
EAI Endorsed Transactions  
on Energy Web Research Article 

1 

Intelligent substation communication network fault 
location method based on dynamic spatiotemporal graph 
association perception 
Ligang Ye1,*, Wenzhang Li1, Jing Zhao1 and Yuanyuan Liu2 

1State Grid Inner Mongolia Eastern Power Co., LTD, Inner Mongolia ultra high pressure Branch Xilinhot, 026000, China 
2State Grid Information & Telecommunication Group Co., LTD Beijing, China 

Abstract 

INTRODUCTION: Accurately locating faults in intelligent substation communication networks is crucial for power grid 
safety. Existing methods fail to fully capture dynamic fault characteristic evolution and complex dependencies within 
network topologies 
OBJECTIVES: This paper aims to (1) model spatiotemporal fault features in communication networks, (2) enhance fault 
pattern capture through multi-view learning, and (3) improve fault location accuracy. 
METHODS: We propose a multi-view spatiotemporal dynamic graph network. First, a multi-view graph neural network 
models spatial dependencies via cross-view comparative learning using topological and attribute data. Second, a gated 
recurrent unit with dynamic time windows extracts temporal evolution trends, focusing on local fault patterns and short-term 
dependencies. 
RESULTS: Evaluations on a 220kV substation communication network show our method achieves higher fault location 
accuracy versus baselines, effectively capturing spatiotemporal fault characteristics. 
CONCLUSION: The proposed framework addresses dynamic fault evolution and topological dependencies, providing a 
robust solution for intelligent substation fault diagnosis. 
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1. Introduction

The communication network of intelligent substations 
undertakes the responsibility of data transmission. By 
integrating various intelligent devices such as sensors, 
switches, and protection devices, it realizes the 
collection, monitoring, control, and information 
exchange of power communication data, which is crucial 
to ensuring the safe, stable, and efficient operation of the 
power grid [1,4]. The current intelligent substation 
communication network adopts a "three-layer two-
network" topological structure, where nodes represent 
devices in the intelligent substation, such as intelligent 
terminals, merging units, switches, protection and 
measurement and control devices [2,6]. Edges represent 
the connection relationships between devices, i.e., 
network communication links, which can be fiber optic 
Ethernet or other forms of communication media for 
transmitting data and control signals [9]. When a fault 
occurs in the communication network, it generates 
massive alarm information, and accurately and quickly 
identifying the fault location from these data is a 
challenge. 

Traditional fault location methods rely on the 
experience of operation and maintenance personnel, who 
judge based on message records and traffic monitoring in 
network packet analyzers. Reference [3] proposes a fault 
diagnosis method for generic object-oriented substation 
events (GOOSE), which manually builds a heuristic 
algorithm to decouple the fault characteristics of the 
intelligent substation packet loop analyzer, but the 
workload is huge and complex, making it difficult to 
determine the fault location in a short time. Reference [4] 
proposes a packet transmission path search algorithm to 
cross-locate the alarm information occurrence area on 
the communication link, which effectively improves the 
positioning efficiency of the potential fault area, but it 
relies on relatively single fault characteristic information 
and is difficult to accurately determine the exact fault 
location. 

With the continuous development of the smart grid 
field, artificial intelligence technology has become an 
important force to solve the problem of fault location in 
intelligent substation communication networks. 
References [5,7] use deep belief networks to 
automatically learn the fault state characteristics of the 
original time-domain signals of the communication 
network, realizing fault location in intelligent substation 
communication networks and power grid fault type 
identification, respectively. Reference [8] first constructs 
a fault diagnosis model based on graph neural networks 
(GNNs) from a graph perspective, combining the 
topological mapping structure of the substation 
configuration description (SCD) with the information 
representation of device nodes, to capture the complex 
relationships between nodes in the intelligent substation 

communication network, so as to effectively locate and 
identify faulty devices. Reference [10] proposes a fault 
location method based on graph filter neural networks, 
which enriches the representation form of fault 
characteristic information of different nodes through 
redundant detection of the fault state of the 
communication network. 

Although these deep learning methods have improved 
the accuracy of fault location to a certain extent, they 
focus on modeling and analyzing the fault state of the 
communication network at a specific time point [9,24], 
ignoring the spatiotemporal evolution characteristics of 
communication network faults and the dynamic changes 
of fault states in the time dimension, resulting in the 
inability to identify the early signs of faults. Moreover, 
the intelligent substation communication network 
generates various types of data, including device status, 
communication link quality, alarm signals, etc. [12-13], 
which can reflect the operating status of the network 
from different perspectives. Currently, these fault 
location methods focus on single-view learning, limiting 
the understanding of data complexity and diversity, and 
thus unable to mine more comprehensive fault 
characteristic information. 

Aiming at the problems existing in the current fault 
location methods for intelligent substation 
communication networks, this paper proposes a 
spatiotemporal graph association perception analysis 
method for intelligent substation communication 
network fault location to achieve real-time and accurate 
monitoring and early warning of faulty devices. The 
method first constructs three views based on the 
topological structure and characteristic attributes of the 
communication network to deeply explore the multi-
view characteristics of faults in the communication 
network. Then, a multi-view graph neural network 
module is designed to deeply mine graph information 
through cross-view contrastive learning and capture the 
spatial dependencies of different views in the 
communication network. At the same time, a gated 
recurrent unit with a temporal dynamic window is 
proposed in the time dimension to capture the dynamic 
changes of communication network faults and adaptively 
assign weights to the importance of different time steps, 
thus effectively revealing the spatiotemporal evolution 
characteristics of faults and enhancing the ability to 
perceive early signs of faults. By fusing multi-view 
spatiotemporal information, this paper effectively 
improves the fault location effect, and the effectiveness 
of the method is verified through case studies. 

2. Intelligent Substation Communication
Network

The intelligent substation communication network 
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transmits information based on the "three-layer two-
network" architecture. The three layers include the 
station control layer, bay layer, and process layer, and the 
two networks include the station control layer network 
and process layer network. The station control layer 
focuses on optimizing functional configuration and 
software applications to enable related devices to have 
more functions; the bay layer is responsible for changing 
the communication mode to improve the communication 
compatibility between devices; the process layer realizes 
collaboration through new devices and packet 
transmission; the station control layer network focuses 
on transmitting data between the station control layer and 
bay layer, providing two types of services and reports for 
corresponding data upload; the process layer network is 
unique to intelligent substations, transmitting packets for 
information interaction between process layer and bay 
layer devices. The clear layering and reasonable 
networking lay a solid foundation for efficient 
communication, functional collaboration, and safe and 
stable operation of devices in the intelligent substation. 

The "three-layer two-network" architecture enables 
the intelligent substation communication system to 
connect a large number of secondary devices. These 
secondary intelligent devices can be divided into data 
sources, relay devices, destinations, and connection 
components according to their functions, and are 
distributed in the process layer, bay layer, and station 
control layer to complete information interaction of their 
respective functions, forming a complex graph-like 
topological structure, usually expressed as

）（ XEVG ,,=  , where },...,,{ 21 NvvvV =  represents 
the set of secondary device 
nodes, },...,,{ 21 LeeeE =  represents the set of links 
between secondary devices, 
and },...,,{ 21 NxxxX =  represents the status 
information of secondary devices, recording the switch 
status of merging units, protection devices, intelligent 
terminals, and measurement and control devices. The 
feature X  of any device node in the graph can be 
defined as follows: 
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4321 ,,, nnnn  are the total numbers of merging units, 
protection devices, intelligent terminals, and 
measurement and control devices connected to the device, 
respectively. MCITPMU XXXX ,,,  represent their 
transceiving packet information status. As shown in 

Equation (1), when a communication fault occurs in the 
intelligent substation system, the operating status of the 
device and the network topology change, causing the 
power flow distribution in the communication network to 
change, and an alarm signal is issued simultaneously. 
Since when a device fails, the associated devices will all 
generate alarm signals, making it difficult to locate the 
faulty device. As shown in Figure 1, the optical fiber 
disconnection in the line bay causes local devices to 
generate alarm signals. Alarm signals are usually divided 
into switch quantity abnormal alarms, sampling 
abnormal alarms, and device abnormal alarms [20], 
where switch quantity abnormal alarms mainly include 
GOOSE-related alarm signals, sampling abnormal 
alarms mainly include sampled values (SV)-related 
alarm signals, and device abnormal alarms mainly 
include alarm signals when the device self-check is 
abnormal. 

Figure 1.  The schematic diagram of the range of 
communication fault alarm signals in substations 

This paper uses graph neural networks (GNNs) to 
perform representation learning on the graph structure of 
the intelligent substation communication network. GNN 
is a deep learning model for processing graph structure 
data [11], which mainly uses the neighborhood message 
passing and aggregation mechanism to enable each node 
to collect information from its neighboring nodes and 
then update its own state. The specific learning process 
is shown in Equation (2):。 

=ih TRAN(AGG( )(| ijx j Ν∈∀ ))  (2)

where )(iN is the set of one-hop neighbor nodes of node
i , ih  represents the potential representation of the i -
th device node output by the GNN network, AGG is the 
aggregation operator for integrating the neighborhood 
information of the node, and TRAN is the nonlinear 
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parameterization of the transformation function. 

3. Spatiotemporal Multi-View Dynamic
Graph Model for Fault Location

3.1. Construction of Multi-View 
Communication Network Graph 

Considering the complexity and diversity of the 
topological network structure constructed by 
communication device connections, single-view learning 
may lead to the omission of key fault discrimination 
information. To enhance the comprehensive 
understanding of the fault status and behavior of the 
communication network, this paper constructs an 
original view, an attribute view, and a global structure 
view. 

Original View Construction: Since the SCD 
configuration file defines the physical connection 
relationship of substation communication devices, this 
paper parses the SCD configuration file to obtain the 
adjacency matrix of the communication network at the 
current moment according to the method in references 
[3,8]. The receiving and transmitting packet information 
of device ports can usually describe their operating 
conditions. This paper uses Equation (1) to encode the 
packet information of merging units, protection devices, 

intelligent terminals, and measurement and control 
devices as the attribute features of the devices. iX  is 
the attribute feature of the i  -th device node, and the 
calculation process is shown in Equation (3): 
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Attribute View Construction: GNN requires that the 
input graph data follows the homogeneity assumption 
[14], that is, the attribute features of connected nodes in 
the graph are similar. However, communication faults 
sometimes cause the attribute differences between 
connected device nodes in the network. An attribute 
matrix X  is used to construct a k  -nearest neighbor 
graph to capture the attribute similarity relationship 
between device nodes, which is regarded as the attribute 
view. Suppose two device nodes iV  and jV  are given, 
and the cosine distance is used to measure their 
relationship in the attribute view, as shown in Equation 
(4): 







ε≥
⋅

−
=

0
||||

1a
ji

ji

ij XX
XX

A      (4) 

Figure 2.  Overall framework for fault location of communication network in intelligent substation

where ε  is a non-negative hyperparameter that can control the number of neighbors of each node to ensure 
that the obtained new adjacency matrix satisfies sparsity. 
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Global Structure View Construction: The neighborhood 
aggregation and transmission mechanism adopted by 
graph network learning can only understand the low-
order local connection relationship. Obtaining high-
order node information requires providing a more 
comprehensive global perspective to help better 
understand the structure and function of the entire 
network and take measures in advance to prevent fault 
propagation. Although stacking more GNN layers can be 
used, it will cause the over-smoothing problem [16], that 
is, the originally distinguishable fault nodes will 
gradually absorb the characteristics of adjacent healthy 
nodes, resulting in smaller and smaller feature 
differences. To effectively capture global structure 
information, this paper uses a graph diffusion strategy as 
an enhanced method to obtain the global structure view, 
and the specific process is shown in Equation (5): 

∑
=

λ−λ=
K

k

kk AA
0

s )1(  (5) 

kA represents the k -th power of the adjacency matrix 
of the communication network graph, meaning that each 
node can capture information from k  -hop neighbor 
devices, and λ  is a hyperparameter coefficient used to 
control the diffusion amplitude of each step. This paper 
accumulates adjacency matrices of different orders, 
which can consider both close and distant neighbor 
nodes, thereby capturing multi-scale information and 
more comprehensively evaluating the propagation range 
and impact degree of faulty device nodes. 

As shown in shown in Figure 2, The original graph, 
attribute graph, and structure graph constructed are 
respectively marked as oG  , aG  , and sG  . At the same 
time, three independent graph encoders are constructed, 
and the constructed communication network views are 
input into the corresponding encoder modules for 
learning. Each encoder consists of two layers of GNN, 
and the specific process is shown in Equation (6): 
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where， sao HHH ,,  re the learned representations of 
communication nodes under three different views, σ
represents the activation function, and sao WWW ,, are the 
learnable weight parameter matrices in the three views, 
respectively. Considering that each view provides 
different factors for capturing faults in the substation 
communication network, their contributions to fault 
location may be different. This paper introduces an 
attention mechanism to adjust the weights of each view 
to balance their influences, ensuring that the model can 

obtain the best fault location performance on different 
views. The final node representation of the substation 
communication network in the spatial dimension is 
shown in Equation (7): 
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where γ  is the attention coefficient assigned to the 
representations of the three graph views, which is non-
negative. β  is a learnable vector used to assign 
appropriate weights to each element in the feature matrix, 
so that the model can capture the spatial information 
most relevant to the communication network fault nodes. 

In the multi-view graph space of the substation 
communication network, it is necessary to measure the 
generality and difference of the representation of 
communication device nodes under different views. 
Contrastive learning is an unsupervised learning method 
[18] that only needs to use the structure and features of
the data itself for learning, suitable for scenarios with
lack of label data. This paper designs two contrastive
loss functions using the idea of contrastive learning. One
is the loss function based on information noise
contrastive estimation (InfoNCE) [19], which ensures
that the representations of the same node under different
views are as close as possible; the other is the loss
function based on triplets [21], which is used to enhance
the difference between different views. The InfoNCE
method constructs positive sample pairs (different views
from the same node) and negative sample pairs (the same
view from different nodes), allowing the model to learn
universal feature representations. Given any device
node iV  in the communication network, its InfoNCE 
loss under the original, attribute, and structure views is 
shown in Equation (8): 
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where )(⋅ϕ is the cosine distance function for measuring 
the proximity of two node representations, N is the 
number of communication device nodes, and τ  is the 
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temperature coefficient for adjusting the similarity 
distribution and convergence speed. 

To enhance the difference between different views, 
this paper constructs a view triplet, taking the node of 
the original view as the anchor point, the attribute view 
as the positive sample, and the structure view as the 
negative sample, and the positions of the latter two can 
be swapped. The optimization goal of the view triplet 
loss function is to make the distance between the target 
node sample and the normal node sample as small as 
possible, while the distance between the target node 
sample and the fault node sample as large as possible, 
thereby increasing the difference between positive and 
negative samples. The triplet loss of any device 
node iV  in the given communication network can be 
obtained by Equation (9): 

)0,margin)))(),((
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where margin is a hyperparameter used to control the 
distance interval between positive and negative views. 

3.2. Temporal Dynamic Communication 
Network Learning 

The temporal dynamic evolution process of the 
intelligent substation communication network can be 
described as a set of discrete graph sequences 

},...,,{ 21 TGGG=Φ ，
tG  represents the 

communication network topology graph at time t. Multi-
view graph contrastive learning can only model the 
spatial dependencies of communication device nodes at 
a certain moment and cannot capture the dynamic 
characteristics of the communication network changing 
over time. To capture this dynamic change, this paper 
designs a gated recurrent unit (GRU) that fuses temporal 
context information. Through its gating mechanism, it 
effectively controls the flow of information and captures 
the long-term and short-term dependencies of 
communication device node representations in the time 
dimension. This paper constructs a temporal dynamic 
window to allow each node in the communication 
network to extract its short-term state information within 
a specific time period. The attention mechanism is used 
to weight the temporal context information of the local 
window, highlighting key information, thereby focusing 
on capturing local, rapidly changing fault patterns and 
short-term dependencies, as shown in Equation (10): 
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where t
ih  represents the spatial representation of the i -

th device node at time t  , ω  is the window size, r
and hq  are trainable parameters to optimize the 
attention weight scores of the window context, and 
finally, the temporal context information about the i -th 
device is integrated into t

iĥ  , further enhancing the 
model's ability to capture short-term dependencies. 

GRU is a common variant of recurrent neural networks, 
which performs well in modeling long-term 
dependencies through a unique gating mechanism. This 
paper uses GRU to integrate the historical state of nodes 
into the comprehensive representation at the current 
moment, retaining the long-term dependency 
information before the fault occurs, while quickly 
responding to the short-term changes when the fault 
occurs, thereby capturing the dynamic evolution trend of 
faults, as shown in Equation (11): 
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where tP  and tR  are the outputs of the update gate 

and reset gate of GRU at time t, respectively, tĤ  is the 
input fusing the short-term context information at time t , 
and finally, the embedding representation tZ  at 
time t  is obtained. This state can perceive the early sign 
features of faults, provide key information for fault 
location, and realize accurate prediction and timely 
response to faults. 
Accurate Fault Location for Intelligent Substation 
Communication Network 

The goal of fault location is to calculate the anomaly 
score of nodes in the dynamic graph; the higher the score, 
the greater the probability of a fault. Considering the 
high cost of obtaining fault labels, this paper designs an 
end-to-end training framework for unsupervised 
optimization, which learns the fault locator without any 
fault sample labels in the training set. The specific 
process is that after obtaining the embedding 
representations of graph nodes at each moment of the 
communication network dynamic graph, two fully 
connected layer-based decoders sξ  and aξ  are added to 
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reconstruct their topological structure and node 
attributes in the original view. The reconstruction loss is 
defined as shown in Equation (12): 

22
Re ||ˆ||||ˆ|| tttt

c XXAA −+−=   (12) 

where )(ˆ Tttt MMA σ=  represents the reconstructed

adjacency matrix at time t  , )( t
s

t ZM ξ=  , 

and )(ˆ t
a

t ZX ξ=  is the reconstructed node attributes 
at time t. Finally, the overall loss function of this paper 
is defined as shown in Equation (13): 

cTripINCall Re ++=
     

(13) 
For a device node in the intelligent substation 
communication network, if its original structure and 
attribute information can be approximated by the 
reconstruction decoder, the probability of it being faulty 
is very low. On the contrary, if the graph network pattern 
cannot be well reconstructed, it means that it does not 
conform to the pattern of most normal nodes, indicating 
that the node may have a fault. The node can be marked 
as a potential fault point for further inspection and 
maintenance. The fault locator in this paper uses the 
reconstruction error to calculate the anomaly score of 
each communication device node. The calculation 
process is shown in Equation (14): 

22 ||ˆ||||ˆ||)1()( t
i

t
i

t
i

t
ii xxaaVs −α+−α−=   (14) 

where α  is an important control parameter to balance 
the influence of structure reconstruction and attribute 
reconstruction. The algorithm flow of the fault location 
method proposed in this paper is summarized in 
Algorithm 1. 

4. Experiments and Analysis

4.1. Experimental Setup 

Taking the 220kV intelligent substation communication 
network as an example, this paper deeply analyzes the 
proposed communication network fault location method 
to verify the effectiveness of the proposed method. For 
the dataset, this paper collects the packet information 
flow of the communication network in the operating state 
of the intelligent substation every 30 minutes and parses 
the packet files to obtain the subscription relationship 
between devices, collecting about 20,000 pieces of 
temporal communication network data, recording the 
communication situation in the bus and transformer bay 
areas, among which 2,406 samples are labeled as fault 
types. 70% of the total data samples are used as the 
training set, 10% as the validation set, and 20% as the 
test set. To comprehensively evaluate the effect of the 

proposed method, six baseline methods are selected for 
a comprehensive comparative study. The parameter 
settings of these baselines are as follows: 

Table 1. Experimental Comparison Results 1 

Time Model AUC F1-score GMean

T=30min 

RNN 53.53 23.51 23.34 
LSTM 60.63 20.12 34.56 
DBN 69.35 56.52 33.93 

ProDNN 76.81 58.56 38.10 
SCGNN 83.39 61.63 43.82 
TADDY 86.22 69.27 50.04 

Ours 91.63 78.28 59.50 

T=60min 

RNN 35.64 14.46 10.86 
LSTM 41.60 18.34 12.53 
DBN 56.23 39.38 19.06 

ProDNN 60.11 55.73 26.27 
SCGNN 77.40 60.53 55.99 
TADDY 82.62 63.08 56.58 

Ours 89.24 74.53 62.81 

T=120min 

RNN 25.64 10.46 8.03 
LSTM 21.60 12.34 9.54 
DBN 39.23 19.38 11.89 

ProDNN 54.11 43.73 28.23 
SCGNN 62.40 50.53 39.66 
TADDY 70.62 59.08 43.30 

Ours 82.24 65.53 58.21 

RNN: A unidirectional RNN model is adopted, with the 
number of model layers set to 2, the number of hidden 
layer neurons set to 48, no dropout is used to avoid 
excessive information loss, and the tanh activation 
function is used. 
LSTM: A bidirectional LSTM model is adopted to 
extract bilateral information from the dynamic 
communication network time series. The number of 
model layers is set to 2, the number of hidden layer 
neurons is set to 96, the dropout value is set to 0.3, and 
the bias parameter is set to True. 
DBN: Three layers of restricted Boltzmann machines are 
stacked, the number of neurons in the two hidden layers 
is set to 64 and 128, respectively, the learning rate is set 
to 0.001, and a momentum of 0.8 is introduced during 
training to accelerate the training speed and improve the 
stability of the model. 
ProGNN: Two layers of graph neural networks are 
stacked, each layer of the graph network uses a mean 
aggregation function, the hidden layer parameter is 128, 
the learning rate decay range is set between 0.001 and 
0.1, a dynamic learning rate scheduling strategy is 
adopted, the batch-size is set to 16, and SGD stochastic 
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gradient descent is used as the optimizer during training. 
SCGNN: High-order Chebyshev polynomials are used to 
approximate the graph convolution kernel, the order of 
each polynomial is set to 3, the number of filters is 36, 
the max-pooling mechanism is used in the convolution 
process, and L2 regularization is used to limit the size of 
parameters to prevent model overfitting. 
TADDY: A 4-layer graph attention neural network is 
adopted, each layer of the attention network uses LSTM 
as the aggregation function to capture remote 
information, the dropout value is 0.5, the batch-size is 
set to 64, and the three hidden layer parameters are 256, 
64, and 256 neurons, respectively. 

Algorithm 1: Substation Communication 
Network Fault Location Algorithm Flow
Input: Dynamic graph training set 

T
t

tG 1}{ ==Φ
，Number of training epochs E ,

Neighbor sampling size for attribute view ε ,
Diffusion hops for structural view K ,
Temporal window size ω .
Output: Graph Node Fault Discrimination 
Score. 
1. Random parameter initialization

2. for 1=epoch  to E  do：
3. for T

t
tttt GXAG 1}{, =∈= ）（  do：

4.     tt
s

t
a

t
o GGGG ←,,

5. ),,( t
s

t
a

t
o

t HHHH ← ，GNN Learn 
and fuse spatial representations from 
multi-view graphs
6. ],,...,[ˆ 1 ttwtt HHHH −−← ,Capture
short-term temporal information within
window size using attention mechanisms
7. ]ˆ,[ 1 ttt HZZ −← ，Utilize GRU
units to capture both long- and short-term
spatiotemporal historical information
8. )(),()ˆ,ˆ( t

a
t

s
tt ZZXA ξξ← ，

Decoding in both attribute and structural 
spaces 
9. Compute fault scores for each graph node

based on reconstruction tasks )(is
10. Compute the loss function all   and

backpropagate to update parameters 
11. end for
12. end for

Table 2. Experimental Comparison Results 2 

Size Model AUC F1-score GMean

5% 

RNN 47.73 32.20 24.49 
LSTM 56.29 38.61 31.84 
DBN 61.69 42.30 35.22 

ProDNN 63.33 43.72 43.72 
SCGNN 69.57 47.25 46.71 
TADDY 73.29 52.48 51.06 

Ours 79.58 59.60 54.18 

20% 

RNN 50.29 35.56 29.47 
LSTM 62.77 44.92 30.57 
DBN 65.65 48.18 37.32 

ProDNN 74.22 55.19 55.19 
SCGNN 77.53 52.82 51.93 
TADDY 78.27 58.99 53.37 

Ours 82.24 60.32 56.80 

40% 

RNN 53.60 42.54 32.48 
LSTM 69.60 49.34 38.72 
DBN 74.67 51.56 42.24 

ProDNN 80.84 58.30 43.45 
SCGNN 83.48 60.53 49.11 
TADDY 85.46 59.38 59.38 

Ours 86.90 62.24 58.36 

4.2. Experimental Results 

Tables 1 and 2 provide a detailed comparison with the 
six baseline methods to show their fault location 
performance. Table 1 shows the fault prediction results 
of these baseline methods for predicting faults within the 
next 30 minutes, 60 minutes, and 120 minutes. Table 2 
shows the fault prediction results of these baseline 
methods under 5%, 20%, and 40% training sets. Through 
in-depth comparative analysis of the experimental 
results of these methods, the following conclusions can 
be drawn: First, the method proposed in this study 
outperforms all baseline methods in the three main 
evaluation indicators of accuracy (5.92%), recall 
(3.62%), and F1 score (2.50%). This remarkable result 
not only proves the effectiveness of the method in fault 
location of substation communication networks but also 
highlights its potential and value in practical applications. 
This advantage may stem from the fact that the method 
can better capture and utilize the complex patterns and 
relationships in the data. Second, we note that recurrent 
neural networks (RNN) and long short-term memory 
networks (LSTM) perform the worst in fault location 
performance. After analysis, we believe this is mainly 
because they rely on time series data and can only extract 
time features, unable to effectively use the valuable 
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spatial information in the graph topology, which limits 
their performance in complex network fault prediction. 
In contrast, graph-based prediction methods such as deep 
belief networks (DBN) and property GNN (ProGNN), 
while considering the spatial dependencies between 
nodes, lose time information during processing. The loss 
of this information may lead to their inability to 
accurately capture the dynamic changes of fault 
occurrence, thereby affecting the accuracy of prediction. 

Table 3. Multi view comparison results 

View AUC F1-score GMean 
I 79.04 63.86 51.73 
II 75.83 60.45 48.39 
III 71.53 58.34 47.42 

I+II 86.32 77.74 55.62 
I+III 84.03 75.33 54.79 
II+III 83.76 74.69 52.81 

I+II+III 91.63 78.28 59.50 

Finally, compared with self-attention coding GNN 
(SCGNN) and transformer anomaly detection dynamic 
graphs (TADDY), the method proposed in this paper 
performs well in long-distance prediction and location. 
This outstanding performance indicates that the method 
proposed in this paper can effectively combine time 
dimension and spatial topology information, which is 
particularly important for long-distance prediction. In 
summary, the experimental data in the two tables jointly 
support the experimental conclusions. Table 1 focuses on 
the time dimension, showing the fault prediction 
capabilities of each baseline method for short-term, 
medium-term, and long-term faults, allowing us to 
understand the performance of each method under 
different time spans. Table 2 starts from the proportion 
of the training set, reflecting the adaptability and 
performance changes of each method under different 
data volumes. The method of this study can organically 
combine the time dimension and spatial topology 
information, with obvious advantages in long-distance 
prediction and location, which is reflected in the long-
term prediction of Table 1 and different data volumes of 
Table 2. It is analyzed that the performance of each 
baseline method is limited due to the defect in the use of 
spatiotemporal information, highlighting the advantage 
of this method in combining spatiotemporal information, 
which is crucial for timely responding to and handling 
faults in the substation communication network. 

4.3. Performance Comparison of 
Spatiotemporal Graph Networks 

To evaluate the specific contribution of different views 
to fault location performance, this paper constructs three 
views: original view (I), attribute view (II), and structure 
view (III), and sets up seven comparison groups. The 
experimental results are summarized in Table 3. When 
only any one of the three views is used, the accuracy, F1-
score, and GMean of fault location are lower than the 
combination of two or three views. This finding 
emphasizes the importance of multi-view analysis in 
improving fault location performance. The original view 
performs better for certain types of faults because it 
directly presents the most authentic communication 
mode of the intelligent substation communication 
network, truthfully reflecting the path and frequency of 
information transmission between devices and the real-
time operating status of devices. For faults directly 
related to the original communication link, such as faults 
caused by line connection interruption or communication 
protocol abnormality, the original view can quickly 
locate the fault location and accurately identify the fault 
type by virtue of its direct presentation of the original 
network status. The attribute view focuses on capturing 
the similarity of device attributes in the network. When 
faults related to device attributes occur, such as faults 
caused by device aging or performance mismatch, the 
attribute view can quickly find abnormal devices by 
comparing the differences between device attributes, 
thereby improving the fault identification ability. The 
structure view focuses on mining the dependency of the 
network structure, which can analyze the structural 
features such as the position of devices in the network 
topology and connection relationships. When faults are 
caused by unreasonable network structures, such as 
unbalanced loads or key node failures, the structure view 
can accurately identify the root cause of the fault based 
on its in-depth understanding of the network structure, 
thereby improving the identification accuracy of such 
faults. In addition, the experiment also found that 
different fault types have different sensitivities to view 
combinations, which provides a basis for designing more 
optimized view combinations for specific fault types in 
the future. By optimizing the view combination for 
different fault types, we can further improve the 
accuracy and efficiency of fault location. This 
experiment not only verifies the effectiveness of the 
multi-view graph network in fault location but also 
reveals the specific contribution of different views to 
fault location performance. These findings provide 
valuable guidance for future research and practice, 
especially in designing and optimizing fault location 
systems, on how to select appropriate view combinations 
according to specific fault types and network 
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characteristics. By comprehensively using different 
views, a more powerful and flexible fault location 
system can be constructed to cope with the increasingly 
complex fault detection challenges in intelligent 
substation communication networks. 

Figure 3.  The relationship between K and ε

4.4. Analysis of Key Parameters for Multi-
View Construction 

This paper deeply discusses the specific impact of two 
key hyperparameters in constructing the attribute view 
and structure view on fault location performance. 
Through the experimental results shown in Figure 3, the 
influence of these parameters on the model performance 
can be intuitively observed. First, as the number of node 
neighbors decreases, the accuracy of fault location 
increases. The reason for this phenomenon is that 
reducing the number of neighbors helps faulty device 
nodes establish closer connections with nodes with 
similar attributes. This setting helps better follow the 
homogeneity assumption in the graph learning process, 
that is, similar nodes tend to be connected together, so 
that the spatial attribute relationship between device 
nodes can be more effectively captured. Second, the 
experimental results show that the accuracy of fault 
location increases with the increase of the diffusion 
distance. This indicates that the ability to obtain high-
order node information is crucial for providing a more 
comprehensive global perspective, which helps better 
understand the structure and function of the entire 
communication network. In this way, the model can more 

accurately identify and locate potential fault points. 
However, when the diffusion distance exceeds 4, the 
performance improvement slows down. This is because 
although the neighborhood aggregation mechanism of 
the graph neural network enables each communication 
node in the substation to diffuse and transmit information 
to other communication nodes through edges, to a certain 
extent, the increase of the diffusion distance allows the 
node to collect more abundant and diverse information. 
However, when the diffusion distance is excessively 
increased, a series of negative effects will be brought. As 
the diffusion distance continues to increase, a large 
amount of information not directly related to the core 
representation of the target communication node will 
also pour in. In the actual operation scenario of the 
substation, the processing capacity of each 
communication node is limited. The input of too much 
non-key information will cause a sharp increase in the 
processing burden of the node, and a large amount of 
computing resources will be consumed in processing 
irrelevant information, resulting in a significant decrease 
in information processing efficiency. Moreover, these 
redundant information may also interfere with the 
model's accurate capture of key information. In 
applications such as substation fault diagnosis, the model 
needs to accurately identify the information propagation 
path and characteristics related to faults. However, the 
noise of too much irrelevant information will cover up 
the truly valuable fault signals, making it difficult for the 
model to accurately determine the root cause and 
propagation range of the fault, thus affecting the 
accuracy and timeliness of fault diagnosis. In addition, 
excessive information diffusion may also destroy the 
originally reasonable information hierarchy in the graph 
neural network, making it difficult to distinguish the 
importance of node information at different levels, and 
finally leading to the degradation of model performance, 
unable to give full play to the advantages of the graph 
neural network in the substation communication network. 
In summary, the adjustment of these two 
hyperparameters has a significant impact on the 
performance of fault location, which not only improves 
the accuracy of fault detection but also enhances the 
adaptability and robustness of the model to complex 
network environments. 
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Figure 4.  The Function of temporal dynamic window 

Figure 5.  The influence of window size 

4.5. Analysis of Temporal Dynamic 
Network 

To study the impact of the temporal dynamic network on 
capturing the time-dimensional information of 
communication device node representations, especially 
the role of the dynamic window in fault location 
performance. First, we studied whether the increase of 
the dynamic window affects the fault location 
performance. To evaluate this, we plotted the training 
accuracy and loss with and without the temporal dynamic 
window, as shown in Figure 4. From the trend of these 
curves, it can be seen that after introducing the temporal 
dynamic window, the training accuracy of the model has 
been more significantly improved, and the loss decreases 
faster. This phenomenon proves that the temporal 
dynamic window can effectively focus on capturing local, 
rapidly changing fault patterns and short-term 
dependencies. In this way, the model can more quickly 
learn the dynamic changes when a fault occurs, thereby 
improving the accuracy of fault detection. Second, we 
analyzed the impact of the dynamic window size on fault 

prediction and location accuracy through Figure 5. Based 
on the experimental results, we can conclude that when 
the dynamic window is small, the accuracy of the model 
in predicting long-distance faults decreases. This may be 
because the small window cannot fully capture the 
complete characteristics of the fault pattern, resulting in 
the model losing important time series information 
during the learning process. The loss of this information 
may affect the model's ability to understand and predict 
the changes before and after the fault occurs. However, 
when the dynamic window size increases to a certain 
extent, the accuracy rebounds. This is because the larger 
window provides more time series information, helping 
the model better understand the long-term dependencies 
of the fault pattern. 

5. Conclusions

Aiming at the problem of fault location in intelligent 
substation communication networks, this paper proposes 
a fault location method for intelligent substation 
communication networks based on a multi-view 
spatiotemporal dynamic graph network, which 
overcomes the insufficient utilization of the dynamic 
changes of fault characteristics over time and the 
effective capture of complex dependencies in the 
communication network topology. The main work and 
conclusions are as follows: 

Starting from the topological structure and 
characteristic attributes of the intelligent substation 
communication network, three views are constructed 
respectively to deeply explore the multi-view 
characteristics of faults in the communication network 
and enhance the comprehensive understanding of the 
fault status and behavior of the communication network. 

A multi-view spatial graph neural network is 
constructed in the spatial dimension, and cross-view 
contrastive learning is used to model the spatial 
dependencies of the communication network. Through 
the detailed extraction and deep fusion of features from 
different views, the complex spatial dependencies 
between nodes in the communication network are 
accurately captured, which not only effectively enhances 
the differences between views but also fully excavates 
the complementarity, realizes the complementary 
advantages of information, and comprehensively 
improves the ability to understand and represent the 
network spatial structure. 

In the time dimension, the gated recurrent unit and 
self-attention mechanism are combined to accurately 
control the flow direction and intensity of temporal 
context information, thereby effectively capturing the 
long-term and short-term dependencies of 
communication device node representations in the time 
dimension, providing key information for fault location, 
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and realizing accurate prediction and timely response to 
faults. 

This paper aims to reveal the spatiotemporal evolution 
characteristics of intelligent substation communication 
network faults and verifies that fusing multi-view 
spatiotemporal information can better enhance the 
ability to perceive early signs of faults, making the fault 
location accuracy reach 91.3%. At present, fault location 
mainly focuses on common types, and the ability to 
handle complex faults is still insufficient. In the future, 
the characteristics of complex faults will be deeply 
studied, the model architecture will be improved, and the 
ability to locate complex faults will be enhanced. 
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