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Abstract 
As renewable energy generation is increasingly integrated into power grids worldwide, the random nature of renewable 
energy output poses significant challenges to the stability of power systems. Therefore, it is essential to accurately predict 
the output of renewable energy sources. In this paper, a dual decomposition algorithm based on variational mode decompo-
sition (VMD) and improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) is pro-
posed to decompose the original photovoltaic power sequence and combine the entropy values of the subsequences to obtain 
the predicted sequences for the high frequency and low frequency components. Then, different prediction models are used 
for the high-frequency and low-frequency sequences to predict the photovoltaic outputs, where the Temporal Convolutional 
Networks (TCN)-Informer model is used for the high-frequency component and the xLSTM model is used for the low-
frequency component, and finally, the RIME algorithm is applied to find the optimization of the hyperparameters. The results 
of simulation analysis show that the quadratic decomposition method proposed in this paper significantly improves the 
prediction accuracy of photovoltaic sequences and reduces the computational complexity. 
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1. Introduction

In order to promote the green and low-carbon energy transi-
tion and the construction of new energy power generation in 
various countries, new energy power generation, as a key link 
in this process, has important strategic significance for its fu-
ture development and technological innovation. In the current 
stage of development, photovoltaic power generation has 
gradually become a key step on the road to green transfor-
mation in various countries[1-3]. Since the output power of 
photovoltaic power generation is affected by factors such as 
environmental and climatic conditions, which leads to strong 
randomness and volatility[4-5], it is therefore of great signif-
icance to accurately predict photovoltaic power genera-
tion.Accurate photovoltaic power forecasting can contribute 
to the grid connection of new energy sources, the consump-
tion of new energy sources, the improvement of power mar-
ket construction and power grid operation, and so on[6]. 

*Corresponding author. Email: jianghescholar@163.com 

At present, photovoltaic prediction models are mainly di-
vided into three types: physical, statistical methods, and com-
bined prediction methods[7]. The main method of physical 
methods is to use numerical weather prediction (NWP)[8] to 
obtain meteorological characteristics, and at the same time 
establish a solar radiation model and a photovoltaic panel 
power generation conversion equation to make predictions. 
The advantages of physical methods are strong interpretabil-
ity and no need for historical data. However, their limitations 
are that they are greatly affected by the accuracy of the col-
lection equipment, have high requirements for the temporal 
and spatial alignment between each device, and have a lag in 
short-term predictions[9]. Statistical methods are prediction 
methods based on historical power generation data of photo-
voltaic power plants and mathematical models established 
through time series characteristics[10], such as the auto-
regressive integrated moving average model (ARIMA)[11] 
that analyzes the data autocorrelation and differentiation. 
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There are also analytical methods based on establishing a 
mapping relationship between output and characteristics, for 
example, when establishing a complex relationship between 
photovoltaic power and environmental factors, the kernel 
function is used to map nonlinear problems to high-dimen-
sional space support vector machines (SVM)[12]. Statistical 
methods also include the establishment of probability inter-
vals[13] to quantify the probability of uncertainty in photo-
voltaic power generation[14]. This method has a relatively 
simple model and is computationally efficient, making it suit-
able for online prediction. However, this method has poor 
prediction results in complex weather regions[15] and cannot 
handle complex nonlinear feature relationships. 

There are many types of combined prediction methods. 
The idea of the combined approach is essentially to combine 
the strong and weak points of what each model has to offer 
and to improve the prediction accuracy through this comple-
mentary approach. For example, using the clustering algo-
rithm K-means in machine learning, Markov chains, and en-
semble learning XGboost, etc.[16-18]. In the literature[19], 
the authors use the iterative self-organizing data analysis al-
gorithm (ISODATA) to classify historical data into similar 
days, and then perform variational mode decomposition to 
predict each component and super impose them to obtain a 
prediction structure. This method has a single modeling ap-
proach and does not consider the computational efficiency of 
the model. Reference[20] proposes a TCN-Informer predic-
tion model based on the VMD decomposition algorithm, but 
the article does not consider the effectiveness of the single 
decomposition algorithm, the problem of modal overlap, and 
the model's adaptability to the decomposition sequence. Lit-
erature[21] improves the weather feature extraction ability by 
improving the encoder in the Transformer model to TCN net-
work, which improves the prediction accuracy of the model 
for strong fluctuating weather, but does not take into account 
the expression ability of the model in the face of smoother 
weather conditions. 

Based on the above analysis, this study innovatively con-
structs a combined prediction model (VMD-ICEEMDAN-
TCN-Informer) based on the VMD-ICEEMDAN dual de-
composition framework and the fusion of TCN-Informer and 
xLSTM. The model architecture not only improves the per-
formance of data decomposition, but also considers the im-
provement of the computational efficiency and prediction 
performance of the network model during the stacking pro-
cess. Continuity of the time series and generalizability of the 
model were considered during modeling. Finally, the weather 
category was not classified, which would have destroyed the 
time series characteristics. In order to deal with the strong 
volatility of the photovoltaic power signal, VMD was first 
considered to decompose it and obtain each mode. Then, the 
entropy calculation was performed simultaneously to extract 
the complex components in the signal and apply ICEEMDAN 
mode to them.This decomposition method not only improves 
the decomposition quality and reduce mode aliasing, and ef-
fectively suppress noise interference by introducing adaptive 
white noise. The high and low frequency signals are obtained 
by re-superimposing the decomposed signals, and the model-
ing of each signal is carried out separately using the high and 

low frequency signals, which effectively improves the com-
putational efficiency of a single complex model. The high fre-
quency signal prediction model is selected as the TCN-
Informer model. Since the time span of the selected dataset in 
this study is long, the input sequence selected for prediction 
is 24 steps, and it is a single step prediction task. This model 
extracts the global spatial characteristics of complex signals 
while the introduction of Informer reduces the spatial com-
plexity between features. The low-frequency component uses 
xLSTM to address the limitations of traditional LSTM in pro-
cessing long sequences, and the hyperparameters are opti-
mized using the frost-ice optimization algorithm. Finally, the 
results of the high and low frequency components are super-
imposed to obtain the final prediction result. 

2. Dual decomposition algorithm

In this section, we first perform a correlation analysis on the 
various features that influence photovoltaic output to screen 
the features and reduce the dimension of the input data. We 
then input the processed data into the VMD model and per-
form entropy analysis on the output sub-sequences. Finally, 
we input the sequence with the highest entropy value into 
ICEEMDAN for secondary decomposition. 

2.1 Correlation of characteristics 

Since the output power of photovoltaic is affected by multiple 
external factors such as solar irradiance, weather temperature, 
air humidity, global radiation level, direct light and diffuse 
reflection, etc., taking all these characteristics into account 
will sharply increase the computational complexity of the 
model. Therefore, it is necessary to screen the factors affect-
ing photovoltaic power one by one to improve the prediction 
accuracy of the model. In this paper, the Pearson correlation 
coefficient method, a statistical method, is used to analyze the 
linear correlation between the influencing factors of photo-
voltaic power. The formula for calculating the Pearson corre-
lation coefficient is shown in (1): 

2 2

( )( )
( , )

( ) ( )
i i

i i

i i

x x y y
r x y

x x y y

− −
=

− −

∑
∑ ∑
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where x is the observed value of the variable characteris-
tic;y represents the observed value of the dependent variable 
characteristic; x , y  indicate the mean value of the variable 
characteristics, The Pearson correlation coefficient ( ),i ir x y  
ranges from -1 to 1 in its calculated results. Its actual physical 
meaning is that the larger the correlation coefficient, the 
stronger the correlation between the characteristic variables. 
Conversely, the smaller the correlation coefficient, the 
weaker the correlation between the characteristic variables. In 
this study, the characteristic data obtained by the collector are 
the seven characteristics of total irradiance level, direct irra-
diance level, global irradiance level, air temperature, 
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atmospheric environment, humidity, and power generation. 

Figure. 1. Pearson's correlation coefficient heat map 

The correlation between each feature is shown in Fig 1. It 
can be seen that the correlation coefficients between the pho-
tovoltaic output power and the total radiation level, direct ra-
diation level, and global radiation level are the largest, indi-
cating a strong correlation. The correlation coefficients be-
tween the photovoltaic output power and the air temperature 
and relative humidity are smaller, indicating a weak correla-
tion. Therefore, these features are selected as the input fea-
tures of the model in this study. The smallest correlation co-
efficient with the atmospheric environment indicates that the 
correlation between the photovoltaic power and the atmos-
pheric environment cannot be determined. 

2.2 Variational Mode Decomposition 

In photovoltaic forecasting tasks, photovoltaic power genera-
tion sequences exhibit extreme volatility due to factors such 
as weather conditions and geographical location. Based on 
this characteristic, VMD can decompose complex input sig-
nals into a set of IMFs, each with different frequency charac-
teristics. VMD minimizes the bandwidth constraints of the 
mode solutions, thereby effectively extracting the intrinsic 
features of the input signal and improving the model's ability 
to represent photovoltaic sequences, ultimately enhancing 
prediction accuracy. 

(1) First, the core of VMD is to decompose the raw photo-
voltaic output sequence ( )s t into several modal function m(t) 

by establishing a constrained optimization problem. The ob-
jective function of the optimization problem is: 

{ } { }
( )

( )

2

, ( )
2

min ( ) ( ) exp
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k k
m t K

jt m t j t
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∑    (2) 

where ( )s t  is the original PV Power Sequence; kω is the 
center frequency of the kth modal function; km  is the kth 
modal function; ( )tδ  is the Dirac function; K is the number 
of modes. 

(2) Second, to solve the decomposition problem, VMD
uses frequency modulation to represent each modes. 

( ) ( ) kj t
k km t a t e ω=    (3) 

where ( )ka t  is the complex envelope function to represent 
the spectrum of the localized signal. 

(3) Third, by means of Lagrange multipliers λ  and quad-

ratic penalty terms β  and the constraint ( ) ( )k
K

m t s t=∑  ,

VMD transforms the constrained variational problem into an 
unconstrained variational problem. By minimizing the band-
width constraint and the regularization term, the optimization 
problem becomes: 
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(4) Fourth，The process variable is mainly used to solve
this optimization problem with constraints, and to reduce the 
complexity of the computation, the time-domain equational 
constraints are transformed into frequency-domain equational 

constraints
1
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=∑  and the alternating direction mul-

tiplier method is used to update these process variables for , 
and , respectively, with the following update equations: 
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where ˆ ( )m ⋅  and ˆ( )λ ⋅ denote the Fourier transform; η  
is the learning rate or step size to control the update rate of 
the Lagrange multipliers 

2.3 Entropy 

The entropy value of each modal row obtained after VMD 
decomposition is used to evaluate the complexity of each 
modal , and by calculating the entropy value, we can identify 
which modal rows contain more ordered information or noise. 
Modes with low complexity may be useful signals, while 
modes with high complexity may be noise. In this study, the 
PV power signal is finally decomposed into four modes by 

VMD, 
4

1
( ) ( )k

k
s t m t

=

= ∑ and the entropy value is calculated 

for each mode by the formula: 

( )
1

log( )
N

k i i
i

H m p p
=

= −∑  (8) 

where ip  is the probability of each discrete event in the 
probability distribution of each mode ( )km t ; N is the number 
of discretization intervals for the signal values, which is taken 
to be 100 in this study. 

2.4 Improved Complete Ensemble Empirical 
Mode Decomposition with Adaptive 
Noise 

Different from the traditional EEMD method, ICEEMDAN 
adopts an adaptive strategy in the process of noise generation 
and addition, adjusting the noise size according to the feed-
back results of each iteration in order to better maintain the 
original characteristics of the signal. For modes with high en-
tropy values, ICEEMDAN's adaptive noise mechanism and 
multiple iterations decomposition can effectively reduce the 
overlapping phenomenon between modes, further optimize 
the frequency components of each mode and improve the ac-
curacy of subsequent modeling data. The specific steps are as 
follows: 

(1) The new signal ( )newm t  is obtained by adding Gauss-
ian white noise conforming to normal distribution to the 
VMD high entropy value modal sequence as shown in equa-
tion (9): 

0( ) ( ) ( ) 1, 2,3, ,new high jm t m t t jε ξ= + = N，  (9) 

where ( )highm t  is the sequence of VMD high entropy val-
ues; 0ε  is the standard deviation of Gaussian white noise; 

( )j tξ  is Gaussian white noise; N is the number of experi-
ments. 

(2) Perform empirical modal decomposition (EMD) on the
updated signal ( )newm t . EMD decomposes the signal into a 
number of IMFs and residual signals, and the update formula 
is: 

1
( ) ( ) ( )

K

new k
k

m t IMF t r t
=

= +∑  (10)

where K is the total number of eigenmode functions de-
composed; ( )r t  denotes the residual signal. 

(3) In order to enhance the stability and accuracy of the
decomposition, step 1 to step 2 are repeated several times, 
each time adding a different Gaussian white noise ( )j j tε ξ , 
and EMD decomposition is performed, and a set of different 
intrinsic modal functions are obtained through several noise 
injections and decompositions: 

{ }(1) (2) ( )( ), ( ),..., ( )N
k k kIMF t IMF t IMF t   (11) 

(4) For each mode ( )kIMF t , the results of multiple decom-
positions are averaged as in the following equation to obtain 
the final eigenmodes: 

( )

1

1( ) ( )
M

i
k k

i
IMF t IMF t
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= ∑ (12) 

EAI Endorsed Transactions on 
Energy Web 

| Volume 12 | 2025 | 



Short-term photovoltaic power prediction based on dual decomposition with TCN-Informer-xLSTM 

3. Combined model prediction method
based on RIME-TCN-Informer-xLSTM
model

Under the combined influence of other factors such as tem-
perature, cloud activity, weather type, etc, the real-time power 
generation of PV power plants often reflects extreme volatil-
ity and randomness, while the data of PV power generation 
itself is strongly time-dependent, and the traditional time-se-
ries analysis methods may have large prediction errors when 
facing complex data, so this section propose a combination 
prediction method based on TCN-Informer-xLSTM com-
bined prediction method. The prediction flowchart is shown 
in Fig. 2. 

After the above data processing, the subsequence is rear-
ranged to obtain the high and low frequency components sep-
arately, where the high frequency component is input to the 

TCN-informer model and the low frequency component is in-
put to the xLSTM model. For the high-frequency components, 
the sequences show strong volatility, and the TCN-Informer 
model not only combines the time-dependent ability of TCN 
in capturing long sequences, but also improves the prediction 
accuracy of the model in dealing with complex sequences and 
makes the model computation more efficient according to the 
characteristics of TCN that is easy to parallelize the compu-
tation in the structure. Compared with the traditional Trans-
former model, the Informer model is computationally effi-
cient due to the structure of sparse attention mechanism, 
structurally improves the generalization of the model when 
dealing with long sequences due to the structure of attention 
distillation mechanism, and speeds up the response speed of 
the model inference due to the generative coding structure in 
the decoder. 

Figure. 2. VMD-ICEEMDAN-TCN-Informer-xLSTM frame 

Traditional LSTM models, although capable of handling 
long-term dependencies to some extent, may suffer from van-
ishing or exploding gradients when confronted with longer 
time series, resulting in a degradation of the model's perfor-
mance. In this case, xLSTM can more precisely identify 
which information is critical for long-term trend prediction 
through the improved forgetting gate and input gate mecha-
nisms to better fit the trend changes in the low-frequency 
components. xLSTM, due to its extended structure using 
mLSTM and sLSTM, makes it easier for the model to main-
tain the ability of long-term memory when dealing with se-
quences with a large time span, and is able to better capture 
the long-term dependencies in the low-frequency components, 
and thus effectively learn the trend and periodic features in 
the sequences. 

3.1 Temporal Convolutional Networks 

TCN is a variant model based on traditional convolutional 
frameworks such as CNN, RNN, specialized in processing 
time-series data, TCN is more than traditional convolutional 
networks which capture the temporal dependencies of long 
sequences through causal convolution, inflationary convolu-
tion, and residual connections rather than cyclic connections. 
First of all causal convolution belongs to a special form of 
one-dimensional convolution, its main feature is that the con-
volution kernel will only utilize the current and previous time 
step data when sliding, while the right part of the convolution 
kernel will be filled with 0, which ensures the before-and-af-
ter logic on the time sequence, located in the t time step, the 
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index number is i, and the size of the convolution kernel is n, 
then the output value is: 

1

0
( ) ( ) ( )

n

i
o t w i s t i

−

=

= ⋅ −∑ (13) 

where ( )w i  is the weight value of the convolution kernel 
at the ith index position, s denotes the sequence of high-fre-
quency components, and ( )s t i−  is the data point at the first 
i time step in the high-frequency component, t is the time step, 
and n is the size of the convolution kernel. In order to improve 
the modeling ability of the model when dealing with long 
time series tasks, the sensory field is increased in causal 

convolution by introducing an expansion factor d to make the 
network able to cover longer time span data, where the rela-
tion is given by 2md = . 

The overall structure of TCN is shown in Fig. 3, It can be 
seen that if the number of convolutional layers is set too much, 
it will lead to the gradient disappearance or gradient explo-
sion when the model is being trained, while the introduction 
of residual connection can skip the input signal directly to the 
convolutional layer part and establish a direct connection 
with the output signal, which not only ensures that the train-
ing gradient can be effectively transferred to the shallow layer 
of the model when the model is being back-propagated, but 
also ensures that the depth of the network in the model is ef-
fectively guaranteed. 

0s 1s 2s  ts1ts −2ts −

0O 1O 2O 
tO1tO −2tO −

Figure.3. TCN Convolutional Structure 

3.2 Informer model 

Informer model as a variant model of Transformer, its most 
important feature is that the traditional attention mechanism 
in the attention Q、K、V in the calculation meets a longer 
input sequence, the complexity of the weight matrix with the 
increase in the length of the sequence N need to calculate the 
current time step and the other time step of the attention ma-
trix (N × N), and the attention scoring mechanism there are a 

part of the The query vector q and key vector k show weak 
correlation, based on the above problems informer model re-
duces the computational complexity by sparse self-attention 
mechanism to filter out the key time steps, which reduces the 
computational complexity from 2O(N )  to 
O(N log N)  ,which significantly improves the computational 
efficiency compared to the traditional transformer, and has a 
better suitability for long sequences of timings. 
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Figure. 4 Informer encoder-decoder structure 

Query Sparsity Measure: In order to examine the traditional 
attention mechanism in the calculation process which Q, K 
have strong correlation between, through the introduction of 
probabilistic form of kernel smoother on the original base for-
mula to define the attention of the ith query as shown in equa-
tion (14): 

( ) ( ), , ( , )
( , ) j i

j
i i j jk q

l i l
p

J

v
A q K V k q k v

k q k
E  = =  ∑ ∑  (14) 

where ( , )i jk q k  is the similarity function between the 

query point iq  and the jk of the remaining points. The 

value of the output is the product of the expectation ( )j ip k q
E  

and the probability weighted value jv  of the query point 

iq  for all jk . ( )j ip k q  is the attentional probability of iq  

over jk .If the attention probability obeys a uniform distribu-

tion ( ) 1
j i

K

q k q
L

= , the self-attention computation will be 

significantly reduced. To measure the degree of dispersion of 
the distribution p and the probability q is measured by intro-
ducing the Kullback-Leibler scattering, neglecting the con-
stant term then the sparsity measure equation (15) is: 

( )
1 1

1, ln( )
T

i jK K
q k TL L

i jd
i

j jK

q k
M q K e

L d= =

= −∑ ∑      (15) 

 

Probsparse self-attention mechanism: Based on the above 
metric Informer attention mechanism is calculated as in equa-
tion (16): 

( ), , Softmax( )V
TQKA Q K V

d
=  (16) 

Each K in the equation is associated only with Q that ac-
counts for strong correlations, and the Q matrix is a mapping 
of the first h strong correlations q after the sparse metric, so 
the size of the sparse matrix is equal to the size of q. The spar-
sity h is controlled by a constant sampling factor c according 
to the number of queries as QL . The control formula is 

ln Qu C L= . 
In order to further improve the computational efficiency, it 

is necessary to set the sparsity limit value in it, which finally 
results in the sparsity formula using the empirical formula as: 

( )
1

1, max
K

T TL
i j i j

i j jK

q k q k
M q K

Ld d=

  = − 
  

∑       (17) 

In practice, the input lengths of the query and key are usu-
ally equal in the self-attention computation, as

Q KL L L= =  .For the remaining query vectors after filtering 
out the strongly correlated q in the above process, the average 
input value is used for all the remaining query vectors. 

Encoder structure: The encoder is shown in the left part of 
Fig.4, the encoder accepts a large number of long-time se-
quences at the same time after the above Probsparse attention 

EAI Endorsed Transactions on 
Energy Web 

| Volume 12 | 2025 | 



G. Jin, et al. 

mechanism, in which the dark green part of the original input 
vector, the light green part of the Local timestamp and global 
timestamp by the composition.  

In order to further reduce the amount of computation to 
increase the computational efficiency of Informer through the 
introduction of distillation mechanism to further filter the im-
portant information, distillation layer contains a one-dimen-
sional convolutional layer (Conv1D) and the maximum pool-
ing layer , where the activation function for the ELU, the role 
of maximum pooling layer for the downsampling operation, 
so the length of the sequence will be reduced by half after 
each distillation layer, distillation The operation process is 
given in the following equation: 

1 MaxPool(ELU(Conv1D( )))t t
k k AB

X X+  =    (18) 

where kX  denotes the input of the kth layer network, [ ]AB
  

denotes the Probsparse attention module, and in order to keep 
the output of each encoder stack of the same dimension, the 
encoder stack method is used for cascade. 

Decoder structure: The decoder is shown by the right half 
of Fig. 4 . The input to the decoder can be represented as

{ }0,de tokenX X X=  , where the two parts are the data from the 
previous time step of the prediction sequence 

modelt
token

tokenL dX ×∈  and the prediction sequence placeholder
model

0
yL dX ×∈ , thus the overall dimension of the input to the 

decoder is model( )token yL L d
deX + ×∈ , which provides the basis for 

the subsequent multi-head attention computation. Ultimately, 
the model performs a dimensional transformation of the out-
put through a fully connected layer to generate the final pre-
diction. 

3.3 xLSTM model 

The xLSTM is an improved model based on the traditional 
Long Short-Term Network (LSTM). xLstm still has difficulty 
in capturing dependencies over long time spans when dealing 
with long time sequences, and therefore the LSTM model is 
unable to capture long term trends among sequences for low-
frequency signals. Therefore, xLstm has been developed to 
improve the accuracy of the model by introducing a gating 
mechanism and a memory structure. xLSTM is an extension 
of two variants of LSTM (mLSTM and sLSTM). 

The computation and structure of sLSTM and mLSTM are 
shown in Fig. 5. sLSTM introduces exponential gating and 
normalized states tn  in the data transfer between the input 
gate ti  and the forgetting gate tf , and stabilizes the structure 
so as to help the LSTM to learn more complex time-depend-
ent and nonlinear patterns, and to reduce data fluctuations 
during training to accelerate convergence speed. 

 

 

 

Figure. 5 Diagram of xLSTM memory cell and gating structure 
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The design of mLSTM is to add an attention mechanism 
similar to the Transformer model to the traditional LSTM, by 
introducing k, q, and v computations to update the memory 
cell as a way to capture the complex relationship between fea-
tures, and the model structure is similar to the sLSTM net-
work described above, but the amount of state of each cell is 
changed from a vector to a matrix, which makes it greatly en-
hance the memory cell's storage capacity. 

3.4 RIME optimization algorithm 

RIME optimization algorithm is to simulate the formation 
process of frost and ice in nature to introduce the concept of 
soft frost and hard frost, and the introduction of attachment 
coefficients to simulate the probability of freezing of atmos-
pheric particles and the establishment of the search space and 
the threshold value of the proposed optimization mechanism, 
the core principle is divided into three steps: the soft frost 
search strategy, the hard frost perforation mechanism, and the 
positive greedy mechanism. 

The soft frosting search strategy: 

, 1 max min 2cos ( ) ,
ij ij

new
ij best jR R r h b b r Eα θ  = + −  ＜  (19) 

where new
ijR  is the updated particle position; i and j denote 

the jth particle in the ith particle population, then ,best jR de-
notes the ith particle in the optimal population; The parameter 

1r  is a (-1~1) random number to indicate the update direction 
of the particle, cosθ  is updated as the number of iterations 
increases, and the update equation is shown in equation (20), 
α  is the environmental factor that simulates the external 
fluctuation situation during each iteration, and the iterative 
update equation is shown in equation (21),.h takes values in 
the range (0,1) representing the distance between the centers 
of the two particles, maxij

b and minij
b are the upper and lower 

thresholds of the escape space used to limit the particle update 
domains. E is the attachment coefficient, representing the up-
date probability of the particle with respect to the number of 
iterations; as shown in equation (22), 2r  is a (0,1) random 
number that controls the position update of the particle along 
with E. 

 
10

t
T

θ π=
⋅

 (20) 

where t is the number of immediate iterations of the algo-
rithm; T is the maximum number of iterations of the algorithm. 

 1 /w t w
T

α ⋅ = −   
 (21) 

where α is the step function; [ ]⋅ represents the rounding 
function; w is the number of step function segments. 

 ( / )E t T=  (22) 

Hard frost perforation mechanism: The purpose of this 
mechanism is to avoid the algorithm from falling into local 
optimal solution by using the replacement of particles to im-
prove the convergence of the algorithm, the replacement for-
mul a is shown below: 

 , 3, ( )new normal
ij best j iR R r F S= ＜  (23) 

where iS  is the selection probability of the particle clus-
ter and normalF  denotes the normalization of it; 3r is a (-1,1) 
random number determined in concert with normalF  to deter-
mine the particle update probability. 

Positive greed mechanism: The fitness values of individuals 
before and after iteration are firstly compared and analyzed, 
based on which the decision of individual retention or re-
placement is dynamically adjusted and the solution vectors of 
related individuals are synchronously updated. This mecha-
nism effectively selects the retention of representative parti-
cles to promote the optimization performance of the overall 
solution set, and at the same time, it also guides the popula-
tion to shift to a more optimal solution space during each it-
eration through the dual updating mechanism, thus realizing 
the double improvement of the convergence efficiency and 
the solution set. 

4. Example analysis 

4.1 Introduction to the experimental dataset 
and assessment metrics 

The dataset selected for this experiment adopts the 2019-2020 
power generation dataset of a 40MW PV power plant in the 
north of China, the time scale of the dataset is 15 min, and a 
total of 70,096 time points of data are recorded, which is a 
real and reliable source, with a long time span, and provides 
high-frequency and fine-grained time-series data covering di-
urnal and seasonal cycle variations, which reflects the PV 
power generation's long-term trends and fluctuation charac-
teristics. Second, the diversified weather conditions (e.g., 
sunny, cloudy, rainy, snowy, etc.) in the northern region make 
the data rich in environmental characteristics, which provides 
a data basis for studying the laws of PV power generation af-
fected by the environment. Once again, the long time series 
data support the development of short-term and long-term 
power prediction models, and at the same time help to im-
prove the robustness and generalization ability of the models. 
The prediction model proposed in this experiment is written 
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in PyCharm integrated development environment using Py-
thon programming language and implemented based on 
PyTorch deep learning framework. 

Four evaluation metrics were used in this experiment to 
assess the predictive effectiveness of the model. The evalua-
tion formula is as follows: 

 MAE
1

1 ˆ
n

n

i i
i

E y y
=

= −∑  (24) 

 MAPE
1

ˆ100% n
i i

i i

y y
E

n y=

−
= ∑  (25) 
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where MAE is the mean absolute error; MAPE is the mean 
absolute percentage error; RMSE is the root mean square er-
ror.  

4.2 Pre-processing of data 

Due to the large time span of the dataset used in this experi-
ment, as shown in Fig. 6, the fluctuation of PV output in the 
summer of each year may be larger compared to other seasons 
due to the effect of cloud cover, and the PV output in the win-
ter is also strongly fluctuating due to the effect of snow and 
ice cover and presents a large amount of noise in the dataset.6 
The dataset contains a large amount of noise as shown in Fig. 
6, and it is necessary to carry out the operation of separating 
the data and reducing the noise. Therefore, it is necessary to 
separate the data and reduce the noise.  

 

 

Figure. 6. Original Input Signal 

In order to evaluate the complexity of each IMF after 
VMD decomposition of the original signal, the method of se-
quence entropy calculation is introduced for this analysis. In 

practice, the original signal is decomposed into four modes 
by VMD and the entropy value of each mode is calculated as 
shown in Fig. 7.  
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Figure. 7 VMD decomposition sequence and entropy value 

The entropy value of mode 2 is the highest and therefore 
the signal contains more noise, in order to improve the 

prediction effect of the model, it is finally chosen to carry out 
the decomposition of the sequence once again. 

 

 

Figure. 8. Sequence diagram of ICEEMDAN decomposition 

The high-frequency component is decomposed by 
ICEEMDAN to obtain 13 intrinsic mode functions, and the 
decomposition results are shown in Fig. 8. Due to the separa-
tion of more IMFs, in order to reduce the amount of input 

signal computation of the model, the above components and 
the original dataset of weather features are superimposed and 
reconstructed to form a new low-frequency and high-fre-
quency components, and the two components are modeled 
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separately. The superimposed reconstructed high and low-
frequency signals are shown in Fig. 9, and it is clearly found 
that the high-frequency signal fluctuation amplitude is larger, 
the noise has a strong randomness, and the prediction com-
plexity is higher; and the low-frequency component is a 

smoother curve, which can more realistically reflect the long-
term trend of the photovoltaic power change with the season 
and time. 

 

 

Figure. 9 Reconstruction of high and low frequency signals 

4.3 Experimental model parameter settings 

In this experiment, the RIME algorithm is used to optimize 
some parameters of the model, the algorithm enhances the 
search performance by simulating the frost and ice growth 
mechanism in nature, using the soft frost search mechanism 
and the puncture mechanism of the hard frost, the parameters 
are set as shown in Table 1. 

Table 1. Parameters setting 

TCN-Informer xLSTM 

Kernel size 2 Number of head at-
tention 8 

No blocks 2 Hidden size 64 
Dilations [1,2] layers ['s','m'] 
Number of head at-
tention 8 Project factor slstm 4/3 

Probsparse attention 5 Project factor mlstm 2 
Encoder layers 2 Out-size (512,32) 
Decoder layers 1 Learning rate 0.05 

4.4 Simulation results and analysis 

In order to verify the superiority of the combined model PV 
short-term power prediction of TCN-Informer and xLSTM  

 
 
under the dual decomposition of VMD and ICEEMDAN, the 
comparative models proposed in this section are the TCN-
Informer model with and without dual decomposition and the 
traditional Transformer and its improved model. Under the 
principle of ensuring control variables, the number of multi-
attention heads in Transformer is 4, and the length of the input 
sequence is 24, and the number of hidden layer layers in the 
TCN model is 4. 

 The simulation results are shown in Figs. 10 and 11, 
which show that the VMD-ICEEMDAN data decomposition 
method provides smooth and noiseless input data, while the 
The short-term feature extraction ability of TCN makes up for 
the shortcomings of the traditional Transformer and Informer 
models when dealing with fluctuating signals with large am-
plitude, the TCN network is responsible for extracting the 
short-term signals, and the Informer and xLSTM models have 
a better ability to extract the long-term dependence when 
dealing with longer sequences than the traditional Trans-
former and Lstm models, and the combination of these mod-
els makes the VMD-ICEEMDAN data decomposition 
method provide smooth and noisy input data. The combina-
tion of these models makes the VMD-ICEEMDAN-TCN-
Informer after the optimization of hyperparameters by the 
RIME optimization algorithm the best performing model in 
the PV prediction experiments.
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Figure. 10 MAPE indicators for each model 

 

 

Figure. 11 Comparison of evaluation indicators of each model 

The comparison of predicted values and actual values for 
each model is shown in Figure 12-15. When relying solely on 
a single model for prediction, the fitting performance is poor, 
particularly evident during peak periods. If the dataset has not 
undergone preprocessing, the model may exhibit overfitting, 
thereby reducing its generalization performance. After de-
composition processing, the prediction curves are smoother 

compared to those of a single model and more closely align 
with the actual values. especially during peak output periods 
in the midday hours. Traditional models exhibit lag issues, 
but after dual decomposition and processing of high-fre-
quency components, the model's predictability for strongly 
fluctuating signals is significantly improved. During early 
morning and evening hours, thanks to the mLstm structure of 
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the xLSTM model, the model achieves good accuracy even 
under cloudy conditions. Additionally, the ICEEMDAN 
module in the model's decomposition structure introduces 
white noise to enhance the model's generalization perfor-
mance. Due to its parallel computing capability, the TCN-
Informer model has shorter computation time and higher 
computational efficiency compared to the TCN-Transformer 
model. After parameter optimization of the model in this 

experiment using the RIME algorithm, the model's prediction 
accuracy is further improved. 

Furthermore, in practice, it was found that the model pro-
posed in this experiment not only performs well in short-term 
power prediction but also improves its prediction perfor-
mance as the sequence length increases within a certain range. 
Therefore, this model can not only be used for short-term 
power prediction tasks but also adapted to prediction tasks 
across multiple time scales. 

 

 

Figure. 12 Spring PV power forecast results comparison 

 

 

Figure. 13 Summer PV power forecast results comparison 
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Figure. 14 Autumn PV power forecast results comparison 

 

Figure. 15 Winter PV power forecast results comparison 

5. Conclusion 

To obtain accurate predictions of photovoltaic power output, 
promote the integration of new energy sources into the grid, 
and accelerate the development of the electricity market, this 
study proposes a TCN-Informer-xLSTM prediction model 
based on dual decomposition. The model was validated using 
a dataset from multiple climate scenarios in the northern re-
gion. The main conclusions are as follows: 

(1) The effectiveness of dual decomposition: The VMD-
ICEEMDAN dual decomposition framework significantly 
enhances the feature extraction capability of the original sig-
nal. After VMD decomposition, combined with an entropy 
value screening mechanism, it effectively separates high-fre-
quency noise from low-frequency trend components. Further 
ICEEMDAN secondary decomposition of high-entropy value 
modes resolves the mode aliasing and pseudo-mode issues as-
sociated with single decomposition, reducing noise interfer-
ence while enhancing the accuracy of signal reconstruction. 
Experimental results show that the input data processed by 
dual decomposition achieves approximately a 10% reduction 
in the MAPE metric compared to the undecomposed model,  

validating the critical role of the decomposition strategy in 
improving prediction accuracy. 

(2) The complementary advantages of submodels: high-
frequency components utilize the TCN-Informer parallel 
structure, fully leveraging TCN's local feature capture capa-
bilities and the Informer's global attention mechanism. This 
ensures computational efficiency while delivering robust pre-
diction results, particularly under complex weather condi-
tions, with the MAPE metric fluctuating within a range of less 
than 2.5%. This achieves precise fitting of strongly fluctuat-
ing signals while maintaining model computational effi-
ciency. Low-frequency components incorporate the xLSTM 
model, which addresses the gradient vanishing issue in tradi-
tional LSTM models for long sequence tasks through an im-
proved gating mechanism and matrix memory structure. 

(3) Parameter optimization and computational efficiency: 
The hyperparameter optimization mechanism of the RIME al-
gorithm effectively balances model complexity and predic-
tion performance. Experimental results show that the opti-
mized model achieves a coefficient of determination (R²) of 
0.9923 on the test set. At the same time, the model achieves 
computational resource efficiency through parallelization 
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design (such as causal convolutions in TCN and sparse atten-
tion in Informer). 
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