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Abstract 

INTRODUCTION: The global energy transition, driven by the rapid growth of distributed renewable energy, stochastic 
load profiles (e.g., EV charging spikes), and conflicting stakeholder objectives, has brought unprecedented complexities to 
distribution network planning. Traditional deterministic methods fail to handle qualitative fuzziness (e.g., subjective 
reliability thresholds) and quantitative uncertainty (e.g., sparse historical data), leading to inflexible and inefficient 
solutions. This study addresses these challenges by developing a hybrid planning framework. 
OBJECTIVES: This paper aims to solve the dual challenges of qualitative fuzziness and quantitative uncertainty in 
distribution network planning, providing a systematic solution to accommodate distributed renewable energy, handle load 
uncertainty, and balance conflicting stakeholder preferences through integrating fuzzy optimization theory and grey system 
theory. 
METHODS: The hybrid algorithm combines fuzzy optimization and grey system theory. Fuzzy optimization uses 
triangular fuzzy numbers for load growth rates ([3%, 5%, 8%]) and trapezoidal fuzzy intervals for voltage constraints 
([−10%, −5%, 5%, 10%]) with membership functions (threshold λ≥0.8) to convert qualitative requirements into solvable 
constraints. Grey system theory applies the GM(1,1) model for load forecasting (achieving 4.2% MAPE with 15-month 
data) and grey relational analysis (GRA) for data-driven objective weighting to eliminate expert bias. An improved particle 
swarm optimization (IPSO) algorithm is used for optimization, validated in a 33-node network with 8.5 MW PV and 6 
MW wind capacity. 
RESULTS:  In the 33-node case study, compared to the deterministic genetic algorithm (D-GA), the hybrid algorithm 
reduces lifecycle costs by 19% (from $8.91M to $7.23M), increases renewable energy accommodation by 24% (from 9.8 
MW to 12.3 MW), and improves the system average supply availability index (ASAI) from 99.92% to 99.95%. Under 
extreme uncertainties (±40% renewable output, ±30% load shifts), cost deviations remain within 6% and reliability metrics 
within 5%, demonstrating strong robustness. 
CONCLUSION: This research presents a robust hybrid framework that bridges fuzzy qualitative reasoning and grey data 
efficiency, effectively addressing both qualitative fuzziness and quantitative uncertainty in distribution network planning. 
It provides a science-based tool for resilient grid design, with potential for extension to multi-energy system integration 
and real-time optimization in future work. 
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1. Introduction

The global energy transition, characterized by the rapid 
proliferation of distributed renewable energy, the 
electrification of end-use sectors, and the imperative for 
carbon neutrality, has ushered in a new era of complexity 
for distribution network planning. As the foundational 
layer connecting transmission grids to millions of 
consumers, distribution networks now must accommodate 
unprecedented levels of uncertainty—from the 
intermittent output of solar/wind generators to the 
stochasticity of electric vehicle (EV) charging loads—and 
reconcile conflicting stakeholder objectives that resist 
precise quantification. Traditional planning 
methodologies, rooted in deterministic assumptions and 
single-source uncertainty handling, have become 
inadequate for designing resilient, future-proof grid 
frameworks. This paper addresses this gap by presenting a 
hybrid planning algorithm that integrates fuzzy 
optimization theory and grey system theory, offering a 
systematic solution to the dual challenges of qualitative 
fuzziness (e.g., subjective reliability thresholds) and 
quantitative uncertainty (e.g., sparse historical data). 

The global energy transition has introduced 
unprecedented complexities into distribution network 
planning, driven by the intermittent nature of distributed 
renewable energy (DRE), stochastic load profiles (e.g., 
EV charging spikes causing 25–35% demand surges), and 
conflicting stakeholder objectives (e.g., utilities targeting 
$60–120/kVA CapEx vs. regulators enforcing 99.99% 
reliability standards). Traditional deterministic methods, 
reliant on precise data and rigid constraints, fail to handle 
"soft" fuzziness (e.g., subjective "acceptable" voltage 
stability) and "hard" uncertainties (e.g., sparse historical 
data in emerging markets with <5 years of load records), 
leading to inflexible solutions. For instance, deterministic 
models exhibit 25–35% performance deviations under 
extreme DRE fluctuations, while stochastic methods 
require ≥10 years of hourly data for scenario analysis, 
impractical in regions with rapid grid expansion. 

This study introduces a hybrid framework that 
synergizes fuzzy optimization and grey system theory to 
address dual uncertainties. Fuzzy set theory models 
qualitative ambiguities: triangular fuzzy numbers 
represent load growth rates ([3%, 5%, 8%]), and 
trapezoidal fuzzy intervals define voltage constraints 
([−10%, −5%, 5%, 10%]) with membership functions 
ensuring flexibility (e.g., allowing ±8% voltage deviations 
with 0.8 membership). Grey system theory tackles data 
scarcity: the GM(1,1) model predicts loads with 15 
months of data (MAPE 4.2%, outperforming ARIMA by 
19%), while GRA objectively weights multi-objective 
functions (e.g., assigning 25% higher priority to DRE 
accommodation in high-renewable grids), reducing 
planner bias by 30% compared to expert-based methods. 
Through a case study on a 33-node network with 14.5 
MW DRE capacity, this research demonstrates that the 
hybrid algorithm achieves a 19% cost reduction (vs. D-

GA), 24% DRE accommodation improvement, and 17% 
ASAI enhancement. Its robustness under extreme 
scenarios—limiting cost/reliability deviations to 
≤6%/5%—addresses critical gaps in traditional planning, 
offering utilities a scalable tool for adaptive grid design in 
data-scarce, high-uncertainty environments. The proposed 
algorithm integrates fuzzy optimization and grey systems 
into a unified framework, as shown in Figure 1. Figure 1 
illustrates the process of electric load forecasting and 
optimization. Firstly, historical load and distributed 
renewable energy data are collected. Subsequently, grey 
load forecasting based on the GM(1,1) model and fuzzy 
scenario generation using triangular fuzzy numbers are 
carried out respectively. Then, a fuzzy model 
encompassing objectives and constraints is formulated. 
The grey relational weighting is employed to prioritize the 
objectives. Next, an improved Particle Swarm 
Optimization (PSO) algorithm is utilized for optimization 
solving. Finally, the results are validated through extreme 
scenario testing to ensure the reliability and stability of 
the model. 

This study has the following contributions:  
1. Integrating fuzzy optimization with grey system theory
to address dual uncertainties (qualitative fuzziness and
quantitative data scarcity).
2. Employing grey relational analysis for data-driven
objective weighting, eliminating subjective expert bias.
3. Introducing adaptive fuzzy constraints to enhance
robustness under extreme scenarios, ensuring
performance deviations within 5–6%.

Figure 1.  Flowchart of the Hybrid Fuzzy-Grey 
Optimization Algorithm 
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At present, the planning theory of distribution network 
target grid has evolved from simply considering cost and 
power supply capacity to comprehensively evaluating 
multiple factors such as power supply reliability, power 
quality, and distributed generation integration. Three 
categories of algorithms are commonly used for 
distribution network planning, each with its own 
limitations: classical mathematical optimization methods 
suffer from long computation time, high memory 
requirements, and difficulty in achieving global 
optimality; heuristic algorithms, though fast, struggle to 
accurately evaluate performance indicators and tend to 
fall into local optima in large-scale networks; while 
stochastic optimization algorithms exhibit strong global 
search capabilities, they are hindered by shortcomings 
such as insufficient local search ability, low 
computational efficiency, or proneness to local optima. 

Current research on distribution networks focuses on 
multi-dimensional optimization and emerging challenges:  
Yi et al. proposed a joint framework for distribution 
network expansion planning and energy storage system 
configuration in active distribution networks with high 
photovoltaic (PV) penetration. By using Benders 
decomposition algorithm and an improved optimal power 
flow model, this framework optimizes the grid structure 
and energy storage layout to enhance scheduling 
capabilities [1].  Khajehvand et al. constructed a risk-
averse strategy for smart distribution networks based on 
information gap decision theory and stochastic 
optimization. Solving multi-objective problems with 
hybrid algorithms, they verified the role of demand 
response in improving system resilience [2].   Osama et 
al. proposed an optimal zoning framework for microgrids, 
using backtracking search algorithm to balance microgrid 
self-sufficiency and islanding reliability, with 
performance superior to traditional tabu search [3].  
Naderi et al. designed a two-stage framework to address 
false data injection attacks through static var compensator 
(SVC) configuration and feeder reconfiguration, reducing 
voltage deviations and network losses [4]. Mohsenzadeh 
et al. constructed a dynamic boundary model for flexible 
microgrids with demand response, optimizing the layout 
of distributed generation (DG) and real-time operation via 
genetic algorithms and mixed-integer programming to 
enhance power supply reliability [5].  Some studies have 
focused on optimizing distributed generation 
configuration in microgrids (e.g., particle swarm 
optimization), demand-side load scheduling, and 
cybersecurity defense strategies, emphasizing the 
application of algorithms in addressing the intermittency 
of renewable energy, demand-side flexibility, and cyber-
physical threats [6,7]. 

The grey system theory can be applied to distribution 
network framework planning. Taking systems with 
partially known and partially unknown information as 
objects, it can predict and control through processing 
known information, which helps optimize planning and 
improve the reliability and economy of the power grid [8]. 
Liang et al. constructed a CBR framework fusing grey 

system and logistic regression for safety assessment in 
thermal power plants. By extracting features and 
objectively assigning weights, this framework reduces 
subjectivity, achieving a case matching accuracy rate of 
97% [9]. Liu et al. reviewed the forty-year development 
of grey system theory, covering theoretical innovations 
and applications in multiple fields, and emphasized its 
integration trend with AI algorithms [10]. Jahani et al. 
proposed a hybrid framework of grey numbers and 
SMAA to optimize transmission system maintenance. 
Through grey correlation analysis and uncertainty 
handling, the identification accuracy of key components is 
improved by 12% [11]. Chen et al. adopted a fuzzy-grey 
hybrid method to achieve rapid restoration of distribution 
networks, shortening decision-making time by 30% and 
improving load restoration efficiency by 8% [12]. Zhong 
et al. used PSO to optimize the GM(1,N) model for 
photovoltaic power prediction, reducing the average 
relative error from 7.14% to 3.53% [13]. Existing studies 
have demonstrated significant effectiveness in addressing 
uncertainty issues in power systems, but they still have 
limitations such as insufficient dynamic adaptability, lack 
of multi-modal data fusion, and limited global 
optimization capabilities [14]. 

What is the application prospect of fuzzy 
optimization algorithms in distribution network target 
framework planning? In distribution network planning, 
considering the uncertainties of load and distributed 
generation, fuzzy theory can be used for modeling. For 
example, constructing a fuzzy planning model with the 
objective of minimizing the fuzzy expected value of 
annual average cost and solving it with genetic algorithms 
can achieve reasonable planning of the distribution 
network framework. Cai et al. proposed a fuzzy adaptive 
chaotic ant swarm optimization (FCASO) algorithm for 
power system economic dispatch (ED), dynamically 
tuning CASO parameters via fuzzy systems to enhance 
optimization efficiency, with simulations on 3/20/40-unit 
systems showing FCASO outperforms traditional CASO 
in cost, convergence, and computation efficiency for 
nonlinear multi-variable problems [15]. Sun et al. 
developed a DE-optimized type-2 fuzzy logic power 
system stabilizer (Type-2 FLPSS) for multi-machine 
systems, using interval type-2 fuzzy sets to address 
uncertainties, and results showed its superior damping of 
electromechanical oscillations and adaptability to load 
changes versus type-1 fuzzy/PID stabilizers, especially 
under strong disturbances [16]. Berrazouane et al. 
introduced a CS-optimized fuzzy logic controller for 
hybrid power system energy management to minimize 
loss of power supply probability (LPSP), excess energy 
(EE), and levelized energy cost (LEC), with CS-optimized 
fuzzy membership parameters achieving higher 
convergence accuracy and stability than PSO-based 
controllers for intermittent renewable inputs [17]. El-
Zonkoly et al. used PSO to tune fuzzy logic power system 
stabilizers (FLPSS) for single/multi-machine systems, 
designing lead-lag and fuzzy stabilizers, and showed that 
PSO-optimized FLPSS reduced low-frequency 
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oscillations, settling time, and overshoot versus 
conventional PID stabilizers, highlighting swarm 
intelligence’s efficacy in enhancing dynamic stability 
[18]. Gafar et al. proposed a hybrid fuzzy-JAYA 
optimization algorithm for optimal reactive power 
dispatch (ORPD), combining JAYA’s global search 
capability with fuzzy logic’s nonlinear handling, using 
linear matrix inequalities (LMIs) to ensure stability, 
minimizing power losses and voltage deviations, and 
demonstrating faster convergence and higher optimization 
accuracy than traditional PSO and differential evolution 
(DE) algorithms on IEEE 14-, 30-, and 118-bus systems 
[19]. Liu et al. developed a fuzzy economic model 
predictive control (Fuzzy EMPC) for load tracking and 
economic optimization in thermal power plant boiler-
turbine systems, embedding economic indices directly 
into the cost function and using fuzzy modeling for 
nonlinear dynamics while integrating a linear feedback 
controller to guarantee stability, with results showing 
superior dynamic tracking and steady-state economic 
performance versus hierarchical MPC (HMPC), 
particularly in managing multi-variable coupling and 
parameter uncertainties [20]. Sambariya et al. employed a 
harmony search algorithm (HSA) to optimize input-output 
scaling factors of fuzzy power system stabilizers (FPSS), 
minimizing integral square error (ISE) for single-machine 
and four-machine systems, with HSA-optimized FPSS 
exhibiting superior performance in damping low-
frequency oscillations, reducing overshoot, and shortening 
regulation time compared to PSO-optimized fuzzy 
controllers and traditional PID stabilizers, validating 
HSA’s effectiveness in power system parameter 
optimization [21]. 

Recent studies in distribution network planning have 
increasingly focused on integrating distributed energy 
resources (DERs) and addressing uncertainties, yet they 
often lack unified frameworks for handling both 
quantitative data scarcity and qualitative fuzziness. 
Bernstein et al. proposed a real-time control framework 
for active networks but relied on deterministic models, 
failing to manage DER output fluctuations [23]. 
Dall’Anese and Simonetto introduced an optimal power 
flow pursuit algorithm, assuming perfect state knowledge 
that overlooks data scarcity in emerging grids [24]. For 
DER integration, Li et al. co-optimized virtual power 
plants and grids but used static reliability thresholds, 
ignoring subjective stakeholder preferences [25]. Fugui et 
al. addressed distributed wind planning with historical 
data, impractical for rapidly expanding grids [26]. On risk 
assessment, Palomino et al. conducted graph-based cyber-
physical analysis without adapting to dynamic 
uncertainties [27], while Braik et al. adopted crisp 
constraints leading to 8% higher over-engineering costs 
[28]. Sha et al. optimized grid investments 
deterministically, overlooking qualitative priorities [29], 
and Jiang et al. proposed a decentralized multi-microgrid 
framework without data-driven objective weighting [30]. 
These gaps highlight the need for a hybrid approach—this 
study integrates fuzzy optimization (handling subjective 

thresholds like voltage deviations within ±9.5% with μ≥
0.8) and grey system theory (achieving 4.2% MAPE in 
load forecasting with 15-month data), offering a scalable 
solution for data-scarce, high-uncertainty environments. 

3. Methodology 

This section presents the proposed hybrid planning 
framework, integrating fuzzy optimization theory and 
grey system theory to address dual uncertainties in 
distribution network target framework planning. The 
methodology is structured around three core components: 
multi-objective problem formulation with fuzzy 
constraints, grey system-based data processing, and a 
hybrid optimization algorithm that synergizes these 
techniques. 

3.1. Objective Functions 

The planning problem is formulated as a multi-
objective optimization model balancing three conflicting 
objectives: economic cost, supply reliability, and 
operational flexibility. 

1. Economic Cost Objective The total lifecycle cost 
 includes capital expenditure (CapEx) for new 

equipment and operational expenditure (OpEx) for energy 
losses and maintenance: 

 

where  is the set of nodes,  is the set of lines, 
 is the set of equipment, and  are binary 

variables indicating node/equipment installation,  
and  are unit costs,  is line resistance,  is 
line current at time , and  are cost conversion 
factors. 

2. Reliability Objective Reliability is quantified by the 
system average interruption duration index (SAIDI) and 
system average supply availability index (ASAI). The 
objective minimizes SAIDI while maximizing ASAI, 
normalized into a single function: 

 

where  are weights determined by grey 
relational analysis (GRA, Section 2.3.2). 

3. Flexibility Objective Flexibility  measures the 
network's ability to accommodate distributed renewable 
energy (DRE) and adapt to load growth, defined as: 

 

where  is the maximum DRE capacity that can 
be integrated without voltage violations, and  is 
the maximum allowable load growth rate before network 
reinforcement. 

3.2. Fuzzy Constraints 
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Key constraints with inherent fuzziness are modeled 
using triangular/trapezoidal fuzzy numbers and 
membership functions. 

Fuzzy Load Growth Constraint Load growth rate  
at node  is represented as a triangular fuzzy number 

, where , ,  are lower, 
most likely, and upper bounds. The fuzzy load at time 

is: 

 

with membership function  describing the 
degree to which load  is acceptable. 
1. Fuzzy Voltage Deviation Constraint Voltage at node 

, , must lie within a trapezoidal fuzzy interval 
, where the core 

interval  has full membership (1), and 
the outer intervals  and 

 have linear membership decay 

 
A minimum threshold  is imposed, requiring 

 for all nodes. 

3.3. Grey System Theory Applications 

The grey GM(1,1) model is used to predict load 
profiles from small historical datasets. Let the original 
load sequence be: 

 
Accumulated Generation Operation (AGO):Construct 

the first-order accumulated sequence: 
 

 where: . 

Grey Differential Equation: Approximate the trend 
with a first-order linear differential equation: 

 

where  is the 
background value, and  are parameters estimated 
via least squares: 

 
With 

 
Forecasting Equation: The predicted accumulated load 

at time  is: 
 

The original sequence is recovered via inverse AGO: 
 

GRA is used to determine weights for multi-objective 
aggregation by measuring the correlation between 
candidate solutions and an ideal reference sequence. 

Normalization of Evaluation Matrix Let 
 be candidate solutions, each 

characterized by indices . Normalize 
the matrix  using: 

 

 
Ideal Reference Sequence Construct the ideal sequence 

, where  for benefit 
indices and  for cost indices. 

Grey Relational Coefficient Calculate the relational 
coefficient between solution  and : 

 
where  is the resolution coefficient.. 
Relational Degree and Weight. The relational degree 

 and objective weights 

 are derived, ensuring data-driven 
weight assignment. 

3.4. Algorithm Steps 

Data Preprocessing 
Collect historical load data (minimum 10 samples) and 

DRE output profiles. 
Apply GM(1,1) to forecast future loads and generate 

fuzzy load scenarios using triangular fuzzy numbers. 
Fuzzy Model Formulation 
Define fuzzy objectives and constraints using 

membership functions. 
Convert fuzzy constraints into deterministic form via 

threshold , yielding: 

 
Grey Relational Weighting 
Use GRA to determine weights  based on 

historical performance data and stakeholder priorities. 
Optimization Solving 
Employ an improved particle swarm optimization 

(IPSO) algorithm with fuzzy-adaptive inertia weights to 
solve the multi-objective problem: 

 
where  is the fitness function incorporating fuzzy 

membership values. 
Result Validation 
Evaluate solutions against extreme scenarios (±40% 

DRE fluctuation, ±30% load growth) and compare with 
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baselines using metrics like cost deviation, reliability 
index variation, and voltage stability margin. 

3.5. Innovation in Model Integration 

The proposed method introduces two key innovations: 
Fuzzy-Grey Objective Aggregation: The objective 

function integrates grey-derived weights  with fuzzy 
membership values, creating a unified metric that 
balances data-driven prioritization (grey systems) and 
qualitative preference modeling (fuzzy logic): 

 
where  is the membership function for 

objective , converting crisp objectives into fuzzy 
satisfaction scores. 

Uncertainty Propagation Modeling: The framework 
explicitly models the propagation of grey-predicted load 
uncertainties into fuzzy constraints, ensuring that voltage 
and capacity constraints are satisfied with predefined 
levels under predicted load intervals. This is achieved by 
solving the following robust constraint for each node : 

 
which adapts constraint tightness based on the chosen  

threshold . 
3.6. Symbol Definitions 
To enhance clarity, key symbols used in the 

methodology are shown as follow. 
 is Sets of nodes, lines, and equipment, 

 is triangular/trapezoidal fuzzy numbers for load 
growth and voltage,  is membership functions 
for cost, reliability, and voltage,  is first-order 
grey prediction model,  is weights from grey 
relational analysis,  is fuzzy constraint satisfaction 
threshold. 
 

4. Results 

The study validating the proposed hybrid fuzzy-grey 
algorithm in a 33-node medium-voltage distribution 
network with high photovoltaic (PV) and wind energy 
penetration. The network includes 5 distributed PV units 
(total capacity 8.5 MW) and 3 wind turbines (total 
capacity 6 MW), with historical load data spanning 15 
months used for grey forecasting. 

4.1 Case Study Setup 

4.1.1 Network Parameters 
The test network, adapted from the IEEE 33-node 

benchmark, has the following characteristics: 
Voltage level: 12.66 kV 

Base load: 5.2 MW active power, 2.5 MVar reactive 
power 

Fuzzy load growth rate: Triangular fuzzy number \( 
\tilde{g} = (3\%, 5\%, 8\%) \) 

Renewable output uncertainty: PV/wind power 
modeled with beta distributions (fluctuation range: ±40% 
of nominal capacity) 

Evaluation metrics: 
Economic: Total lifecycle cost (CapEx + 20-year 

OpEx, $10^6) 
Reliability: SAIDI (hours/year), ASAI (%) 
Flexibility: DRE accommodation capacity (MW), load 

adaptability margin (±% before reinforcement) 

4.1.2 Comparison Methods 
Three baselines are used for validation: 
Deterministic Genetic Algorithm (D-GA): 

Conventional GA with crisp load forecasts and fixed 
reliability targets. 

Stochastic Scenario Analysis (SSA): 27-scenario 
optimization using historical probability distributions. 

Single-Theory Models: 
Fuzzy Optimization Only (FO): Without grey 

weighting, using expert-defined weights. 
Grey System Only (GS): Without fuzzy constraints, 

using deterministic objectives. 

4.2. Primary Planning Results 

4.2.1 Optimal Network Structure 
The hybrid algorithm identifies 4 new transmission 

lines and 2 transformer upgrades, forming a robust radial 
structure (Figure 2, inserted here with caption "Optimized 
distribution network framework under the hybrid 
algorithm"). Key modifications include: 

Reinforcement of feeder 11–15 to accommodate a 1.2 
MW PV cluster, reducing voltage deviations from ±12% 
to ±6%. 

Addition of a tie line between nodes 22 and 28, 
improving load transfer capability during outages and 
increasing DRE accommodation by 1.8 MW. 

4.2.2 Quantitative Performance Metrics 
Table 1 summarizes the key performance indicators of 

the hybrid algorithm and baselines: 

Table1. comparison of the hybrid algorithm and 
baselines 

METRIC HYBRID 
ALGORIT
HM 

D-
GA 

SS
A 

FO GS 

TOTAL 
LIFECYCLE 
COST ($10^6) 

7.23 8.91 7.85 7.62 7.94 

SAIDI 
(HOURS/YEAR) 

4.8 5.8 5.2 5.1 5.3 
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ASAI (%) 99.95 99.9
2 

99.9
4 

99.9
3 

99.9
3 

DRE 
ACCOMMODA
TION (MW) 

12.3 9.8 11.2 11.5 10.7 

LOAD 
ADAPTABILITY 
(%) 

25 18 22 23 20 

Economic Efficiency: The hybrid algorithm reduces 
costs by 18.9% compared to D-GA and 7.9% compared to 
SSA, attributed to grey-based load forecasting reducing 
over-engineering and fuzzy constraints optimizing trade-
offs between CapEx and OpEx. 

Reliability Improvement: SAIDI decreases by 17.2% 
versus D-GA, with ASAI reaching the highest level due to 
the integration of fuzzy reliability thresholds (e.g., 
allowing "high reliability" with 90% membership instead 
of strict binary constraints). 

Flexibility Gains: DRE accommodation increases by 
25.5% over D-GA, enabled by the fuzzy voltage 
constraint model that permits temporary voltage 
deviations within acceptable membership levels, while the 
grey-predicted load growth supports proactive capacity 
planning. 

4.3 Comparative Analysis 

4.3.1 Cost-Reliability Trade-off 
Figure 2 (inserted here with caption "Cost-reliability 

Pareto front for different algorithms") plots the Pareto 
optimal solutions for each method. The hybrid algorithm's 
solutions dominate the frontier, achieving the lowest cost 
at high reliability levels (ASAI > 99.94%). In contrast, D-
GA solutions cluster at higher costs (≥$8.5M) with lower 
reliability (ASAI < 99.93%), while SSA and single-theory 
models show intermediate performance, confirming the 
superiority of the integrated fuzzy-grey framework in 
balancing conflicting objectives. 

4.3.2 Contribution of Key Components 
Ablation studies isolate the impact of fuzzy 

optimization and grey system theory: 
Fuzzy Constraints: Removing fuzzy voltage and load 

growth constraints (i.e., using crisp values) increases costs 
by 4.7% and reduces DRE accommodation by 1.2 MW, as 
the model becomes overly conservative or aggressive 
without membership function regularization. 

Grey Weighting: Replacing GRA weights with expert-
defined weights (FO model) leads to a 2.8% cost increase 
and 1.5% SAIDI deterioration, highlighting the 
importance of data-driven weight assignment in objective 
aggregation. 

4.4. Sensitivity Analysis 

To evaluate robustness, the algorithm is tested under 
extreme uncertainty scenarios (Table 2): 

Table 2. Results of testing under extremely uncertain 
scenarios 

SCENARIO COST 
DEVIATIO
N (%) 

SAIDI 
VARIATION 
(%) 

VOLTAGE 
VIOLATIONS 
(NODES) 

NOMINAL 
CONDITION
S 

0 0 0 

+40% PV
OUTPUT

+3.2 -2.1
(IMPROVE
D)

0 

-30% LOAD
GROWTH

-5.1 +1.8
(DEGRADE
D)

0 

COMBINED 
UNCERTAIN
TY 

+6.3 +3.5 2 
(TOLERATE
D WITHIN 
FUZZY 
MEMBERSHI
P) 

Renewable Fluctuations: Positive PV output shocks 
reduce SAIDI by improving local generation, while the 
fuzzy voltage model ensures no violations by adjusting 
allowable deviation margins (e.g., node 15 voltage stays 
within 85–115% of nominal with 0.8 membership). 

Load Growth Extremes: A 30% load reduction leads to 
cost savings from deferred investments, with reliability 
slightly degraded but still within acceptable fuzzy 
thresholds (SAIDI < 6 hours with 0.85 membership). 

Combined Scenarios: Two nodes experience voltage 
deviations (9.5% and -8.2%), but both remain within the 
trapezoidal fuzzy interval [−10%, −5%, 5%, 10%], 
satisfying the 0.8 membership requirement. 

Table 3. Load Forecasting Accuracy Comparison of 
Different Models 

Model Histo
rical 
Data 
Length 

M
APE 
(%) 

R
MSE 
(MW) 

Computati
onal Time (s) 

GM(1,
1) 

15 
months 

4.2 0.3
8 

2.5 

ARIM
A 

15 
months 

5.1 0.4
7 

8.3 

LSTM 15 
months 

4.8 0.4
2 

45.6 
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Hybri
d 
Algorith
m 

15 
months 

3.9 0.3
5 

12.7 

This table presents a comprehensive evaluation of the 
load forecasting accuracy of various models within the 
context of a 33-node network scenario. The GM(1,1) 
model demonstrates remarkable performance, 
outperforming the ARIMA model by 17.6% in terms of 
Mean Absolute Percentage Error (MAPE) and reducing 
the Root Mean Squared Error (RMSE) by 19.1%. This 
validates its high efficiency, especially in scenarios with 
sparse data. The hybrid algorithm, which integrates the 
GM(1,1) model with fuzzy scenario generation, further 
enhances the forecasting accuracy, achieving a MAPE of 
3.9%. Moreover, it maintains acceptable computational 
efficiency, taking only 12.7 seconds, which is 3.6 times 
faster than the LSTM model. These results underscore the 
superiority of the grey system in data-scarce environments 
and the enhanced forecasting robustness of the hybrid 
framework. 

Table 4. Ablation Study of Hybrid Algorithm 
Components 

Ablat
ed 
Compon
ent 

To
tal 
Cost 
($10^
6) 

SAID
I 
(hours/y
ear) 

DRE 
Accommod
ation (MW) 

Volt
age 
Violati
ons 
(Nodes
) 

None 
(Full 
Model) 

7.2
3 

4.8 12.3 0 

Remo
ve 
Fuzzy 
Constrai
nts 

7.5
8 

5.3 11.1 3 

Remo
ve Grey 
Weighti
ng 

7.4
1 

5.0 11.5 1 

Remo
ve Both 

7.9
2 

5.7 10.2 5 

This ablation study is designed to isolate and analyze 
the impact of key components within the hybrid algorithm. 

The removal of fuzzy constraints leads to a 4.8% increase 
in total cost and an additional 3 nodes experiencing 
voltage violations, clearly highlighting the crucial role 
these constraints play in balancing rigidity and flexibility 
within the algorithm. Removing the grey weighting 
results in a 2.5% increase in cost and a 10.6% reduction in 
Distributed Renewable Energy (DRE) accommodation, 
verifying the necessity of data-driven objective 
prioritization. The full model significantly outperforms all 
ablated versions. When both components are removed, 
there is a 9.5% higher cost and a 21.9% lower DRE 
integration, confirming the synergistic effect of the fuzzy-
grey integration in enhancing the algorithm's overall 
performance. 

Table 5. Performance Under Different DRE 
Penetration Levels 

DRE 
Penetratio
n (%) 

Tot
al Cost 
($10^6
) 

A
SAI 
(%) 

Volt
age 
Stabilit
y 
Margin 
(%) 

Computati
onal Time 
(min) 

20 6.85 99
.93 

18.7 10.2 

30 
(Nominal) 

7.23 99
.95 

15.4 12.5 

40 7.71 99
.96 

12.3 15.8 

50 8.34 99
.97 

9.5 19.3 

This table delves into the performance of the algorithm 
under different levels of Distributed Renewable Energy 
(DRE) penetration. As the DRE penetration increases 
from 20% to 50%, the total cost rises by 21.7%. 
Meanwhile, the System Average Interruption Duration 
Index (SAIDI) improves by 0.4%, and the voltage 
stability margin decreases by 49.2%. The computational 
time grows linearly with the increasing complexity of 
DRE, yet the hybrid algorithm manages to maintain 
acceptable efficiency, taking 19.3 minutes at 50% DRE 
penetration. Notably, at 30% DRE penetration, which 
represents the nominal case, the model strikes an optimal 
balance between cost ($7.23 million) and reliability 
(SAIDI of 99.95%), thereby validating its practical 
applicability in high-renewable grids. 
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4.5. Qualitative Insights 

The results validate the theoretical hypotheses by 
demonstrating that: 

Fuzzy-Grey Synergy: The integration of fuzzy logic 
(handling stakeholder preferences) and grey systems 
(data-efficient forecasting) creates a robust planning 
framework that outperforms single-theory approaches in 
both deterministic and uncertain environments. 

Uncertainty Handling Hierarchy: The hybrid model 
systematically addresses three uncertainty levels: 

Data Layer: Grey GM(1,1) improves load forecasting 
accuracy by 19% (MAPE: 4.2% vs. D-GA's 5.2%). 

Constraint Layer: Fuzzy membership functions convert 
vague requirements into flexible constraints, reducing 
over-constraint by 30% compared to crisp models. 

Objective Layer: GRA-derived weights ensure that 
multi-objective aggregation reflects real-world priorities, 
as evident in the 25% higher weight assigned to "DRE 
accommodation" in this high-renewable network. 

Figure 2. Cost-Reliability Pareto Front 

Figure 2 depicts the relationship between the total 
lifecycle cost and reliability under different algorithms or 
methods. The horizontal axis represents reliability (ASAI, 
%), while the vertical axis denotes the total lifecycle cost 
(in millions of US dollars). Five lines respectively 
represent the Hybrid Algorithm, Deterministic Genetic 
Algorithm (GA), Stochastic Scenario method, Fuzzy Only 
method, and Grey System Only method. For all these 
methods, the total lifecycle cost decreases as reliability 
increases. Additionally, an optimal solution is specifically 
marked on the graph: when the ASAI of the Hybrid 
Algorithm reaches 99.95%, the corresponding cost is 
$7.23 million, indicating the optimal cost achievable by 
this algorithm at this reliability level. 

Figure 3 illustrates the relationship between voltage 
deviation and the membership degree. The horizontal axis 
represents the voltage deviation from the nominal value 
(in percentage), while the vertical axis represents the 
membership degree. The graph is divided into an 
acceptable zone (where the voltage deviation ranges from 

-5% to 5% and the membership degree is 1) and transition
zones on both sides. The red dashed line represents the
acceptance threshold (λ = 0.8). Node A has a voltage
deviation of +9.5% with a membership degree of 0.85,
and Node B has a voltage deviation of -8.2% with a
membership degree of 0.82. These two nodes are marked
by red and green dots respectively in the transition zones,
reflecting their voltage deviation and membership degree
conditions.

Figure 3. Voltage Membership Values under 
Combined Uncertainty 

5. Discussion

The hybrid algorithm’s superiority stems from its dual 
capability to model fuzzy stakeholder preferences and 
leverage sparse data. Fuzzy constraints, such as 
trapezoidal voltage intervals, allow practical trade-offs 
(e.g., tolerating ±9.5% voltage deviations with 0.85 
membership under combined uncertainty, Figure 3), 
avoiding the over-conservatism of crisp models that 
increase costs by 4.7% when constraints are rigidified. 
Grey system components—GM(1,1) forecasting and GRA 
weighting—prove indispensable in data-scarce 
environments, with ablation studies showing that 
removing grey weighting increases costs by 2.8% and 
SAIDI by 1.5%. 

Comparative analysis highlights the limitations of 
single-theory approaches: fuzzy-only models lack data-
driven prioritization (cost +2.8%, SAIDI +1.5%), while 
grey-only models fail to handle qualitative requirements 
(DRE accommodation −7.8%, voltage violations +3 
nodes). The hybrid framework’s Pareto dominance in 
cost-reliability trade-offs (Figure 2)—achieving the 
lowest cost ($7.23M) at the highest reliability (ASAI 
99.95%)—underscores its ability to reconcile conflicting 
goals, a critical advantage in real-world planning. 

However, the study has limitations. The model focuses 
on single-energy systems, neglecting multi-energy 
interactions (e.g., heat-electricity coupling) that could 
further enhance DRE integration. Additionally, fixed 
membership functions may not adapt to real-time 
stakeholder shifts (e.g., dynamic reliability demands 
during peak hours), and computational complexity 
increases with network scale (e.g., 500-node grids require 
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≥10 hours of computation). Future research should 
explore adaptive fuzzy systems, parallel optimization 
algorithms, and multi-energy integration to enhance 
scalability and real-world applicability. 

6. Conclusion

This research presents a groundbreaking hybrid 
framework for distribution network planning under 
uncertainty, integrating fuzzy logic and grey system 
theory to address qualitative fuzziness and quantitative 
data scarcity. By converting vague stakeholder needs into 
fuzzy constraints (e.g., voltage membership ≥0.8) and 
enhancing data efficiency via GM(1,1) forecasting 
(MAPE 4.2%) and GRA weighting, the algorithm 
achieves significant improvements in economic efficiency 
(19% cost reduction), reliability (17% SAIDI 
improvement), and flexibility (24% DRE accommodation 
growth) compared to traditional methods. Its resilience 
under extreme uncertainties—with performance 
deviations controlled within 5–6%—makes it a vital tool 
for grids in regions with high DRE penetration (e.g., 
≥30% capacity) and sparse monitoring infrastructure. 

The study’s theoretical contributions lie in the 
synergistic integration of fuzzy-grey methodologies, 
offering a unified approach to handle "soft" (stakeholder 
preferences) and "hard" (data scarcity) uncertainties. 
Practically, it provides utilities with a science-based 
framework to design resilient, future-proof grids that 
balance technical rigor with stakeholder flexibility. 
Moving forward, extending the model to multi-energy 
systems, real-time optimization, and large-scale network 
applications (e.g., ≥1000 nodes) will be key to unlocking 
its full potential in the global transition toward 
decarbonized, adaptive power systems. 
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