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Abstract 

To accommodate the testing requirements of high-power wind turbines, this paper designs a power grid simulator topology 
and investigates fault diagnosis and localization methods by integrating mathematical models and neural networks. To 
address the drawback of lengthy computation times associated with intelligent diagnostic methods, this paper employs a 
threshold-based approach using voltage mathematical models to achieve rapid preliminary diagnostics. To address the 
positioning challenges brought about by symmetrical structures, a multi-layer convolutional neural network (MCNN) model 
is utilized to achieve accurate positioning. To tackle the issue of insufficient fault samples, a sliding window technique and 
frequency domain transformation methods are applied to expand the sample set, enabling the diagnosis and localization of 
36 types of faults. This paper builds an inverter-side model of the power grid simulator using Simulink to verify the proposed 
method. And the diagnostic accuracy rate reaches 100%, and the overall localization accuracy exceeds 96%. 
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1. Introduction

The large-scale integration of wind turbine units into the 
power grid will lead to a decrease in grid inertia [1,2], and 
may result in significant problems such as voltage deviation, 
frequency deviation [3,4], and increased harmonic content 
[5]. In response to the new characteristics of the power grid 
brought about by wind power grid connection, wind turbine 
units must undergo grid adaptability tests on the test platform 
before grid connection [6]. 

The grid simulator, as the core equipment of the ground 
test platform for wind power generation [7], has the functions 
shown in Figure 1. It needs to accurately simulate the new 
characteristics of the grid and test the performance of the 
wind turbine. Currently, the existing grid simulators in the 
industry are mostly two-level or three-level low-power grid 
simulators, with a lower working frequency and less accurate 
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simulation of grid behavior. To meet the testing requirements 
of large-scale wind turbine units, the modular multilevel  

converter (MMC) grid simulator has emerged. Its main 
feature lies in the ability to simulate high-order harmonics in 
the grid and achieve independent control of the three phases. 
However, the MMC grid simulator is composed of multiple 
cascaded H-bridge inverters connected in series. The number 
of insulated gate bipolar transistors (IGBTs) inside it is 
significantly more than that of traditional low-level grid 
simulators, which increases the failure probability of the grid 
simulator. Once an IGBT fails, it may lead to incorrect 
judgment of the performance of the wind turbine. In addition, 
because the diagonal tubes of the H-bridge inverter are turned 
on alternately, the transistors at the diagonal position of the 
same module have symmetry. Due to the three-phase 
independent control of the power grid simulator, transistors 
at the same position in different modules also have symmetry. 
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The fault characteristics of symmetrical transistors are 
similar, which poses difficulties for fault location and repair. 
Therefore, in order to improve the reliability and availability 
of grid simulators and provide strong basis for formulating 
fault-tolerant strategies, it is necessary to study fast fault 
diagnosis and precise positioning methods applicable to 
MMC grid simulators[8]. 

Figure 1. The functions of the power grid simulator 

The fault characteristics of symmetrical tubes are 
extremely subtle and are difficult to distinguish with the 
naked eye. The traditional method of setting characteristic 
thresholds for faults cannot achieve precise fault location at 
the specific fault tubes, which affects the operation and 
maintenance efficiency of the power grid simulator. 

The fault diagnosis and location method based on neural 
networks can capture the subtle differences in fault 
characteristics and has obvious advantages in precise 
location. However, the fault diagnosis process is time-
consuming, which is not conducive to the safe operation of 
the power grid simulator. At present, most intelligent 
diagnosis methods based on neural networks are limited by 
the assumption that there are sufficient samples and the data 
sets are in the same distribution. However, the existing fault 
samples of large-scale power grid simulators are not 
complete, and the cost of manual fault experiments is too 
high, making sample collection difficult, resulting in poor 
generalization and robustness of the models.  

Furthermore, during the process of using neural networks 
to diagnose and identify faults in the power grid simulator, it 
was found that simple CNN models have relatively low 
recognition accuracy. How to establish a high-precision 
model using a small number of fault samples and improve the 
diagnostic speed are urgent problems to be solved in the fault 
diagnosis of the power grid simulator. 

2. Topology design of the power grid
simulator

In response to the functional requirements of the high-power 
fan power grid simulator, this paper explores the methods for 
rapid fault detection and precise location on the inverter side 
of the power grid simulator. A seven-level MMC type power 
grid simulator is designed in this paper, and its inverter side 
is simulated and modeled using Simulink. 

2.1. Topology design and working principle 

In order to improve the waveform quality and control 
flexibility when simulating the grid characteristics by the 
simulator, this paper designs a modular multilevel structure 
grid simulator with independent control for each phase [9]. 
The rectification circuit selects a three-phase PWM rectifier 
to generate a stable DC voltage. The inverter circuit adopts 
three independent groups of inverters, each group consisting 
of three-unit H-bridge cascaded single-phase inverters. 
Through the series bridge arm modules, it can effectively 
reduce the harmonic content and improve the voltage level. 
The three groups of inverters can respectively output AC 
voltage waveforms with phase differences of 120° to simulate 
various working states of the grid. The single-phase 
topological structure of the grid simulator system is shown in 
Figure 2. 
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Figure 2. Single-phase topology structure of the power grid simulator 

As shown in Figure 2, the H-bridge inverter can convert 
the DC voltage Udc output by the three-phase PWM rectifier 
into an AC voltage output. The controller part has three 
sampling channels, and the given voltage waveform is set 
through the DSP digital control chip. One H-bridge unit can 
output three levels: Udc, 0, and -Udc. When three H-bridge 
inverters are connected in series, they can output 7 voltage 
levels: 3Udc, 2Udc, Udc, 0, -Udc, -2, Udc, and -3Udc. By 
writing the control strategy for the inverter switches, the 
output voltage waveform of the power grid simulator can be 
set [9]. 

The MMC type power grid simulator has the advantages 
of modularization and scalability, but it suffers from the 
problem of reduced reliability due to the large number of 
switch quantities. Therefore, it is necessary to develop a fault 
rapid diagnosis and precise location method suitable for the 
MMC type power grid simulator.  

2.2. Fault types and fault characteristics of 
the power grid simulator 

This paper first analyzes the types and characteristics of faults 
in the power grid simulator. The majority of the reasons for 
the faults in the power grid simulator come from IGBTs. 
IGBT faults usually fall into two types: short circuit and open 
circuit. Short circuit faults are easy to detect, while open 
circuit faults have less obvious characteristics and the 
diagnostic and location methods are more complex. Without 

appropriate diagnostic methods, the voltage output waveform 
of the power grid simulator may be distorted [10], which may 
lead to incorrect judgments of the performance of the wind 
turbine generator. 

Selecting effective fault characteristics is the foundation 
for achieving fault diagnosis and location. Literature [11] 
uses the capacitor voltage of sub-modules as the fault 
characteristic, but this method is not applicable to the power 
grid simulator. Literature [12] proposes using high-frequency 
harmonics as the fault characteristic, but when different faults 
generate similar high-order harmonics, this method can only 
achieve fault detection but cannot accurately locate the 
specific position where the fault occurs. There are certain 
limitations in fault location on the power grid simulator. 
Literature [10, 12] selects three-phase current as the fault 
characteristic variable for fault diagnosis and location. Under 
carrier phase-shift control, the switching timing signal of sub-
modules is fixed. When the IGBT in the sub-module has an 
open circuit fault, the current of this phase cannot flow 
normally, causing the current waveform to distort. As a result, 
the current of the other two phases cannot be evenly 
distributed, resulting in differences in the amplitudes of the 
three-phase currents. This paper considers 36 types of 
transistor open circuit fault scenarios, and conducts fault 
simulation on the built power grid simulator model. Some 
simulation results are as follows. 
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Figure 3. Correlation of phase voltage waveforms for 
different fault types 

As shown in Figure 3, during normal operation, the 
amplitude of the phase voltage remains stable and there is no 
DC component within the cycle. When the IGBT of a sub-
module fails and becomes open-circuited, the output 
capability of the sub-module voltage is impaired. The voltage 
of the sub-module is a component of the phase voltage. The 
failure of a sub-module will cause the amplitude of the phase 
voltage to decrease, the waveform to be distorted, and a DC 
component to appear. Therefore, voltage can be used as a 
fault diagnosis and preliminary location feature of the fault. 

Next, this paper conducts a simulation of the fault current 
waveform, and presents some of the results as shown in 
Figure 4. 

Figure 4. Current waveform arrangement for different 
fault types 

As shown in Figure 4, the current waveforms 
corresponding to various fault types differ, and the effective 
fault information can be extracted as the basis for fault 
location. However, in the same-phase fault types, by 
comparing the current waveforms of the open circuit of A11 

transistor (Figure a) and that of A14 transistor (Figure c), it 
can be seen that the characteristics of transistor open circuit 
faults in the same module are similar; by comparing the 
current waveforms of the open circuit of A11 transistor 
(Figure a) and that of A31 transistor (Figure d), it can be seen 
that the waveforms of transistor open circuit faults at the same 
position in different modules are similar, which cannot be 
distinguished by the naked eye, and after the fault occurs, 
there is a process where the current waveforms gradually 
stabilize into a fault waveform. Therefore, the traditional 
method of setting characteristic thresholds is difficult to 
achieve fault type identification, and further refinement 
processing is required. 

In conclusion, phase voltage and line current can be used 
as features for fault diagnosis and location. In fault diagnosis 
and the location of the faulty phase, the fault characteristics 
of phase voltage are more obvious, while in locating to a 
specific transistor, the three-phase line current is more 
accurate. 

3. Rapid diagnosis and precise location
methods

The methods for diagnosing and identifying faults in 
electrical equipment can be classified as: methods based on 
mechanism models, methods based on experience, and 
intelligent identification methods. The fault diagnosis and 
identification methods based on mechanism models and those 
based on experience have the advantages of short processing 
time and timely diagnosis. However, the characteristics of 
each component of the power grid simulator interact with 
each other, presenting nonlinear and time-varying 
characteristics, making it difficult to effectively establish a 
mathematical mechanism model; the fault diagnosis method 
based on experience requires manual setting of experience 
thresholds, and due to the similar characteristic waveforms of 
some fault types, the determination of the experience 
thresholds is difficult. The intelligent fault identification 
method can capture the subtle differences in current 
characteristics and has obvious advantages in precise 
positioning, but it takes a long time and requires a large 
number of fault samples as support. 

Taking into account the rapidity and accuracy of fault 
diagnosis and location, as well as the characteristics of fault 
features, this paper adopts a rapid diagnosis method based on 
the threshold setting of the phase voltage mechanism model, 
and a precise location method based on Multiscale 
Convolutional Neural Network (MCNN) and using line 
current as the characteristic. 

3.1. A rapid fault diagnosis and preliminary 
location method based on voltage threshold 

Principle analysis 
This paper analyzes the influence of faults in each switching 
tube of the cascaded H-bridge inverter on the output voltage. 
The topology of a single H-bridge unit is shown in Figure 5, 
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where VD1 and VT4, VD2 and VD3 are two sets of 
symmetric IGBTs. It is stipulated that the current flows from 
the DC side to the AC side as the positive direction. 

Figure 5. The topological structure of a single H-bridge 
unit 

During normal operation, each single H-bridge unit has 
four working states. In state 1, the switching tubes VT1 and 
VT2 are conducting, and the output voltage is 0V. In state 2, 
the switching tubes VT1 and VT4 are conducting, and the 
output voltage is +Ud. In state 3, the switching tubes VT2 and 
VT3 are conducting, and the port output voltage is -Ud. In 
state 4, the switching tubes VT2 and VT4 are conducting, and 
the output voltage is 0V. Therefore, VD1 and VD4, VD2 and 
VD3 are respectively two pairs of symmetrical transistors, 
which makes the fault characteristics when these two 
transistors are open-circuited very similar. 

In order to analyze the influence of the open-circuit fault 
of IGBT on the port voltage of the H-bridge unit, each switch 
tube was set to be open-circuited for analysis. Since VT1 is 
involved in conduction in states 1 and 2, the fault of VT1 only 
affects these two states. When VT1 is open-circuited, the 
current flowing through this switch tube can only be 
conducted through its reverse-connected diode VD1 for 
continuation. Due to the unidirectional conductivity of the 
diode, at this time, only reverse current can pass through. 
While when the current flows in the forward direction, for 
state 1, the current originally flowing through VT1 passes 
through VD2 for continuation, and the port voltage changes 
from 0V to -Ud. At this time, the working state of the circuit 
is shown in Figure 6(a); for state 2, the current originally 
flowing through VT1 also passes through VD2 for 
continuation, and the port voltage changes from +Ud to 0V. 
At this time, the working state of the circuit is shown in 
Figure 6(b). 

Figure 6. The operating status of the circuit when VT1 
fails 

When the VT2 has an open circuit fault, it affects states 3 
and 4. Due to the open circuit of VT2, the current originally 
flowing through VT2 can only continue through VD2. 
Therefore, the forward current is not affected. When the 
current reverses, for state 3, the current originally flowing 
through VT2 is switched to VD1. At this time, the port 
voltage changes from -Ud to 0V, and the working state of the 
circuit is shown in Figure 7(a); for state 4, the current of VT2 
is switched to VD1, and at this time, the port output voltage 
changes from 0V to +Ud, and the working state of the circuit 
is shown in Figure 7(b). 

Figure 7. The operating status of the circuit when VT2 
fails 

The open-circuit fault of VT3 affects states 1 and 3. At this 
time, the current of VT3 can only flow through VD3 for 
reverse conduction. Therefore, the open-circuit fault of VT3 
affects the reverse flow of the current. When the current flows 
in the reverse direction, the current that originally flowed 
through VT3 flows through VD4 for reverse conduction. The 
port voltage of state 1 changes from 0V to +Ud, and the port 
voltage of state 3 changes from -Ud to 0V. At this point, the 
working state of the circuit is as shown in Figure 8. 
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Figure 8. The operating status of the circuit when VT3 
fails 

As shown in Figure 9, the open-circuit fault of VT4 affects 
states 2 and 4. Due to the open-circuit fault, when the current 
flows in the reverse direction, the current of VT4 passes 
through VD4 for reflow, which does not affect the output 
voltage at the port; while when the current flows in the 
forward direction, the current of VT4 flows through VD3 for 
reflow. At this time, the output voltage of state 2 changes 
from +Ud to 0V, and the output voltage of state 4 changes 
from 0V to -Ud. 

Figure 9. The operating status of the circuit when VT4 
fails 

Figure 10. The impact of different switch tube failures 
on the output voltage of the converter unit 

This paper adopts the carrier stacking modulation method. 
The modulation wave and carrier of each switch tube are 
shown in Figure 10. From top to bottom, the first and second 
columns of carriers are the carrier of the a bridge arm and the 
b bridge arm of the A1 unit. According to the waveform 
changes of the modulation wave and the carrier, the A1 unit 
works in five states of 3-4-2-4-3 within one cycle and outputs 
a three-level voltage. When 10 t t< < , the A1 unit works in 
state 3. At this time, VT2 and VT3 are conducting, while VT1 
and VT4 are turned off. Therefore, only when VT2 and VT3 
fail will it affect the output voltage. Since the load is a 
resistive-inductive load, the voltage leads the current, and the 
current changes from reverse to positive. When VT2 fails, the 
output voltage changes from -Ud to 0. When VT3 fails, the 
output voltage changes from -Ud to 0. When 1 2t t t< < , the 
A1 unit works in state 4. At this time, VT2 and VT4 are 
conducting, while VT1 and VT3 are turned off. Only when 
VT2 and VT4 fail will it affect the output voltage. Since the 
current is positive at this time, only the failure of VT4 will 
have an impact. At this time, the output voltage changes from 
0 to -Ud. When 2 3t t t< < , the A1 unit works in state 2. At 
this time, VT1 and VT4 are conducting, while VT2 and VT3 
are turned off. Therefore, only when VT1 and VT4 fail will it 
affect the output voltage. Since the current is positive at this 
time, the failures of VT1 and VT4 will both cause the output 
voltage to change from +Ud to 0V. When 3 4t t t< < , the A1 
unit works in state 4, which is the same as the working state 
when 1 2t t t< < . When 4t t>  the A1 unit works in state 3, 
and when 4 5t t t< < , the direction of the current is positive. 
The failures of VT2 and VT3 will not affect the output 
current. However, when 5t t> , the direction of the current 
changes from positive to negative, and the failures of VT2 
and VT3 will both cause the output voltage to change from -
Ud to 0. The working process of A2 unit and A3 unit is 
similar, so this will not be elaborated further. 

Threshold-based diagnostic method using voltage 
mathematical model 
Since this study adopts a three-H-bridge cascaded topology, 
the output voltage uo of phase A can be expressed as:  

A A1 A2 A3u u u u= + + .    (1) 
In the equation, A1u denotes the terminal voltage of unit

A1, A2u represents the output voltage at port A2, and A3u
indicates the output voltage of port A3. 

When the switching devices operate normally, the output 
voltage contains no DC component, resulting in zero integral 
over one period. The voltage integral uA1 can be expressed 
as:  

AI A1 A2 A30 0
dt ( )dt

t t

Au u u u u= = + +∫ ∫ .    (2) 
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Based on the above analysis, when a switching device 
fails, the port voltage of the H-bridge unit will exhibit missing 
voltage levels, resulting in distorted output voltage 
waveforms and the introduction of a DC component. 
Specifically, if switching device VT1 or VT4 fails, the 
maximum output voltage decreases from +3Ud to +2Ud, 
while the minimum voltage remains largely unchanged. 
Under this condition, the integral of the output voltage over 
one period can be approximated as:  

0 0

0

T 2 T d 0
AI d d0 T 2

0 0

U T2π 2π
2U sin( )dt 3U sin( )dt

T T π
u t t= + = −∫ ∫ . (3) 

Similarly, when switching device VT2 or VT3 fails, the 
minimum output voltage increases from -3Ud to -2Ud, while 
the maximum voltage remains essentially unchanged. Under 
this fault condition, the integral of the output voltage over one 
period can be approximated as:  

0 0

0

T 2 T d 0
AI d d0 T 2

0 0

U T2π 2π
3U sin( )dt 2U sin( )dt

T T π
u t t= + =∫ ∫ . (4) 

The computational results demonstrate that a failure in 
switching device VT1 or VT4 introduces a negative DC 
component in the output voltage, whereas a failure in VT2 or 
VT3 produces a positive DC component. Therefore, by 
calculating the integral values of the phase voltages (A, B, 
and C) and sampling these integrals at each periodic point, 
rapid fault detection and phase identification can be achieved. 

In this paper, based on the calculated values, the voltage 
threshold is set to U0 = 5000 V. If the integrated voltage value 
over four cycles for any phase exceeds this threshold, the 
system diagnoses a phase fault and triggers an alarm, enabling 
rapid fault detection and phase localization. Figure 11 
illustrates the flowchart of this voltage-threshold-based rapid 
fault diagnosis and preliminary localization method.  

Figure 11. A rapid diagnostic and preliminary positioning method based on voltage threshold 

As shown in Figure 11, the proposed method requires 
training three neural network models to localize faulty power 
tubes for each phase individually. After identifying the faulty 
phase via voltage threshold detection, the corresponding 
model is deployed for precise fault localization. 

3.2. MCNN-Based Fault Localization 
Approach 

The threshold-setting method based on the voltage 
mechanism model can initially locate the faulty phase but 
cannot pinpoint the specific faulty power tube. Therefore, this 
paper further investigates an intelligent fault localization 

approach using three-phase current as the characteristic 
feature. 

Problems in Existing Methods and Prior Research 
The neural network-based intelligent localization method 
excels at capturing subtle correlations and distinctions among 
fault characteristics, demonstrating significant advantages for 
fault localization in complex systems.  

Pioneering achievements have been made in intelligent 
diagnostic methods for MMCs [13], providing valuable 
insights for fault diagnosis and localization in MMC-based 
grid simulators. Reference [14] employs a 1D Convolutional 
Neural Network (CNN) to process raw voltage and current 
data from MMCs for fault localization, while Reference [11] 
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proposes a Sliding Time Window (STW)-based Feature 
Extraction Algorithm (FEA) coupled with a 2D CNN for 
enhanced diagnosis and localization. 

However, the aforementioned methods exhibit three 
critical limitations: 

• Directly inputting large volumes of raw voltage and
current data as samples may trigger the “curse of
dimensionality”, leading to prolonged computational
delays in intelligent diagnostic methods and potentially
compromising the safe operation of grid simulators;

• The aforementioned methods are limited by the
assumptions of sufficient sample size and uniform data
distribution, while the scarcity of fault data in grid
simulators leads to insufficient adaptability of
conventional intelligent diagnostic approaches;

• The one-dimensional convolutional neural network (1D
CNN) processes univariate data and extracts local
features effectively, but exhibits limitations in capturing
global contextual relationships across multiple
dimensions and handling multi-scale features. While
Reference [12] demonstrated successful fault diagnosis
for single-phase MMC systems using 1D CNN, the
polyphase grid simulator studied in this work generates
multidimensional fault characteristics. Consequently,
both 1D CNN and 2D CNN show unsatisfactory
accuracy in fault diagnosis and identification for this
application.

Therefore, it is imperative to develop an intelligent 
localization method with fault sample augmentation 
capabilities. 

The Multi-scale Convolutional Neural Network (MCNN) 
employs convolutional kernels of varying scales to enhance 
fault identification. Smaller kernels capture fine-grained 
details of fault characteristics, while larger kernels extract 
global fault information. By integrating these multi-scale 
features, the model achieves a more comprehensive 
representation of fault types, significantly improving 
diagnostic accuracy. 

The fusion of multi-scale feature maps enables effective 
consolidation of hierarchical characteristics. This architecture 
fully leverages features at different levels, particularly 
enhancing the model's sensitivity to subtle signatures—
making it exceptionally suitable for fine-grained fault 
identification tasks. Its robust multi-scale processing 
capability improves recognition robustness for varying fault 
signatures. 

This study proposes the adoption of an MCNN-based 
approach for fault localization.  

Data Preprocessing 
For the grid simulator shown in Figure 2, complete three-
phase current data is acquired through installed sensors. Due 
to the scarcity of fault samples in grid simulators, directly 
using single fault events as training data makes model 
convergence difficult. To augment fault samples, this paper 

first employs a sliding window feature extraction algorithm 
to segment existing fault data [13]. The offline data 
processing procedure using the sliding window is illustrated 
in the figure 12.  

Figure 12. Schematic Diagram of the Sliding Window 
Feature Extraction Algorithm 

Let the total length of the original fault current information 
be denoted as oriL , with a window of length winL  used to 
segment the original information at a step size stepL . After 
multiple slides, multiple data segments of length winL  are 
obtained. When the window reaches the end of the original 
data, if the remaining number of samples is less than the step 
size of the sliding window, the window stops sliding [13]. The 
number of extracted data segments is then determined as: 

1ori win

step

L L
S

L
 −

= + 
  

.           (5) 

Through iterative experimentation, this study selects a 
window length of 8,000 data points (equivalent to 0.08 
seconds) and a stride of 4,000 data points (0.04 seconds). The 
quantity of segmented fault samples is presented in the table 
1 below. 

Table 1. The number of segmented fault samples 

Fault phase Phase A Phase B Phase C 
Number of 

samples 6941 4022 6078 

The fault samples from each phase were partitioned into 
training (76%), testing (20%), and validation (4%) sets. The 
training and testing sets were used to develop the fault 
location model, while the validation set evaluated the model's 
localization accuracy.  
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Sample Augmentation Using FFT and IFFT 
Due to the limited number of available fault samples in the 
grid simulator, direct model training would result in poor 
generalization capability. To address this, the present study 
proposes a frequency-domain transformation approach for 
sample augmentation. Specifically, fault samples are first 
converted to the frequency domain via Fourier Transform, 
where filtering and perturbation operations are applied, 
before being reconstructed back to the time domain through 
inverse transformation. As shown in Figure 13, This process 
generates new fault samples while enhancing both diversity 
and robustness [15]. The detailed implementation steps are as 
follows: 

Perform Fast Fourier Transform (FFT) on the data samples 
to convert time-domain signals into frequency-domain 
signals. 

( ) ( )
1 2 /

0

N j fn N

n
X f x n e

− −

=
= ∫ π .           (6) 

Here, ( )X f  represents the frequency-domain 

representation of ( )x n , where f denotes the frequency 
variable and N corresponds to the data length. 

After introducing noise to the frequency-domain signal, an 
Inverse Fast Fourier Transform (IFFT) is applied to 
reconstruct the time-domain signal: 

( ) ( )
1

2 /

0

1 N
j fn N

f
x n X f e

N

−

=

= ∑ π .                (7)

Normalize the augmented fault samples: 
min

max min

x xx
x x

−′ =
−

.          (8) 

Where x  and x′  represent the original and normalized 
feature values, respectively, while maxx  and minx  denote the 
maximum and minimum values of the feature set. 

The frequency-domain transformation not only expands 
the fault samples but also smooths their distribution. Notably, 
its parameter selection is not manually specified, thereby 
ensuring the diversity of fault samples. 

Figure 13. Schematic Diagram of Frequency-Domain 
Transformation 

Multi-scale Convolutional Neural Network (MCNN) 
Model 
Leveraging the extensively augmented fault samples, the 
MCNN model is employed as both a classification and 
regression model. 

The Multi-scale Convolutional Neural Network (MCNN) 
model is a multi-scale convolutional neural network that 
captures features of input data at varying scales through 
differently sized convolutional kernels or parallel branch 
structures. Compared to standard CNN architectures, the 
MCNN achieves superior feature representation and higher 
accuracy, while improving automation and adaptability. The 
MCNN model has been successfully applied across diverse 
domains, including image classification, crowd counting, 
fault diagnosis, and multimodal fake news detection [16].  

Through iterative experimentation, this study selects 
convolutional kernels with lengths of 3 and 50 (16 kernels 
each) to extract features from the preprocessed and 
augmented three-phase current data. The multi-scale features 
are then concatenated into a single channel to fuse 
information across different scales. Subsequently, a fully 
connected layer with 128 nodes further processes and 
combines the fused features[17,18]. The algorithmic 
workflow is illustrated in Figure 14.  
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Figure 14. Schematic Diagram of the MCNN (Multi-scale Convolutional Neural Network) Model MCNN 

Exploration of Valid Samples 
In the dataset, the initial segments represent normal current 
data, while post-fault current waveforms exhibit a gradual 
deviation from normal values toward characteristic fault 
patterns. Using the entire dataset for MCNN training would 
lead to suboptimal fitting, as segments from different fault 
types may share similar transitional patterns, thereby  

"pulling" the model in conflicting directions. To address this, 
our study trains the MCNN on three distinct time-segmented 
datasets and evaluates their fault localization performance on 
a shared validation set. The overall accuracy results are 
presented in the figure below.  

Figure 15. Impact of Time-Segmented Datasets on Overall Training Performance 

Statistical analysis was conducted on all accuracy metrics, 
with the results visualized in the line chart below. 

Figure 16. Comparison of Fault-Type Identification 
Accuracy Across Time-Segmented Datasets 

As evident from Figures 15 and 16, the later the training 
set is in the temporal sequence, the higher its identification 
accuracy becomes. Since the voltage-threshold-based fault 
diagnosis method can rapidly detect fault occurrences, fault-
type identification prioritizes accuracy. Balancing both 
timeliness and accuracy, this study selects Dataset 3 to train 
individual models, resulting in three dedicated models for 
fault localization across the three phases.  

The schematic diagram of the fault localization method 
using the enhanced MCNN model with augmented fault data 
is shown in the figure 17. 
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Figure 17. Comparison of Schematic Diagram of the Fault Localization Method Using the Data-Augmented 
MCNN Model 

4. Results

This paper employs Simulink to construct the simulation 
model of the power grid simulator, with the key circuit 
parameters detailed in Table 2. By simulating 36 distinct fault 
scenarios on the inverter side of this simulator, the model 
acquires both normal operational data and fault data for each 
phase (A, B, and C) tube. These datasets are utilized to 
separately train three distinct MCNN positioning models. 
Finally, this paper uses the validation set to verify the model, 
and evaluates its classification performance through the 
confusion matrix and accuracy rate indicators. The relevant 
results and per-class F1-score breakdowns are shown in 
Figure 18 and Table 3 respectively. 

Table 2. Design parameters of the main circuit 

Parameter Title 2 

Rated power 800W 

Voltage on the DC side 100V 

Switching frequency 10kHz 

Sampling frequency 200kHz 

Filter inductorL 27mH 

Filter capacitorC 22 μF  
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Figure 18. Fault location diagrams for each phase 

Table 3. per-class F1-score breakdowns 

Fault Types Precision (%) Recall (%) F1-score (%) 

A 相 

A0~6、A9~10 100 100 100 
A7 87.5 100 93.33 
A8 100 71.88 83.64 

A11 71.88 85.19 77.97 

B 相 

B0、B2~4、
B6~11 

100 100 100 

B1 100 66.67 80.00 
B5 82.61 100 90.48 

C 相 

C0~6、C8~10 100 100 100 
C7 83.78 100 91.17 

C11 100 73.91 85.00 

The results show that the fault diagnosis and location 
method combining voltage threshold with MCNN achieves 
an accuracy rate of 100% in diagnosis, and the single 
diagnosis time is at the millisecond level. In fault location, the 
overall accuracy rate reaches over 96%. Compared with the 
simple CNN model, the diagnostic accuracy of this method is 
increased by approximately 4%, the diagnosis time is 
significantly shortened, and the location accuracy is 
improved by 1%. Moreover, due to the use of the MCNN 
model in this method, it has a stronger adaptability to noise 
and better robustness. Therefore, the efficiency and accuracy 
of this method in the paper can be seen. 

5. Discussion

This paper adopts a fault diagnosis and location method that 
combines mathematical models with neural networks. It 

retains the efficiency of the threshold setting method in 
mathematical models and the ability of intelligent diagnosis 
to identify subtle features. This enables rapid diagnosis and 
accurate fault location, which is of great significance in 
engineering. The rapidity of diagnosis ensures the reliability 
of operation. During intervals, safety measures and protection 
measures can be taken. Precise location can reduce the 
workload for the operation and maintenance and repair of the 
power grid simulator. 

To ensure a high accuracy rate in fault location, the 
training and testing datasets for the model in this paper are 
positioned towards the end in the time domain. It means that 
although this method can provide rapid diagnosis, the 
location still requires a certain amount of time. This is 
because the differences in fault currents tend to reach 
characteristic values slowly, and the distinctions are subtle. 
At the same time, a fine-tuning model can be established to 
explore the minimum interval time by testing the effective 
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dataset, further improving the timeliness of fault location. 
Additionally, since the probability of simultaneous failure of 
both tubes and multiple tubes is extremely low, this paper 
does not conduct related research. The next step of research 
will consider transfer learning of fault samples under different 
operating conditions and the identification of simultaneous 
tube failures and multiple tube failures, further improving the 
accuracy and generalization. At the same time, the influence 
of the load on the location results and timeliness can be 
studied, and test loads can be studied for fault diagnosis and 
location in engineering applications. 

6. Conclusion

This paper integrates mathematical models and intelligent 
diagnostic methods. By setting fault thresholds through 
voltage mathematical models, it achieves a 100% accuracy 
rate in rapid fault diagnosis, addressing the timeliness 
deficiency of intelligent diagnostic methods. Additionally, 
Using neural networks to overcome the problem of difficult 
localization of symmetrical pipe faults. Effective fault 
datasets are selected through training experiments with 
adjusted intervals. Fault samples are expanded using the 
sliding window method and frequency domain 
transformation, and the MCNN (Multilayer Convolutional 
Neural Network) model is trained to capture subtle features, 
achieving a fault localization accuracy of over 96% overall. 
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