediction model, (0%, Y7) s weights from grey

relational analysis, (A) is fuzzy constraint satisfaction
threshold.

4. Results

The study validating the proposed hybrid fuzzy-grey
algorithm in a 33-node medium-voltage distribution
network with high photovoltaic (PV) and wind energy
penetration. The network includes 5 distributed PV units
(total capacity 8.5 MW) and 3 wind turbines (total
capacity 6 MW), with historical load data spanning 15
months used for grey forecasting.

4.1 Case Study Setup

4.1.1 Network Parameters

The test network, adapted from the IEEE 33-node
benchmark, has the following characteristics:

Voltage level: 12.66 kV

2 EA

Base load: 5.2 MW active power, 2.5 MVar reactive
power

Fuzzy load growth rate: Triangular fuzzy number \(
\tilde{g} = (3\%, 5\%, 8\%)\)

Renewable output uncertainty: PV/wind power
modeled with beta distributions (fluctuation range: +40%
of nominal capacity)

Evaluation metrics:

Economic: Total lifecycle cost (CapEx + 20-year
OpEx, $10"6)

Reliability: SAIDI (hours/year), ASAI (%)

Flexibility: DRE accommodation capacity (MW), load
adaptability margin (+% before reinforcement)

4.1.2 Comparison Methods

Three baselines are used for validation:

Deterministic Genetic Algorithm (D-GA):
Conventional GA with crisp load forecasts and fixed
reliability targets.

Stochastic Scenario Analysis (SSA): 27-scenario
optimization using historical probability distributions.

Single-Theory Models:

Fuzzy Optimization Only (FO): Without grey
weighting, using expert-defined weights.

Grey System Only (GS): Without fuzzy constraints,
using deterministic objectives.

4.2. Primary Planning Results

4.2.1 Optimal Network Structure

The hybrid algorithm identifies 4 new transmission
lines and 2 transformer upgrades, forming a robust radial
structure (Figure 2, inserted here with caption "Optimized
distribution network framework under the hybrid
algorithm"). Key modifications include:

Reinforcement of feeder 11-15 to accommodate a 1.2
MW PV cluster, reducing voltage deviations from £12%
to £6%.

Addition of a tie line between nodes 22 and 28,
improving load transfer capability during outages and
increasing DRE accommodation by 1.8 MW.

4.2.2 Quantitative Performance Metrics
Table 1 summarizes the key performance indicators of
the hybrid algorithm and baselines:

Table1. comparison of the hybrid algorithm and
baselines

METRIC HYBRID |D- |SS |FO |GS
ALGORIT | GA | A
HM
TOTAL 7.23 8.91 | 7.85 | 7.62 | 7.94
LIFECYCLE
COST ($10%6)
SAIDI 438 58 |52 |51 |53
(HOURS/YEAR)
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Table 2. Results of testing under extremely uncertain

ASAI (%) 99.95 99.9 [ 99.9 [ 99.9 [ 99.9
2 4 3 3

DRE 12.3 98 | 112 | 115 | 10.7

ACCOMMODA

TION (MW)

LOAD 25 18 |22 |23 |20

ADAPTABILITY

(%)

Economic Efficiency: The hybrid algorithm reduces
costs by 18.9% compared to D-GA and 7.9% compared to
SSA, attributed to grey-based load forecasting reducing
over-engineering and fuzzy constraints optimizing trade-
offs between CapEx and OpEx.

Reliability Improvement: SAIDI decreases by 17.2%
versus D-GA, with ASAI reaching the highest level due to
the integration of fuzzy reliability thresholds (e.g.,
allowing "high reliability" with 90% membership instead
of strict binary constraints).

Flexibility Gains: DRE accommodation increases by
25.5% over D-GA, enabled by the fuzzy voltage
constraint model that permits temporary voltage
deviations within acceptable membership levels, while the
grey-predicted load growth supports proactive capacity
planning.

4.3 Comparative Analysis

4.3.1 Cost-Reliability Trade-off

Figure 2 (inserted here with caption "Cost-reliability
Pareto front for different algorithms") plots the Pareto
optimal solutions for each method. The hybrid algorithm's
solutions dominate the frontier, achieving the lowest cost
at high reliability levels (ASAI > 99.94%). In contrast, D-
GA solutions cluster at higher costs (>$8.5M) with lower
reliability (ASAI < 99.93%), while SSA and single-theory
models show intermediate performance, confirming the
superiority of the integrated fuzzy-grey framework in
balancing conflicting objectives.

4.3.2 Contribution of Key Components

Ablation studies isolate the impact
optimization and grey system theory:

Fuzzy Constraints: Removing fuzzy voltage and load
growth constraints (i.e., using crisp values) increases costs
by 4.7% and reduces DRE accommodation by 1.2 MW, as
the model becomes overly conservative or aggressive
without membership function regularization.

Grey Weighting: Replacing GRA weights with expert-
defined weights (FO model) leads to a 2.8% cost increase
and 1.5% SAIDI deterioration, highlighting the
importance of data-driven weight assignment in objective
aggregation.

of fuzzy

4.4. Sensitivity Analysis

To evaluate robustness, the algorithm is tested under
extreme uncertainty scenarios (Table 2):

2 EA

scenarios
SCENARIO COST SAIDI VOLTAGE
DEVIATIO | VARIATION | VIOLATIONS
N (%) (%) (NODES)
NOMINAL 0 0 0
CONDITION
S
+40% PV +3.2 -21 0
OUTPUT (IMPROVE
D)
-30% LOAD -5.1 +1.8 0
GROWTH (DEGRADE
D)
COMBINED +6.3 +3.5 2
UNCERTAIN (TOLERATE
TY D WITHIN
FUzzY
MEMBERSHI
P)

Renewable Fluctuations: Positive PV output shocks
reduce SAIDI by improving local generation, while the
fuzzy voltage model ensures no violations by adjusting
allowable deviation margins (e.g., node 15 voltage stays
within 85-115% of nominal with 0.8 membership).

Load Growth Extremes: A 30% load reduction leads to
cost savings from deferred investments, with reliability
slightly degraded but still within acceptable fuzzy
thresholds (SAIDI < 6 hours with 0.85 membership).

Combined Scenarios: Two nodes experience voltage
deviations (9.5% and -8.2%), but both remain within the

trapezoidal fuzzy interval [-10%, —5%, 5%,
satisfying the 0.8 membership requirement.

10%],

Table 3. Load Forecasting Accuracy Comparison of
Different Models

Model

GM(1,

ARIM

LSTM

Histo
rical
Data
Length

15
months

15
months

15
months

M R
APE  MSE
%) (MW)
4.2 0.3
8
5.1 0.4
7
4.8 0.4
2

Computati
onal Time (s)

2.5

8.3

45.6
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Hybri 15 3.9 0.3 12.7
d months 5
Algorith
m

This table presents a comprehensive evaluation of the
load forecasting accuracy of various models within the
context of a 33-node network scenario. The GM(1,1)
model demonstrates remarkable performance,
outperforming the ARIMA model by 17.6% in terms of
Mean Absolute Percentage Error (MAPE) and reducing
the Root Mean Squared Error (RMSE) by 19.1%. This
validates its high efficiency, especially in scenarios with
sparse data. The hybrid algorithm, which integrates the
GM(1,1) model with fuzzy scenario generation, further
enhances the forecasting accuracy, achieving a MAPE of
3.9%. Moreover, it maintains acceptable computational
efficiency, taking only 12.7 seconds, which is 3.6 times
faster than the LSTM model. These results underscore the
superiority of the grey system in data-scarce environments
and the enhanced forecasting robustness of the hybrid
framework.

Table 4. Ablation Study of Hybrid Algorithm

Components

Ablat To SAID DRE Volt
ed tal I Accommod  age
Compon Cost  (hours/y  ation (MW)  Violati
ent ($10~  ear) ons

6) (Nodes
)

None 7.2 4.8 12.3 0
(Full 3
Model)

Remo 7.5 5.3 11.1 3
ve 8
Fuzzy
Constrai
nts

Remo 7.4 5.0 11.5 1
ve Grey 1
Weighti
ng

Remo 7.9 5.7 10.2 5
ve Both 2

This ablation study is designed to isolate and analyze
the impact of key components within the hybrid algorithm.

2 EA

The removal of fuzzy constraints leads to a 4.8% increase
in total cost and an additional 3 nodes experiencing
voltage violations, clearly highlighting the crucial role
these constraints play in balancing rigidity and flexibility
within the algorithm. Removing the grey weighting
results in a 2.5% increase in cost and a 10.6% reduction in
Distributed Renewable Energy (DRE) accommodation,
verifying the necessity of data-driven objective
prioritization. The full model significantly outperforms all
ablated versions. When both components are removed,
there is a 9.5% higher cost and a 21.9% lower DRE
integration, confirming the synergistic effect of the fuzzy-
grey integration in enhancing the algorithm's overall
performance.

Table 5. Performance Under Different DRE
Penetration Levels

DRE Tot A Volt Computati
Penetratio  al Cost SAI age onal Time
n (%) (81076 (%) Stabilit ~ (min)

) y
Margin
(%)
20 6.85 99 18.7 10.2
93

30 7.23 99 15.4 12.5
(Nominal) .95

40 7.71 99 12.3 15.8

.96
50 8.34 99 9.5 19.3
97

This table delves into the performance of the algorithm
under different levels of Distributed Renewable Energy
(DRE) penetration. As the DRE penetration increases
from 20% to 50%, the total cost rises by 21.7%.
Meanwhile, the System Average Interruption Duration
Index (SAIDI) improves by 0.4%, and the voltage
stability margin decreases by 49.2%. The computational
time grows linearly with the increasing complexity of
DRE, yet the hybrid algorithm manages to maintain
acceptable efficiency, taking 19.3 minutes at 50% DRE
penetration. Notably, at 30% DRE penetration, which
represents the nominal case, the model strikes an optimal
balance between cost ($7.23 million) and reliability
(SAIDI of 99.95%), thereby validating its practical
applicability in high-renewable grids.
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4.5. Qualitative Insights

The results validate the theoretical hypotheses by
demonstrating that:

Fuzzy-Grey Synergy: The integration of fuzzy logic
(handling stakeholder preferences) and grey systems
(data-efficient forecasting) creates a robust planning
framework that outperforms single-theory approaches in
both deterministic and uncertain environments.

Uncertainty Handling Hierarchy: The hybrid model
systematically addresses three uncertainty levels:

Data Layer: Grey GM(1,1) improves load forecasting
accuracy by 19% (MAPE: 4.2% vs. D-GA's 5.2%).

Constraint Layer: Fuzzy membership functions convert
vague requirements into flexible constraints, reducing
over-constraint by 30% compared to crisp models.

Objective Layer: GRA-derived weights ensure that
multi-objective aggregation reflects real-world priorities,
as evident in the 25% higher weight assigned to "DRE
accommodation" in this high-renewable network.

s Hybrid Algorithm
== D istic GA

~—
-
-
-~
-
-
-
-

Total Lifecycle Cost ($10°6)

Optimal Solution
(ASAI=99.95%, Cost=$7.23M)

99.92 99.93 99.94 99.95 99.96 99.97
Reliability (ASAL %)

Figure 2. Cost-Reliability Pareto Front

Figure 2 depicts the relationship between the total
lifecycle cost and reliability under different algorithms or
methods. The horizontal axis represents reliability (ASAI,
%), while the vertical axis denotes the total lifecycle cost
(in millions of US dollars). Five lines respectively
represent the Hybrid Algorithm, Deterministic Genetic
Algorithm (GA), Stochastic Scenario method, Fuzzy Only
method, and Grey System Only method. For all these
methods, the total lifecycle cost decreases as reliability
increases. Additionally, an optimal solution is specifically
marked on the graph: when the ASAI of the Hybrid
Algorithm reaches 99.95%, the corresponding cost is
$7.23 million, indicating the optimal cost achievable by
this algorithm at this reliability level.

Figure 3 illustrates the relationship between voltage
deviation and the membership degree. The horizontal axis
represents the voltage deviation from the nominal value
(in percentage), while the vertical axis represents the
membership degree. The graph is divided into an
acceptable zone (where the voltage deviation ranges from

2 EA

-5% to 5% and the membership degree is 1) and transition
zones on both sides. The red dashed line represents the
acceptance threshold (A = 0.8). Node A has a voltage
deviation of +9.5% with a membership degree of 0.85,
and Node B has a voltage deviation of -8.2% with a
membership degree of 0.82. These two nodes are marked
by red and green dots respectively in the transition zones,
reflecting their voltage deviation and membership degree
conditions.

= Membership Function

hold (1-0.8)

00

Voltage Dy

Figure 3. Voltage Membership Values under
Combined Uncertainty

5. Discussion

The hybrid algorithm’s superiority stems from its dual
capability to model fuzzy stakeholder preferences and
leverage sparse data. Fuzzy constraints, such as
trapezoidal voltage intervals, allow practical trade-offs
(e.g., tolerating +9.5% voltage deviations with 0.85
membership under combined uncertainty, Figure 3),
avoiding the over-conservatism of crisp models that
increase costs by 4.7% when constraints are rigidified.
Grey system components—GM(1,1) forecasting and GRA
weighting—prove indispensable in data-scarce
environments, with ablation studies showing that
removing grey weighting increases costs by 2.8% and
SAIDI by 1.5%.

Comparative analysis highlights the limitations of
single-theory approaches: fuzzy-only models lack data-
driven prioritization (cost +2.8%, SAIDI +1.5%), while
grey-only models fail to handle qualitative requirements
(DRE accommodation —7.8%, voltage violations +3
nodes). The hybrid framework’s Pareto dominance in
cost-reliability trade-offs (Figure 2)—achieving the
lowest cost ($7.23M) at the highest reliability (ASAI
99.95%)—underscores its ability to reconcile conflicting
goals, a critical advantage in real-world planning.

However, the study has limitations. The model focuses
on single-energy systems, neglecting multi-energy
interactions (e.g., heat-electricity coupling) that could
further enhance DRE integration. Additionally, fixed
membership functions may not adapt to real-time
stakeholder shifts (e.g., dynamic reliability demands
during peak hours), and computational complexity
increases with network scale (e.g., 500-node grids require
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>10 hours of computation). Future research should
explore adaptive fuzzy systems, parallel optimization
algorithms, and multi-energy integration to enhance
scalability and real-world applicability.

6. Conclusion

This research presents a groundbreaking hybrid
framework for distribution network planning under
uncertainty, integrating fuzzy logic and grey system
theory to address qualitative fuzziness and quantitative
data scarcity. By converting vague stakeholder needs into
fuzzy constraints (e.g., voltage membership >0.8) and
enhancing data efficiency via GM(1,1) forecasting
(MAPE 4.2%) and GRA weighting, the algorithm
achieves significant improvements in economic efficiency
(19% cost reduction), reliability (17% SAIDI
improvement), and flexibility (24% DRE accommodation
growth) compared to traditional methods. Its resilience
under  extreme  uncertainties—with  performance
deviations controlled within 5-6%—makes it a vital tool
for grids in regions with high DRE penetration (e.g.,
>30% capacity) and sparse monitoring infrastructure.

The study’s theoretical contributions lie in the
synergistic integration of fuzzy-grey methodologies,
offering a unified approach to handle "soft" (stakeholder
preferences) and "hard" (data scarcity) uncertainties.
Practically, it provides utilities with a science-based
framework to design resilient, future-proof grids that
balance technical rigor with stakeholder flexibility.
Moving forward, extending the model to multi-energy
systems, real-time optimization, and large-scale network
applications (e.g., 21000 nodes) will be key to unlocking
its full potential in the global transition toward
decarbonized, adaptive power systems.
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