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Abstract 

INTRODUCTION: Power system communication networks are essential for smart grid operations, enabling real-time 
monitoring and control. Disruptions at critical communication nodes can jeopardize grid stability and lead to cascading 
failures, highlighting the need for accurate reliability assessment of these vital components. However, traditional methods 
often overlook the complex, dynamic, and interdependent nature of modern communication infrastructures. 
OBJECTIVES: This paper aims to develop a precise and scalable methodology for assessing and enhancing the reliability 
of critical nodes in smart grid communication networks. 
METHODS: The proposed approach integrates probabilistic failure modeling, graph-theoretic analysis, and heuristic 
optimization. Key techniques include a newly designed Criticality Index (CI) accounting for failure probabilities, repair 
dynamics, and topological relevance; a Monte Carlo simulation framework to assess network behavior under stochastic 
disturbances; and a genetic algorithm (GA) for optimizing node reinforcement strategies. 
RESULTS: Experiments conducted on the IEEE-118 bus system demonstrate that the GA-CI methodology improves the 
Network Robustness Index by 12.45%, consistently outperforming baseline methods with acceptable computational 
efficiency. 
CONCLUSION: The proposed framework provides a robust and interpretable solution for reinforcing critical 
communication infrastructure in smart grids. It holds potential for broader application in the reliability assessment of other 
complex networked systems. 

1. Introduction

With the continuous advancement of smart 
grid technologies and the growing integration of 
distributed energy resources [1], power system 
communication networks have become 
indispensable for real-time control, monitoring, 
and protection of electrical infrastructure. These 
networks including interconnecting  

substations [2], control centres, and field devices serve as 
the digital nervous system of modern power systems. 
However, disruptions in communication [3], particularly 
at critical nodes, can compromise grid stability, delay 
control actions, and even trigger cascading failures across 
interconnected systems. Traditional approaches to 
evaluating communication network reliability have 
largely relied on physical redundancy [4], historical 
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failure statistics, or qualitative risk assessments. While 
these strategies offer basic reliability estimates [5], they 
often fail to account for the complex, dynamic, and 
topologically interdependent behaviors that characterize 
modern grid communication networks. Moreover, such 
approaches typically lack the precision and scalability 
necessary for pinpointing node-level vulnerabilities and 
making informed decisions about infrastructure 
reinforcement. 

To address these limitations, this paper presents a 
quantitative computational methodology for assessing and 
optimizing the reliability of communication nodes in 
power system networks, the framework is shown in 
Figure 1. The proposed framework integrates probabilistic 
failure modelling [6], graph-theoretic topological analysis, 
and heuristic optimization to provide a comprehensive 
and scalable approach to reliability assessment and 
enhancement. This methodology contributes the following 
innovations: (1) a quantitative reliability model that 
jointly considers node failure probability, repair 
dynamics, and structural significance within the network 
topology; (2) a Monte Carlo-based simulation engine to 
estimate system-level statistical behavior under stochastic 
node failures; and (3) a genetic algorithm-driven 
optimization strategy that identifies and reinforces critical 
nodes to enhance overall network robustness. Through 
extensive experiments conducted on a representative 
power grid communication network, the IEEE-118 bus 
system, we demonstrate the effectiveness of the proposed 
approach in improving both node-level reliability and 
system-wide fault tolerance, all while maintaining 
acceptable computational overhead. 

Figure 1. Probabilistic Failure Modeling for 
Communication Network Reliability Assessment and 

Optimization in Power Systems Research 
Framework 

 

2. Quantitative Reliability Modeling

To provide a systematic and accurate assessment of node 
reliability in power system communication networks, 
we develop a two-layer model that combines 
probabilistic failure analysis with topological 
vulnerability evaluation. 

2.1. Node Reliability Estimation 

The reliability of a communication node        is defined 
as the probability [7] that it operates without failure over a 
time interval . Assuming an exponential distribution 
[8] for time-to-failure—commonly used for electronic 
and networking equipment—the reliability function is 
given by: 

(1)

where  is the failure rate of node , and  is the 
observation time. This model reflects the memoryless 
nature of failure events and provides a tractable 
framework for reliability estimation. To incorporate 
recovery behavior [9], we introduce the Mean Time To 
Repair (MTTR), denoted as , which quantifies the 
average time required to restore a failed node. The 
availability of the node [10], capturing both failure and 
repair processes, is defined as: 

(2) 

Values for  and  can be obtained from 
operational logs, reliability databases, or manufacturer 
specifications. Together, these metrics provide a 
probabilistic characterization of each node’s operational 
performance. 

2.2. Topological Vulnerability and Criticality 
Assessment 

While failure probabilities capture physical reliability 
[11], they do not account for the topological importance 
of nodes within the communication network. To address 
this, we define a Criticality Index (CI) that reflects the 
structural impact of a node on network communication 
efficiency. Let represent the global efficiency of 

the intact network, and the efficiency after 
node  is removed. The global efficiency [12]  is 
computed as: 
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(3) 

where  is the shortest path length between node 
and node , and nn is the total number of nodes in the 
network graph. This metric evaluates the average 
efficiency of information exchange over the entire 
network. 

The Criticality Index [13] for node  is then defined as: 

(4) 

where  is a weight coefficient reflecting the node’s 
operational importance, such as its traffic load, control 
priority, or physical location. This index quantifies the 
degree to which the removal of node ii degrades the 
overall communication capability of the network. By 
combining the probabilistic model of failure and recovery 
with the structural analysis of topological criticality [14], 
this two-layer modeling framework provides a robust 
foundation for simulating failure scenarios and guiding 
reliability-oriented optimization strategies [15]. 

3. Quantitative Simulation and Heuristic
Optimization Framework

To evaluate and enhance the node-level reliability of 
power system communication networks, we propose a 
dual-stage approach comprising probabilistic simulation 
and combinatorial optimization. The framework integrates 
Monte Carlo-based reliability modeling with a genetic 
algorithm-based optimization scheme. 

3.1. Monte Carlo-Based Reliability 
Simulation 

The power communication network is modeled as a 
directed graph , where 

 represents the communication 
nodes and denotes the set of 
communication links. Each node  is associated with a 
failure rate  and a repair rate . The failure and repair 
processes are modeled as Poisson processes, i.e., 

At each simulation iteration , a random 
subset of nodes fails according to , and the network 

topology  is updated accordingly. We then compute the 
following reliability metrics: 
 Reachability Ratio (RR):

(5) 

where if there exists a path 

from to  in the failed graph 
, otherwise 0. 

 Average Path Length (APL):

(6) 

where  is the set of reachable node pairs in , and 

 is the shortest path length between  and . 
 Network Partition Index (NPI):

,

 To quantify the topological importance of each node , 
we define the Criticality Index (CI) as the expected drop 
in network efficiency upon its failure: 

Here,  denotes the graph with node  removed, 
and  is the global efficiency of the graph. 

3.2. Node Reinforcement Optimization via 
Genetic Algorithm 

Given the probabilistic vulnerability profile of each 
node, we formulate the reinforcement selection problem 
as a 0-1 knapsack optimization problem. The binary 
decision variable  indicates whether node 
is reinforced: 

 , 

Let  be the base reliability of node , and  be 
the gain in reliability after reinforcement. The improved 
node reliability becomes: 
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The objective is to maximize the weighted global 
reliability under a budget constraint: 

, 

 
where is the reinforcement cost of node , and BB 

is the total available budget. 
This problem is solved using a standard genetic 

algorithm with the following components: 
 Chromosome encoding: A binary vector 

 
 Fitness function:  
 Selection operator: Roulette wheel or tournament 

selection 
 Crossover operator: Uniform or one-point crossover 

with probability  
 Mutation operator: Bit-flip mutation with probability 

 
 Constraint handling: Penalize infeasible individuals 

using a penalty term 

 
The optimized reinforcement vector  indicates which 

nodes to reinforce to achieve maximal reliability gains 
under cost constraints. After optimization, a new round of 
Monte Carlo simulation is conducted to validate the 
system-wide improvements achieved by the selected 
reinforcement strategy. This integrated approach ensures 
that both topological criticality and probabilistic 
reliability are jointly considered in the node hardening 
process. 

4. Experimental Design and Results 
Analysis 

To comprehensively validate the proposed quantitative 
reliability assessment and optimization framework, we 
designed and conducted a set of in-depth experiments on a 
simulated power system communication network based 
on the IEEE-118 bus system. The experiments were 
aimed at evaluating the accuracy of node-level reliability 
estimation, the structural vulnerability captured by the 
Criticality Index (CI), and the effectiveness of the 
proposed genetic optimization strategy under various 
stress and configuration scenarios. 

4.1. Testbed Construction 

We extended the IEEE-118 bus system to include a 
representative communication network. Each bus node 
was mapped to a communication endpoint, forming a 118-
node undirected graph. Communication links were 
established based on typical SCADA and PMU 
deployment principles, resulting in 186 bidirectional 
links. 

For each communication node ii, the following 
parameters were defined: 
 Failure rate 

 
 Repair rate  
 Functional weight , reflecting 

traffic priority and operational sensitivity 

The shortest path matrix  was computed using 
Dijkstra’s algorithm for efficiency metrics. These 
parameters were used to compute the reliability function 

, availability , and CI score for each node. 

4.2. Multi-Stage Monte Carlo Simulation 

A multi-stage Monte Carlo simulation was designed to 
capture the probabilistic behavior of the communication 
network under random failures: 
 Stage 1: Reliability Estimation 

Over 10,000 simulation runs, each node's failure was 
sampled according to its exponential failure 
distribution. The average system availability and 
reliability degradation were recorded. 

 Stage 2: Cascading Impact Modeling 
For each failed node, the graph was reconstructed 
and metrics such as global efficiency, connectivity 
loss, and node isolation ratio were measured. A 
cascading threshold mechanism was introduced: if a 
node lost connections to more than 60% of its 
neighbors, it was considered failed in the next 
iteration. This allowed modeling of fault propagation 
through the network. 

 Stage 3: Criticality Reassessment 
After each round, the CI scores were recalculated 
based on the updated topology, providing dynamic 
feedback for node importance and supporting 
adaptive resilience planning. 

Figure 2 illustrates the probability density distribution 
of global efficiency across 10,000 Monte Carlo 
simulations of random node failures. The distribution 
exhibits a unimodal, approximately symmetric bell shape, 
indicating that the network's global efficiency consistently 
concentrates around a stable range despite random 
disruptions. The peak is centred around 0.45 to 0.5, 
suggesting that, in most failure scenarios, the network 
retains a moderate to high level of communication 
efficiency. The steeper left tail implies that significantly 
low efficiency events are rare, while moderate to slightly 
higher efficiency variations are more common. This 
statistical behaviour highlights the inherent robustness of 
the network topology and serves as a critical baseline for 
evaluating the effectiveness of reinforcement strategies 
aimed at improving resilience under random 
perturbations. 
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Figure 2. Distribution of global efficiency under 
Monte Carlo node failures (N = 10,000) 

4.3. Optimization Experiment and Heuristic 
Comparison 

The proposed Genetic Algorithm (GA)-based 
optimization strategy aimed to enhance the reliability of 
mm selected nodes by reducing their  and increasing 

within a fixed reinforcement budget BB. The objective 
was to maximize the Network Robustness Index (NRI): 

 
(7) 

 
The genetic algorithm used in this study was 

configured with a population size of 50, a crossover 
probability of 0.8, and a mutation probability of 0.05. The 
optimization process was allowed to run for a maximum 
of 200 generations, with early termination triggered if the 
Network Robustness Index (NRI) converged or exhibited 
stagnation over 20 consecutive generations. This 
configuration balances exploration and exploitation to 
ensure efficient convergence towards high-quality 
reinforcement strategies. 

Table 1 presents a comparative evaluation of five node 
reinforcement strategies in terms of their impact on the 
Network Robustness Index (NRI). The results clearly 
demonstrate the superiority of the proposed GA-CI 
method, which achieved the highest NRI improvement of 
12.45%, outperforming all baseline strategies with the 
lowest standard deviation (±0.33), indicating high 
consistency and robustness across trials. Random 
selection yielded the lowest NRI gain at 4.12%, 
highlighting the inefficiency of unguided reinforcement. 
Centrality-based heuristics showed moderate 
improvements, with degree and betweenness centrality 
achieving 7.83% and 8.05% gains respectively. While 
these strategies leverage local or path-based importance 
metrics, they lack a global optimization perspective.  

The greedy CI selection method improved performance to 
10.26%, benefiting from a more informed ranking of 
nodes, but still falling short of the proposed approach. In 
contrast, the GA-CI framework integrates topological 
awareness with evolutionary search, allowing it to explore 
a wider solution space while retaining critical node 
importance. 

Table 1. NRI improvement comparison under 
different selection strategies  

Method NRI ↑ (%) Std. Dev. 

Random Selection [16] 4.12 ±0.86 

Degree Centrality [17] 7.83 ±0.54 

Betweenness Centrality [17] 8.05 ±0.49 

Greedy CI Selection [18] 10.26 ±0.41 

Proposed GA-CI 12.45 ±0.33 

 
Figure 3 compares the convergence trends of the 

Network Robustness Index (NRI) across five different 
node reinforcement strategies over successive 
generations. All methods show a positive convergence 
trajectory, indicating that reinforcement strategies yield 
cumulative improvements in network robustness. 
Centrality-based methods (degree and betweenness) 
outperform random selection by providing steeper initial 
gains. Notably, the greedy CI-based method and the GA-
based CI optimization demonstrate superior performance, 
with the genetic algorithm achieving the highest final NRI 
value. The rapid ascent in early generations for GA 
optimization indicates its capacity for global search and 
efficient exploitation of structural information. These 
results underscore the importance of informed 
reinforcement strategies and suggest that optimization-
driven CI selection offers a promising approach for 
enhancing the resilience of complex networks under 
failure conditions. 
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Figure 3. Convergence of NRI under different node 

reinforcement strategies 

4.4 Sensitivity and Ablation Studies 

Sensitivity to Node Budget mm 
We varied the number of reinforced nodes from 5 to 30 
and measured the NRI gain. Results show diminishing 
returns after 20 nodes, suggesting cost-effectiveness 
trade-offs. Figure 4 presents the relationship between the 
number of reinforced nodes and the corresponding gain in 
Network Robustness Index (NRI). The curve exhibits a 
nonlinear increasing trend, demonstrating that NRI gain 
improves substantially with the initial reinforcement of a 
few key nodes, but the marginal returns gradually 
diminish as more nodes are added. This saturation 
behavior suggests that reinforcing a relatively small 
subset of strategically selected nodes yields the most 
significant robustness enhancement, while excessive 
reinforcement results in diminishing benefits. Such a 
pattern aligns with the principle of structural 
heterogeneity in complex networks, where a small 
proportion of critical nodes disproportionately contributes 
to overall robustness. This insight is particularly valuable 
for resource-constrained environments, where targeted 
reinforcement can maximize network resilience 
efficiently. The smoothness and monotonicity of the curve 
further validate the consistency and effectiveness of the 
reinforcement strategy employed in this study. 
 

 
Figure 4. NRI gain vs. number of reinforced nodes 

Sensitivity to Failure Distribution 
To assess the robustness of our proposed reliability 
estimation framework under varying statistical 
assumptions, we replaced the original exponential failure 
model with a Weibull distribution characterized by a 
shape parameter β = 1.5, which is commonly used to 
model aging or fatigue in infrastructure networks. The 
ranking of node criticality (CI) remained highly 
consistent, achieving a Spearman correlation coefficient 
of 0.951 when compared to the baseline exponential 
model. Furthermore, the overlap of the top-10 critical 
nodes reached 90%, demonstrating that the node 
importance estimation is largely invariant to moderate 
changes in the underlying failure distribution. These 
results suggest that the proposed approach maintains high 
reliability and structural awareness even under different 
probabilistic modeling assumptions, highlighting its 
practical robustness and generalizability in real-world 
applications where failure distributions may be uncertain 
or heterogeneous. 

Table 4. Statistical Robustness Under Different 
Failure Models 

Failure 

Distribution 

Spearman Rank 

Correlation (CI) 

Top-10 Node 

Overlap (%) 

Final 

NRI (%) 

Exponential 

(baseline) 
1.000 100 27.8 

Weibull (β = 

1.5) 
0.951 90 27.3 

 
Ablation: Without CI Guidance 
To validate the contribution of CI-based topological 
guidance within the genetic algorithm (GA), we 
conducted an ablation study by removing the CI 
component from the reinforcement node selection 
process. As a result, the final network robustness index 
(NRI) dropped from 27.8% to 24.7%, indicating a relative 
degradation of 3.1%. Additionally, the convergence 
behavior of the GA was adversely affected, requiring 
approximately 200 generations to reach stability 
compared to fewer than 150 generations with CI 
guidance. This performance decline confirms that 
incorporating structural information via CI not only 
improves the solution quality but also accelerates the 
optimization process. The ablation underscores the critical 
role of topological awareness in guiding reinforcement 
strategies and enhancing the effectiveness of evolutionary 
optimization in complex network environments. 
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Table 5. Impact of CI Guidance on GA Optimization 

Method Variant 
Final 

NRI (%) 

Convergence 

Generations 

Relative NRI 

Drop (%) 

GA with CI 

guidance (full) 
27.8 140 0.0 

GA without CI 

guidance 
24.7 200 3.1 

 
4.5 Visualization and Interpretability 

To support interpretability and actionable insights, we 
generated heatmaps of node-level CI values and 
reinforcement decisions. Figure 5 provides an intuitive 
heatmap representation of the node-level Criticality Index 
(CI) values across the network topology, with color 
gradients indicating the relative importance of each node. 
Warmer colors correspond to higher CI values, signifying 
nodes with greater influence on overall network 
robustness. The ten most critical nodes, as determined by 
the CI-based ranking, are distinctly marked using 
prominent visual cues (e.g., star-shaped markers or red 
circles), highlighting their selection for reinforcement. 
This visualization not only supports the analytical 
findings regarding node prioritization but also enables 
spatial insights into the distribution of structural 
vulnerabilities. The concentration of top-ranked nodes in 
specific regions may indicate network bottlenecks or 
clusters of high centralities, which are essential targets for 
robustness optimization.  
 
 

 

Figure 5. Node CI heatmap and final reinforcement 
distribution (top 10 nodes marked) 

5. Conclusions 

This paper presented a comprehensive quantitative 
framework for the reliability analysis and optimization of 
communication nodes in power system networks. By 
integrating probabilistic failure modelling with graph-
theoretic topological assessment, we developed a novel 
Criticality Index (CI) that effectively captures both the 
failure behavior and structural importance of individual 
nodes. The Monte Carlo-based simulation framework 
provided a robust tool to evaluate the stochastic impacts 
of node failures and the resulting network performance 
degradation under realistic operating conditions. 
Furthermore, we designed a heuristic optimization 
algorithm grounded in genetic principles, guided by the 
CI metric, to strategically reinforce critical nodes within 
budget constraints. Extensive experiments on a 
benchmark IEEE-118 bus communication network 
demonstrated that our approach significantly improves 
overall network reliability and fault tolerance, 
outperforming conventional selection methods such as 
degree centrality and betweenness centrality. Sensitivity 
and ablation analyses confirmed the robustness and 
necessity of incorporating topological criticality in the 
optimization process, while visualization tools enhanced 
the interpretability and practical applicability of our 
results. In future work, we plan to extend this 
methodology to dynamic, time-varying communication 
topologies and incorporate cyber-physical security 
considerations to further enhance the resilience of smart 
grid infrastructures. 
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