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Abstract

INTRODUCTION: Accurately locating faults in intelligent substation communication networks is crucial for power grid
safety. Existing methods fail to fully capture dynamic fault characteristic evolution and complex dependencies within
network topologies

OBJECTIVES: This paper aims to (1) model spatiotemporal fault features in communication networks, (2) enhance fault
pattern capture through multi-view learning, and (3) improve fault location accuracy.

METHODS: We propose a multi-view spatiotemporal dynamic graph network. First, a multi-view graph neural network

models spatial dependencies via cross-view comparative learning using topological and attribute data. Second, a gated
recurrent unit with dynamic time windows extracts temporal evolution trends, focusing on local fault patterns and short-term
dependencies.

RESULTS: Evaluations on a 220kV substation communication network show our method achieves higher fault location
accuracy versus baselines, effectively capturing spatiotemporal fault characteristics.

CONCLUSION: The proposed framework addresses dynamic fault evolution and topological dependencies, providing a
robust solution for intelligent substation fault diagnosis.
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1. Introduction

The communication network of intelligent substations
undertakes the responsibility of data transmission. By
integrating various intelligent devices such as sensors,
switches, and protection devices, it realizes the
collection, monitoring, control, and information
exchange of power communication data, which is crucial
to ensuring the safe, stable, and efficient operation of the
power grid [1,4]. The current intelligent substation
communication network adopts a "three-layer two-
network" topological structure, where nodes represent
devices in the intelligent substation, such as intelligent
terminals, merging units, switches, protection and
measurement and control devices [2,6]. Edges represent
the connection relationships between devices, i.e.,
network communication links, which can be fiber optic
Ethernet or other forms of communication media for
transmitting data and control signals [9]. When a fault
occurs in the communication network, it generates
massive alarm information, and accurately and quickly
identifying the fault location from these data is a
challenge.

Traditional fault location methods rely on the
experience of operation and maintenance personnel, who
judge based on message records and traffic monitoring in
network packet analyzers. Reference [3] proposes a fault
diagnosis method for generic object-oriented substation
events (GOOSE), which manually builds a heuristic
algorithm to decouple the fault characteristics of the
intelligent substation packet loop analyzer, but the
workload is huge and complex, making it difficult to
determine the fault location in a short time. Reference [4]
proposes a packet transmission path search algorithm to
cross-locate the alarm information occurrence area on
the communication link, which effectively improves the
positioning efficiency of the potential fault area, but it
relies on relatively single fault characteristic information
and is difficult to accurately determine the exact fault
location.

With the continuous development of the smart grid
field, artificial intelligence technology has become an
important force to solve the problem of fault location in
intelligent  substation = communication  networks.
References [5,7] use deep belief networks to
automatically learn the fault state characteristics of the
original time-domain signals of the communication
network, realizing fault location in intelligent substation
communication networks and power grid fault type
identification, respectively. Reference [8] first constructs
a fault diagnosis model based on graph neural networks
(GNNs) from a graph perspective, combining the
topological mapping structure of the substation
configuration description (SCD) with the information
representation of device nodes, to capture the complex
relationships between nodes in the intelligent substation

communication network, so as to effectively locate and
identify faulty devices. Reference [10] proposes a fault
location method based on graph filter neural networks,
which enriches the representation form of fault
characteristic information of different nodes through
redundant detection of the fault state of the
communication network.

Although these deep learning methods have improved
the accuracy of fault location to a certain extent, they
focus on modeling and analyzing the fault state of the
communication network at a specific time point [9,24],
ignoring the spatiotemporal evolution characteristics of
communication network faults and the dynamic changes
of fault states in the time dimension, resulting in the
inability to identify the early signs of faults. Moreover,
the intelligent substation communication network
generates various types of data, including device status,
communication link quality, alarm signals, etc. [12-13],
which can reflect the operating status of the network
from different perspectives. Currently, these fault
location methods focus on single-view learning, limiting
the understanding of data complexity and diversity, and
thus unable to mine more comprehensive fault
characteristic information.

Aiming at the problems existing in the current fault
location methods for intelligent substation
communication networks, this paper proposes a
spatiotemporal graph association perception analysis
method for intelligent substation communication
network fault location to achieve real-time and accurate
monitoring and early warning of faulty devices. The
method first constructs three views based on the
topological structure and characteristic attributes of the
communication network to deeply explore the multi-
view characteristics of faults in the communication
network. Then, a multi-view graph neural network
module is designed to deeply mine graph information
through cross-view contrastive learning and capture the
spatial dependencies of different views in the
communication network. At the same time, a gated
recurrent unit with a temporal dynamic window is
proposed in the time dimension to capture the dynamic
changes of communication network faults and adaptively
assign weights to the importance of different time steps,
thus effectively revealing the spatiotemporal evolution
characteristics of faults and enhancing the ability to
perceive early signs of faults. By fusing multi-view
spatiotemporal information, this paper effectively
improves the fault location effect, and the effectiveness
of the method is verified through case studies.

2. Intelligent Substation Communication
Network

The intelligent substation communication network
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transmits information based on the "three-layer two-
network" architecture. The three layers include the
station control layer, bay layer, and process layer, and the
two networks include the station control layer network
and process layer network. The station control layer
focuses on optimizing functional configuration and
software applications to enable related devices to have
more functions; the bay layer is responsible for changing
the communication mode to improve the communication
compatibility between devices; the process layer realizes
collaboration through new devices and packet
transmission; the station control layer network focuses
on transmitting data between the station control layer and
bay layer, providing two types of services and reports for
corresponding data upload; the process layer network is
unique to intelligent substations, transmitting packets for
information interaction between process layer and bay
layer devices. The clear layering and reasonable
networking lay a solid foundation for efficient
communication, functional collaboration, and safe and
stable operation of devices in the intelligent substation.
The "three-layer two-network" architecture enables
the intelligent substation communication system to
connect a large number of secondary devices. These
secondary intelligent devices can be divided into data
sources, relay devices, destinations, and connection
components according to their functions, and are
distributed in the process layer, bay layer, and station
control layer to complete information interaction of their
respective functions, forming a complex graph-like
topological structure,  usually  expressed  as

G=(V,E,X), where V ={v,v,,...,v,} represents
the set of
nodes, E ={e,e,,...,e;} represents the set of links

secondary device

between secondary devices,

and X ={x,X,,..,Xy} represents the status

information of secondary devices, recording the switch
status of merging units, protection devices, intelligent
terminals, and measurement and control devices. The

feature X of any device node in the graph can be
defined as follows:

X = [XMU_l’XMU_2"""XMU_n1’
XP_],X X

P 25 AP 2>

X 1, X X

IT 259 <M T p3>
XMCJ7XMC729""’XMC7n4]

n,,n,,n,,n, are the total numbers of merging units,

(M

protection  devices, intelligent terminals, and
measurement and control devices connected to the device,

respectively. X, Xp, X7, X,,c represent their

transceiving packet information status. As shown in

Equation (1), when a communication fault occurs in the
intelligent substation system, the operating status of the
device and the network topology change, causing the
power flow distribution in the communication network to
change, and an alarm signal is issued simultaneously.
Since when a device fails, the associated devices will all
generate alarm signals, making it difficult to locate the
faulty device. As shown in Figure 1, the optical fiber
disconnection in the line bay causes local devices to
generate alarm signals. Alarm signals are usually divided
into switch quantity abnormal alarms, sampling
abnormal alarms, and device abnormal alarms [20],
where switch quantity abnormal alarms mainly include
GOOSE-related alarm signals, sampling abnormal
alarms mainly include sampled values (SV)-related
alarm signals, and device abnormal alarms mainly
include alarm signals when the device self-check is
abnormal.

® ® (Measuremen
(Merging Unit) (Intelligent Terminal ) (Switch)  tand Control Equipment )
~7 GOOSE SV -
Figure 1. The schematic diagram of the range of

communication fault alarm signals in substations

This paper uses graph neural networks (GNNs) to
perform representation learning on the graph structure of
the intelligent substation communication network. GNN
is a deep learning model for processing graph structure
data [11], which mainly uses the neighborhood message
passing and aggregation mechanism to enable each node
to collect information from its neighboring nodes and
then update its own state. The specific learning process
is shown in Equation (2):,

h, =TRAN (AGG (x; | VjeN())) (2)
where N(7)is the set of one-hop neighbor nodes of node

L, hi represents the potential representation of the i -

th device node output by the GNN network, AGG is the
aggregation operator for integrating the neighborhood
information of the node, and TRAN is the nonlinear

EAI Endorsed Transactions on
Energy Web
| Volume 12| 2025 |

2 EA s



L. Ye et al.

parameterization of the transformation function.

3. Spatiotemporal Multi-View Dynamic
Graph Model for Fault Location

3.1.Construction of Multi-View
Communication Network Graph

Considering the complexity and diversity of the
topological  network  structure constructed by
communication device connections, single-view learning
may lead to the omission of key fault discrimination
information.  To  enhance the comprehensive
understanding of the fault status and behavior of the
communication network, this paper constructs an
original view, an attribute view, and a global structure
view.

Original View Construction: Since the SCD
configuration file defines the physical connection
relationship of substation communication devices, this
paper parses the SCD configuration file to obtain the
adjacency matrix of the communication network at the
current moment according to the method in references
[3,8]. The receiving and transmitting packet information
of device ports can usually describe their operating
conditions. This paper uses Equation (1) to encode the
packet information of merging units, protection devices,

/

+

H H
5 GNN = N
GNN H,
>

and measurement and control
X, is
the attribute feature of the 1i-th device node, and the
calculation process is shown in Equation (3):

X, = Encoding(zXMU i +ZXP J
i=1 IS : ®)

13 ny
+ZXIT7m +kZXMC7k)
m=1 =1

Attribute View Construction: GNN requires that the
input graph data follows the homogeneity assumption
[14], that is, the attribute features of connected nodes in
the graph are similar. However, communication faults
sometimes cause the attribute differences between
connected device nodes in the network. An attribute

matrix X is used to construct a Kk -nearest neighbor
graph to capture the attribute similarity relationship
between device nodes, which is regarded as the attribute

V. and V, are given,

i J
and the cosine distance is used to measure their
relationship in the attribute view, as shown in Equation

(4):

intelligent terminals,

devices as the attribute features of the devices.

view. Suppose two device nodes
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Figure 2. Overall framework for fault location of communication network in intelligent substation

where € is a non-negative hyperparameter that can

< EAI

control the number of neighbors of each node to ensure
that the obtained new adjacency matrix satisfies sparsity.
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Global Structure View Construction: The neighborhood
aggregation and transmission mechanism adopted by
graph network learning can only understand the low-
order local connection relationship. Obtaining high-
order node information requires providing a more
comprehensive global perspective to help better
understand the structure and function of the entire
network and take measures in advance to prevent fault
propagation. Although stacking more GNN layers can be
used, it will cause the over-smoothing problem [16], that
is, the originally distinguishable fault nodes will
gradually absorb the characteristics of adjacent healthy
nodes, resulting in smaller and smaller feature
differences. To effectively capture global structure
information, this paper uses a graph diffusion strategy as
an enhanced method to obtain the global structure view,
and the specific process is shown in Equation (5):

K
A=) M- 4 (5)
k=0

A" represents the K -th power of the adjacency matrix
of the communication network graph, meaning that each

node can capture information from Kk -hop neighbor

devices, and A is a hyperparameter coefficient used to
control the diffusion amplitude of each step. This paper
accumulates adjacency matrices of different orders,
which can consider both close and distant neighbor
nodes, thereby capturing multi-scale information and
more comprehensively evaluating the propagation range
and impact degree of faulty device nodes.

As shown in shown in Figure 2, The original graph,
attribute graph, and structure graph constructed are

respectively marked asG,, G,, and G,. At the same

a>
time, three independent graph encoders are constructed,
and the constructed communication network views are
input into the corresponding encoder modules for
learning. Each encoder consists of two layers of GNN,
and the specific process is shown in Equation (6):

H() = AOG(AOXWOI)WOZ
H,=Ac(AXWHW’ (6)
H, = Aoc(AXW W}

where, H_ ,H, ,H_re the learned representations of
communication nodes under three different views, G
represents the activation function, and W; R VVa R VVS are the

learnable weight parameter matrices in the three views,
respectively. Considering that each view provides
different factors for capturing faults in the substation
communication network, their contributions to fault
location may be different. This paper introduces an
attention mechanism to adjust the weights of each view
to balance their influences, ensuring that the model can

obtain the best fault location performance on different
views. The final node representation of the substation
communication network in the spatial dimension is
shown in Equation (7):

H= ZYiHi:Vi =0

v = exp(B; H, +b,) @
" D exp(BTH, +b))

Jj=o,a,s

where 7Y is the attention coefficient assigned to the
representations of the three graph views, which is non-

negative. B is a learnable vector used to assign

appropriate weights to each element in the feature matrix,
so that the model can capture the spatial information
most relevant to the communication network fault nodes.

In the multi-view graph space of the substation
communication network, it is necessary to measure the
generality and difference of the representation of
communication device nodes under different views.
Contrastive learning is an unsupervised learning method
[18] that only needs to use the structure and features of
the data itself for learning, suitable for scenarios with
lack of label data. This paper designs two contrastive
loss functions using the idea of contrastive learning. One
is the loss function based on information noise
contrastive estimation (InfoNCE) [19], which ensures
that the representations of the same node under different
views are as close as possible; the other is the loss
function based on triplets [21], which is used to enhance
the difference between different views. The InfoNCE
method constructs positive sample pairs (different views
from the same node) and negative sample pairs (the same
view from different nodes), allowing the model to learn
universal feature representations. Given any device

node V, in the communication network, its InfoNCE
loss under the original, attribute, and structure views is
shown in Equation (8):
ecv(H,,(V),Ha(V))/T
Cine (V) =—log—; +
Zew(Hu(V,-),Ha(Vn)/r

n=l1

RUAGVRIOE ®)
—log—;
Z P HH, ()

n=1

where @(+)is the cosine distance function for measuring

the proximity of two node representations, N is the
number of communication device nodes, and T is the
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temperature coefficient for adjusting the similarity
distribution and convergence speed.

To enhance the difference between different views,
this paper constructs a view triplet, taking the node of
the original view as the anchor point, the attribute view
as the positive sample, and the structure view as the
negative sample, and the positions of the latter two can
be swapped. The optimization goal of the view triplet
loss function is to make the distance between the target
node sample and the normal node sample as small as
possible, while the distance between the target node
sample and the fault node sample as large as possible,
thereby increasing the difference between positive and
negative samples. The triplet loss of any device

node V; in the given communication network can be

obtained by Equation (9):
1, (V) = max(e(H,(V),H,(V)) -

o(H,(V), H.(V)) + margin0)

where margin is a hyperparameter used to control the
distance interval between positive and negative views.

3.2. Temporal Dynamic Communication
Network Learning

The temporal dynamic evolution process of the
intelligent substation communication network can be
described as a set of discrete graph sequences
o ={G,G*..G"y , G
communication network topology graph at time t. Multi-
view graph contrastive learning can only model the
spatial dependencies of communication device nodes at
a certain moment and cannot capture the dynamic
characteristics of the communication network changing
over time. To capture this dynamic change, this paper
designs a gated recurrent unit (GRU) that fuses temporal
context information. Through its gating mechanism, it
effectively controls the flow of information and captures
the long-term and short-term dependencies of
communication device node representations in the time
dimension. This paper constructs a temporal dynamic
window to allow each node in the communication
network to extract its short-term state information within
a specific time period. The attention mechanism is used
to weight the temporal context information of the local
window, highlighting key information, thereby focusing
on capturing local, rapidly changing fault patterns and
short-term dependencies, as shown in Equation (10):

represents the

¢ =h bR
T T
e;z,i =r1 tanh(q, (C;,,i) ) (10)
l T
h! = softmax(e;)(c; )
where hl.' represents the spatial representation of the i -

th device node at time f, ® is the window size, T
and (, are trainable parameters to optimize the
attention weight scores of the window context, and
finally, the temporal context information about the i -th

device is integrated into hl.t , further enhancing the

model's ability to capture short-term dependencies.

GRU is a common variant of recurrent neural networks,
which  performs well in modeling long-term
dependencies through a unique gating mechanism. This
paper uses GRU to integrate the historical state of nodes
into the comprehensive representation at the current
moment, retaining the long-term  dependency
information before the fault occurs, while quickly
responding to the short-term changes when the fault
occurs, thereby capturing the dynamic evolution trend of
faults, as shown in Equation (11):

P =o(W,[27,H')
R'=o(W,-[2",H"])

Z' =tanh(W, -[R'xZ""',H'"))
Z'=(1-P)xZ"' +P'xZ'

(11)

where P’ and R’ are the outputs of the update gate
and reset gate of GRU at time t, respectively, H' is the

input fusing the short-term context information at time 7,

and finally, the embedding representation 7' at

time [ is obtained. This state can perceive the early sign
features of faults, provide key information for fault
location, and realize accurate prediction and timely
response to faults.
Accurate Fault Location for Intelligent Substation
Communication Network

The goal of fault location is to calculate the anomaly
score of nodes in the dynamic graph; the higher the score,
the greater the probability of a fault. Considering the
high cost of obtaining fault labels, this paper designs an
end-to-end training framework for unsupervised
optimization, which learns the fault locator without any
fault sample labels in the training set. The specific
process is that after obtaining the embedding
representations of graph nodes at each moment of the
communication network dynamic graph, two fully

connected layer-based decoders &, and &, are added to
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reconstruct their topological structure and node
attributes in the original view. The reconstruction loss is
defined as shown in Equation (12):

e A= AP+ X=X (2)

~ T
where A’ =c(M'M") represents the reconstructed
M'=E(Z") .

and X' =& (Z') is the reconstructed node attributes

adjacency matrix at time [ ,

at time t. Finally, the overall loss function of this paper
is defined as shown in Equation (13):

Cor =Line g + lree (13)

For a device node in the intelligent substation
communication network, if its original structure and
attribute information can be approximated by the
reconstruction decoder, the probability of it being faulty
is very low. On the contrary, if the graph network pattern
cannot be well reconstructed, it means that it does not
conform to the pattern of most normal nodes, indicating
that the node may have a fault. The node can be marked
as a potential fault point for further inspection and
maintenance. The fault locator in this paper uses the
reconstruction error to calculate the anomaly score of
each communication device node. The calculation
process is shown in Equation (14):

s(V)=(-o)|la/ —a; |’ +o||x; =% |° (14)

Trip

where O is an important control parameter to balance
the influence of structure reconstruction and attribute
reconstruction. The algorithm flow of the fault location
method proposed in this paper is summarized in
Algorithm 1.

4. Experiments and Analysis

4.1. Experimental Setup

Taking the 220kV intelligent substation communication
network as an example, this paper deeply analyzes the
proposed communication network fault location method
to verify the effectiveness of the proposed method. For
the dataset, this paper collects the packet information
flow of the communication network in the operating state
of the intelligent substation every 30 minutes and parses
the packet files to obtain the subscription relationship
between devices, collecting about 20,000 pieces of
temporal communication network data, recording the
communication situation in the bus and transformer bay
areas, among which 2,406 samples are labeled as fault
types. 70% of the total data samples are used as the
training set, 10% as the validation set, and 20% as the
test set. To comprehensively evaluate the effect of the

proposed method, six baseline methods are selected for
a comprehensive comparative study. The parameter
settings of these baselines are as follows:

Table 1. Experimental Comparison Results 1

Time Model AUC Fl-score = GMean
RNN 53.53 23.51 23.34
LSTM 60.63 20.12 34.56
DBN 69.35 56.52 33.93
T=30min ProDNN 76.81 58.56 38.10

SCGNN 83.39 61.63 43.82
TADDY 86.22 69.27 50.04

Ours 91.63 78.28 59.50

RNN 35.64 14.46 10.86

LSTM 41.60 18.34 12.53

DBN 56.23 39.38 19.06

T=60min  ProDNN  60.11 55.73 26.27
SCGNN 77.40 60.53 55.99

TADDY 82.62 63.08 56.58

Ours 89.24 74.53 62.81

RNN 25.64 10.46 8.03

LSTM 21.60 12.34 9.54

DBN 39.23 19.38 11.89

T=120min  ProDNN 54.11 43.73 28.23

SCGNN 62.40 50.53 39.66
TADDY 70.62 59.08 43.30

Ours 82.24 65.53 58.21

RNN: A unidirectional RNN model is adopted, with the
number of model layers set to 2, the number of hidden
layer neurons set to 48, no dropout is used to avoid
excessive information loss, and the tanh activation
function is used.

LSTM: A bidirectional LSTM model is adopted to
extract bilateral information from the dynamic
communication network time series. The number of
model layers is set to 2, the number of hidden layer
neurons is set to 96, the dropout value is set to 0.3, and
the bias parameter is set to True.

DBN: Three layers of restricted Boltzmann machines are
stacked, the number of neurons in the two hidden layers
is set to 64 and 128, respectively, the learning rate is set
to 0.001, and a momentum of 0.8 is introduced during
training to accelerate the training speed and improve the
stability of the model.

ProGNN: Two layers of graph neural networks are
stacked, each layer of the graph network uses a mean
aggregation function, the hidden layer parameter is 128,
the learning rate decay range is set between 0.001 and
0.1, a dynamic learning rate scheduling strategy is
adopted, the batch-size is set to 16, and SGD stochastic
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gradient descent is used as the optimizer during training.
SCGNN: High-order Chebyshev polynomials are used to
approximate the graph convolution kernel, the order of
each polynomial is set to 3, the number of filters is 36,
the max-pooling mechanism is used in the convolution
process, and L2 regularization is used to limit the size of
parameters to prevent model overfitting.

TADDY: A 4-layer graph attention neural network is
adopted, each layer of the attention network uses LSTM
as the aggregation function to capture remote
information, the dropout value is 0.5, the batch-size is
set to 64, and the three hidden layer parameters are 256,
64, and 256 neurons, respectively.

Algorithm 1: Substation Communication
Network Fault Location Algorithm Flow

Input:  Dynamic

D= {GZ}ITZI

graph  training  set

» Number of training epochs E ,
Neighbor sampling size for attribute view €,
Diffusion hops for structural view K ,

Temporal window size @.

Output: Graph Node Fault Discrimination
Score.

1. Random parameter initialization

2. for epoch=1 to E do:
3. for G'=(4,XDe{G'}, do:

4, GGG «G'

5. H'« (H.,H!,H!), GNN Learn
and fuse spatial representations from
multi-view graphs

6. H «[H™,. H" H'], Capture

short-term temporal information within
window size using attention mechanisms
7. Z'«[z"',H'], Utilize GRU
units to capture both long- and short-term
spatiotemporal historical information

8. (A4, X)) < &,(Z),8,(Z)
Decoding in both attribute and structural

spaces
9. Compute fault scores for each graph node

based on reconstruction tasks S(Z)
10. Compute the loss function ¢, and

backpropagate to update parameters
11.  end for

12. end for

Table 2. Experimental Comparison Results 2

Size Model AUC Fl-score = GMean
RNN 47.73 32.20 24.49
LSTM 56.29 38.61 31.84
DBN 61.69 42.30 35.22
5% ProDNN 63.33 43.72 43.72

SCGNN 69.57 47.25 46.71
TADDY 73.29 52.48 51.06

Ours 79.58 59.60 54.18

RNN 50.29 35.56 29.47

LSTM 62.77 44.92 30.57

DBN 65.65 48.18 37.32

20% ProDNN 74.22 55.19 55.19

SCGNN 77.53 52.82 51.93
TADDY 78.27 58.99 53.37

Ours 82.24 60.32 56.80

RNN 53.60 42.54 32.48

LSTM 69.60 49.34 38.72

DBN 74.67 51.56 42.24

40% ProDNN 80.84 58.30 43.45

SCGNN 83.48 60.53 49.11
TADDY 85.46 59.38 59.38

Ours 86.90 62.24 58.36

4.2. Experimental Results

Tables 1 and 2 provide a detailed comparison with the
six baseline methods to show their fault location
performance. Table 1 shows the fault prediction results
of these baseline methods for predicting faults within the
next 30 minutes, 60 minutes, and 120 minutes. Table 2
shows the fault prediction results of these baseline
methods under 5%, 20%, and 40% training sets. Through
in-depth comparative analysis of the experimental
results of these methods, the following conclusions can
be drawn: First, the method proposed in this study
outperforms all baseline methods in the three main
evaluation indicators of accuracy (5.92%), recall
(3.62%), and F1 score (2.50%). This remarkable result
not only proves the effectiveness of the method in fault
location of substation communication networks but also
highlights its potential and value in practical applications.
This advantage may stem from the fact that the method
can better capture and utilize the complex patterns and
relationships in the data. Second, we note that recurrent
neural networks (RNN) and long short-term memory
networks (LSTM) perform the worst in fault location
performance. After analysis, we believe this is mainly
because they rely on time series data and can only extract
time features, unable to effectively use the valuable
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spatial information in the graph topology, which limits
their performance in complex network fault prediction.
In contrast, graph-based prediction methods such as deep
belief networks (DBN) and property GNN (ProGNN),
while considering the spatial dependencies between
nodes, lose time information during processing. The loss
of this information may lead to their inability to
accurately capture the dynamic changes of fault
occurrence, thereby affecting the accuracy of prediction.

Table 3. Multi view comparison results

View AUC Fl-score = GMean
I 79.04 63.86 51.73
11 75.83 60.45 48.39
11 71.53 58.34 47.42
I+I11 86.32 77.74 55.62
I+II1 84.03 75.33 54.79
TI-+I1T 83.76 74.69 52.81
[-+IT+ITT 91.63 78.28 59.50

Finally, compared with self-attention coding GNN
(SCGNN) and transformer anomaly detection dynamic
graphs (TADDY), the method proposed in this paper
performs well in long-distance prediction and location.
This outstanding performance indicates that the method
proposed in this paper can effectively combine time
dimension and spatial topology information, which is
particularly important for long-distance prediction. In
summary, the experimental data in the two tables jointly
support the experimental conclusions. Table 1 focuses on
the time dimension, showing the fault prediction
capabilities of each baseline method for short-term,
medium-term, and long-term faults, allowing us to
understand the performance of each method under
different time spans. Table 2 starts from the proportion
of the training set, reflecting the adaptability and
performance changes of each method under different
data volumes. The method of this study can organically
combine the time dimension and spatial topology
information, with obvious advantages in long-distance
prediction and location, which is reflected in the long-
term prediction of Table 1 and different data volumes of
Table 2. It is analyzed that the performance of each
baseline method is limited due to the defect in the use of
spatiotemporal information, highlighting the advantage
of this method in combining spatiotemporal information,
which is crucial for timely responding to and handling
faults in the substation communication network.

4.3. Performance Comparison of
Spatiotemporal Graph Networks

To evaluate the specific contribution of different views
to fault location performance, this paper constructs three
views: original view (I), attribute view (II), and structure
view (III), and sets up seven comparison groups. The
experimental results are summarized in Table 3. When
only any one of the three views is used, the accuracy, F1-
score, and GMean of fault location are lower than the
combination of two or three views. This finding
emphasizes the importance of multi-view analysis in
improving fault location performance. The original view
performs better for certain types of faults because it
directly presents the most authentic communication
mode of the intelligent substation communication
network, truthfully reflecting the path and frequency of
information transmission between devices and the real-
time operating status of devices. For faults directly
related to the original communication link, such as faults
caused by line connection interruption or communication
protocol abnormality, the original view can quickly
locate the fault location and accurately identify the fault
type by virtue of its direct presentation of the original
network status. The attribute view focuses on capturing
the similarity of device attributes in the network. When
faults related to device attributes occur, such as faults
caused by device aging or performance mismatch, the
attribute view can quickly find abnormal devices by
comparing the differences between device attributes,
thereby improving the fault identification ability. The
structure view focuses on mining the dependency of the
network structure, which can analyze the structural
features such as the position of devices in the network
topology and connection relationships. When faults are
caused by unreasonable network structures, such as
unbalanced loads or key node failures, the structure view
can accurately identify the root cause of the fault based
on its in-depth understanding of the network structure,
thereby improving the identification accuracy of such
faults. In addition, the experiment also found that
different fault types have different sensitivities to view
combinations, which provides a basis for designing more
optimized view combinations for specific fault types in
the future. By optimizing the view combination for
different fault types, we can further improve the
accuracy and efficiency of fault location. This
experiment not only verifies the effectiveness of the
multi-view graph network in fault location but also
reveals the specific contribution of different views to
fault location performance. These findings provide
valuable guidance for future research and practice,
especially in designing and optimizing fault location
systems, on how to select appropriate view combinations
according to specific fault types and network
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characteristics. By comprehensively using different
views, a more powerful and flexible fault location
system can be constructed to cope with the increasingly
complex fault detection challenges in intelligent
substation communication networks.
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4.4. Analysis of Key Parameters for Multi-

View Construction

This paper deeply discusses the specific impact of two
key hyperparameters in constructing the attribute view
and structure view on fault location performance.
Through the experimental results shown in Figure 3, the
influence of these parameters on the model performance
can be intuitively observed. First, as the number of node
neighbors decreases, the accuracy of fault location
increases. The reason for this phenomenon is that
reducing the number of neighbors helps faulty device
nodes establish closer connections with nodes with
similar attributes. This setting helps better follow the
homogeneity assumption in the graph learning process,
that is, similar nodes tend to be connected together, so
that the spatial attribute relationship between device
nodes can be more effectively captured. Second, the
experimental results show that the accuracy of fault
location increases with the increase of the diffusion
distance. This indicates that the ability to obtain high-
order node information is crucial for providing a more
comprehensive global perspective, which helps better
understand the structure and function of the entire
communication network. In this way, the model can more

accurately identify and locate potential fault points.
However, when the diffusion distance exceeds 4, the
performance improvement slows down. This is because
although the neighborhood aggregation mechanism of
the graph neural network enables each communication
node in the substation to diffuse and transmit information
to other communication nodes through edges, to a certain
extent, the increase of the diffusion distance allows the
node to collect more abundant and diverse information.
However, when the diffusion distance is excessively
increased, a series of negative effects will be brought. As
the diffusion distance continues to increase, a large
amount of information not directly related to the core
representation of the target communication node will
also pour in. In the actual operation scenario of the
substation, the processing capacity of each
communication node is limited. The input of too much
non-key information will cause a sharp increase in the
processing burden of the node, and a large amount of
computing resources will be consumed in processing
irrelevant information, resulting in a significant decrease
in information processing efficiency. Moreover, these
redundant information may also interfere with the
model's accurate capture of key information. In
applications such as substation fault diagnosis, the model
needs to accurately identify the information propagation
path and characteristics related to faults. However, the
noise of too much irrelevant information will cover up
the truly valuable fault signals, making it difficult for the
model to accurately determine the root cause and
propagation range of the fault, thus affecting the
accuracy and timeliness of fault diagnosis. In addition,
excessive information diffusion may also destroy the
originally reasonable information hierarchy in the graph
neural network, making it difficult to distinguish the
importance of node information at different levels, and
finally leading to the degradation of model performance,
unable to give full play to the advantages of the graph
neural network in the substation communication network.
In summary, the adjustment of these two
hyperparameters has a significant impact on the
performance of fault location, which not only improves
the accuracy of fault detection but also enhances the
adaptability and robustness of the model to complex
network environments.
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4.5. Analysis of Temporal Dynamic

Network

To study the impact of the temporal dynamic network on
capturing the time-dimensional information of
communication device node representations, especially
the role of the dynamic window in fault location
performance. First, we studied whether the increase of
the dynamic window affects the fault location
performance. To evaluate this, we plotted the training
accuracy and loss with and without the temporal dynamic
window, as shown in Figure 4. From the trend of these
curves, it can be seen that after introducing the temporal
dynamic window, the training accuracy of the model has
been more significantly improved, and the loss decreases
faster. This phenomenon proves that the temporal
dynamic window can effectively focus on capturing local,
rapidly changing fault patterns and short-term
dependencies. In this way, the model can more quickly
learn the dynamic changes when a fault occurs, thereby
improving the accuracy of fault detection. Second, we
analyzed the impact of the dynamic window size on fault

prediction and location accuracy through Figure 5. Based
on the experimental results, we can conclude that when
the dynamic window is small, the accuracy of the model
in predicting long-distance faults decreases. This may be
because the small window cannot fully capture the
complete characteristics of the fault pattern, resulting in
the model losing important time series information
during the learning process. The loss of this information
may affect the model's ability to understand and predict
the changes before and after the fault occurs. However,
when the dynamic window size increases to a certain
extent, the accuracy rebounds. This is because the larger
window provides more time series information, helping
the model better understand the long-term dependencies
of the fault pattern.

5. Conclusions

Aiming at the problem of fault location in intelligent
substation communication networks, this paper proposes
a fault location method for intelligent substation
communication networks based on a multi-view
spatiotemporal dynamic graph network, which
overcomes the insufficient utilization of the dynamic
changes of fault characteristics over time and the
effective capture of complex dependencies in the
communication network topology. The main work and
conclusions are as follows:

Starting from the topological structure and
characteristic attributes of the intelligent substation
communication network, three views are constructed
respectively to deeply explore the multi-view
characteristics of faults in the communication network
and enhance the comprehensive understanding of the
fault status and behavior of the communication network.

A multi-view spatial graph neural network is
constructed in the spatial dimension, and cross-view
contrastive learning is used to model the spatial
dependencies of the communication network. Through
the detailed extraction and deep fusion of features from
different views, the complex spatial dependencies
between nodes in the communication network are
accurately captured, which not only effectively enhances
the differences between views but also fully excavates
the complementarity, realizes the complementary
advantages of information, and comprehensively
improves the ability to understand and represent the
network spatial structure.

In the time dimension, the gated recurrent unit and
self-attention mechanism are combined to accurately
control the flow direction and intensity of temporal
context information, thereby effectively capturing the
long-term and short-term dependencies of
communication device node representations in the time
dimension, providing key information for fault location,
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and realizing accurate prediction and timely response to
faults.

This paper aims to reveal the spatiotemporal evolution
characteristics of intelligent substation communication
network faults and verifies that fusing multi-view
spatiotemporal information can better enhance the
ability to perceive early signs of faults, making the fault
location accuracy reach 91.3%. At present, fault location
mainly focuses on common types, and the ability to
handle complex faults is still insufficient. In the future,
the characteristics of complex faults will be deeply
studied, the model architecture will be improved, and the
ability to locate complex faults will be enhanced.
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