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Abstract 
 
This study explores the fine-tuning application of the Qwen2.5-VL multi modal large model in the electrical domain. The 
electrical industry faces numerous challenges in maintaining and managing complex electrical systems. Traditional methods 
often rely on manual inspection and analysis. With the rapid advancement of artificial intelligence (AI) technologies, there 
is a growing need to explore how these tools can be applied to improve efficiency and accuracy in the electrical domain. 
Qwen2.5-VL is a state-of-the-art visual language model. We adopted the LoRA (Low Rank Adaptive) method to fine tune 
the model, which enables efficient parameter updates in low resource environments while maintaining high performance. 
This study analyzes the data characteristics and task requirements in the electrical domain, designs fine-tuning strategies 
with a focus on image-based applications, including data preprocessing, model fine-tuning, and training parameter optimi-
zation. The experimental re-sults show that the fine tuned model has achieved significant performance im-provements in 
tasks such as electrical equipment fault detection, image recogni-tion, and text classification. This study provides new ideas 
and methods for the application of artificial intelligence in the electrical domain, which is of great significance for promoting 
the development of electrical intelligence. 
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1. Introduction 

With the rapid development of artificial intelligence technol-
ogy, the application of large models in various fields is be-
coming increasingly widespread [1]. Electrical engineering, 
as one of the core areas of modern industry, is facing chal-
lenges and opportunities in digital transformation [2]. Apply-
ing advanced artificial intelligence technology to the electri-
cal field is of great significance for improving production ef-
ficiency, enhancing equipment reliability, optimizing re-
source management, and promoting sustainable development 
[3]. As a new generation multimodal large model, Qwen2.5- 
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VL has powerful language understanding and image pro-
cessing capabilities, providing new possibilities for intelli-
gent applications in the electrical field [4]. 

The electrical field is facing challenges such as equipment 
fault detection, image recognition in complex environments, 
and multimodal data fusion [5]. The existing computer vision 
systems are unable to cope with the complexity of electrical 
equipment, including complex electrical components, dy-
namic environments, and the need for multimodal data fusion 
[6]. Therefore, developing specialized models for the electri-
cal field is of great significance [7]. 

The integration of artificial intelligence (AI) into the elec-
trical domain has revolutionized traditional practices, 
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enabling advanced applications such as fault diagnosis, 
power grid optimization, and equipment condition monitor-
ing [8]. Among AI technologies, vision-language models 
(VLMs), which combine visual and textual understanding, 
hold significant potential for interpreting complex electrical 
data, including schematic diagrams, infrared images, and 
equipment manuals [9]. However, the deployment of general-
purpose VLMs in domain-specific scenarios often faces chal-
lenges due to the unique characteristics of electrical systems, 
such as specialized terminology, intricate topological rela-
tionships, and safety-critical requirements [10].  

Globally, VLMs like GPT-4V and BLIP-2 have demon-
strated remarkable performance in cross-modal tasks, includ-
ing image captioning and visual question answering [11]. In 
China, models such as Qwen-VL and ERNIE-ViL have also 
achieved breakthroughs in integrating domain knowledge 
with multimodal reasoning. Recent efforts to adapt VLMs to 
specialized fields include medical image analysis and auton-
omous driving, where domain-specific fine-tuning strategies 
and knowledge injection have proven effective [12]. In the 
electrical domain, preliminary studies have explored convo-
lutional neural networks and transformers for tasks like insu-
lator defect detection and load forecasting [13]. However, 
these works predominantly focus on single-modal data (im-
ages or text), neglecting the synergistic analysis of multi-
modal information inherent in electrical systems [14]. For in-
stance, interpreting a substation’s operational status often re-
quires correlating thermal images with maintenance logs—a 
capability underdeveloped in existing approaches. 

Three critical limitations hinder the application of general 
VLMs in the electrical domain: 

(1) Domain-Specific Knowledge Gap: Pretrained VLMs 
lack familiarity with electrical terminologies ("partial dis-
charge" or "phasor measurement units") and structured data 
formats (single-line diagrams), leading to suboptimal perfor-
mance in semantic alignment [15]. 

(2) Data Complexity and Scarcity: Electrical datas often 
involve high-resolution images, symbolic notations, and het-
erogeneous formats, yet publicly available multimodal da-
tasets tailored to this domain are scarce [16, 17]. 

(3) Inefficient Fine-Tuning Paradigms: Conventional fine-
tuning methods, designed for generic scenarios, struggle to 
preserve the model’s generalizability while adapting to spe-
cialized tasks, risking catastrophic forgetting or overfit-
ting[18]. 

This study aims to bridge these gaps by developing a do-
main adaptive fine-tuning framework for Qwen2.5-VL, 
which is specifically optimized for electrical applications. 
The main objectives include: 

(1) Building a multimodal electrical dataset: Organize a 
dataset that includes images (such as device snapshots, infra-
red thermography), textual descriptions (such as manuals, 
fault reports), and structured data (such as circuit diagrams) 
to capture domain specific features. 

(2) Resource optimization: Develop efficient fine-tuning 
strategies to reduce computational resource requirements, 
making the model more suitable for practical applications in 
the electrical field, and improving the performance of specific 

tasks without compromising the basic functionality of the 
model. 

(3) Enhance accuracy: By fine-tuning data in the electrical 
field, improve the accuracy of the model in electrical equip-
ment fault detection and image recognition tasks. 

(4) Domain adaptability: By fine-tuning a specialized 
model for the electrical field, the model can be seamlessly in-
tegrated into existing electrical management systems to im-
prove interpretability in scenarios such as fault location. 

(5) Verify actual effectiveness: Evaluate fine-tuning mod-
els in practical tasks, including device state recognition, cross 
pattern retrieval of maintenance records, and security viola-
tion detection. 

By addressing these challenges, this research seeks to es-
tablish a robust framework for deploying VLMs in intelligent 
electrical systems, advancing both AI methodology and en-
ergy infrastructure management. The outcomes are expected 
to provide insights into domain-specific adaptation of multi-
modal models, with implications for industrial AI applica-
tions beyond the electrical sector. 

2. Related Methods 

This study uses the Qwen2.5-VL-7B-Instruction model, 
which is a powerful multimodal large-scale language model 
used to solve specific tasks in the electrical field. And the 
LoRA method is used for fine-tuning, which is known for its 
high efficiency in parameter efficient fine-tuning (PEFT) of 
large models [19]. The fine-tuning process is based on the or-
ganized electrical equipment image dataset, which is a com-
prehensive collection of images and annotation information 
of a large number of electrical equipment. 

(1) Data preprocessing: The data preprocessing stage 
mainly collects image and text data of electrical equipment, 
annotates and preprocesses them, including image standardi-
zation and text segmentation processing [20]. 

(2) Training parameter optimization: Various parameter 
adjustment strategies are adopted, combined with hybrid 
training and distributed training techniques, to improve train-
ing efficiency. 

Qwen2.5-VL-7B-Instruction is a visual language model 
that performs well in tasks involving text and image data [21]. 
It performs well in various benchmark tests, including visual 
Q&A and document comprehension. The reason for choosing 
this model is that it can handle multimodal inputs and adapt 
to professional fields such as electrical engineering. 

The dataset contains various electrical professional im-
ages, annotations, and related metadata [22]. It is carefully 
planned to address unique challenges in the electrical field, 
such as electrical equipment identification and environmental 
analysis. This dataset contains high-quality images and de-
tailed annotations, suitable for fine-tuning large models such 
as Qwen2.5-VL-7B-Instruction. 

The fine-tuning training process is based on LoRA. LoRA 
is a parameter-efficient fine-tuning method designed for large 
language models. The LoRA method was used to fine-tune 
the Qwen2.5-VL-7B-Instruct model. The core idea is to 
freeze the pre-trained model weights and inject low-rank 
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matrices to specific layers of the model, allowing for efficient 
updates without modifying the entire model architecture [23]. 
The basic principle of LoRA training process  is shown in 
Figure 1. 

 

Figure. 1. The basic principle of LoRA fine-tuning pro-
cess 

The fine-tuning process only trains A and B. The key steps 
of the fine-tuning process are as follows: 

(1) Model Initialization: The Qwen2.5-VL-7B-Instruct 
model was loaded and prepared for fine-tuning. The model's 
weights were frozen except for the layers designated for 
LoRA adaptation. 

(2) Data Preprocessing: The dataset was preprocessed to 
convert the image and text data into a format compatible with 
the model. This involved resizing images, tokenizing text, 
and creating input tensors. 

(3) LoRA Configuration: The LoRA configuration was set 
up to target specific layers of the model, such as the query 
[24], key, and value projections. The parameters for LoRA, 
including rank, alpha, and dropout, were carefully tuned to 
optimize performance. 

(4) Training: The model was fine-tuned using the LoRA 
method with a training configuration that included a learning 
rate of 1 × 10−4, a batch size of 4, and gradient accumulation 
steps to manage computational resources. The training pro-
cess involved multiple epochs, with periodic evaluation and 
checkpointing to monitor progress. 

(5) Evaluation: After fine-tuning, the model was evaluated 
on a validation set from the dataset to assess its performance 
in tasks such as electric equipment identification and classifi-
cation. The evaluation metrics included accuracy, precision, 
recall, and F1-score [25]. 

By leveraging the LoRA method, we were able to effi-
ciently adapt the Qwen2.5-VL-7B-Instruct model to the elec-
tric domain, achieving significant improvements in task-spe-
cific performance while minimizing computational overhead. 

In the data preprocessing stage, we collected and inte-
grated multimodal data in the power field, including equip-
ment technical documents, fault reports, scientific research 
papers, high-resolution equipment images (such as infrared 
thermal imaging, circuit topology diagrams), and sensor tim-
ing data [26]. For textual data, we have standardized power 
professional terminology, filtered noise, and annotated fine-

grained entities (including equipment models, fault types, 
etc.). The image data undergoes standardization processing 
(unified resolution and color space) and enhancement opera-
tions (simulating device states under different lighting condi-
tions, adding noise to enhance robustness). In addition, for 
power time series data (such as voltage fluctuation rec-
ords)[27], we use sliding window segmentation and normali-
zation processing to extract spatiotemporal features. 

At the model architecture level, we retained the core mul-
timodal alignment capability of Qwen2.5-VL, but made tar-
geted improvements for the characteristics of the power field. 

To improve fine-tuning efficiency and model perfor-
mance, we have designed the following training strategies. 
Progressive learning rate scheduling, initially using a low 
learning rate (1e-3) to stably adapt to the distribution of power 
data, and then gradually increasing to the peak to accelerate 
convergence and avoid gradient oscillations caused by do-
main differences. Adopting mixed precision training and dis-
tributed parallelism: utilizing mixed precision to reduce video 
memory usage and support larger batch inputs. Domain adap-
tive data augmentation is used to address the scarcity of 
power data. Synthetic data generation is employed, such as 
simulating equipment images with different levels of faults, 
and integrating contrastive learning to enhance the robustness 
of cross modal representations. 

The above strategies aim to address the unique challenges 
in the field of electricity. Professionalism of terminology: Im-
prove semantic parsing accuracy through domain dictionary 
injection and fine-grained annotation. Data heterogeneity: 
The spatiotemporal fusion module and multimodal alignment 
optimization support complex scenarios. Security sensitive 
requirements: Regularization and synthetic data augmenta-
tion ensure the model's generalization ability in limited sam-
ples and reduce the risk of misjudgment. 

This fine-tuning scheme can significantly improve the per-
formance of Qwen2.5-VL in power tasks, such as equipment 
status monitoring, combining infrared images with operation 
logs, cross modal fault retrieval, matching historical fault im-
ages with text queries, safety risk prediction, and joint infer-
ence of temporal data and visual features. 

3. Data Analysis 

The image data in the electrical field has the characteristics of 
diversity, complexity, and high annotation requirements. The 
diversity of data is reflected in the differences in the types of 
electrical equipment and working environments; complexity 
is reflected in the complex structure of the device and the dy-
namic environmental background. Therefore, accurate label-
ing is crucial for model training. 

The image data characteristics are diverse in the field of 
electricity [28]. The image of power equipment covers multi-
ple dimensions, including equipment types such as transform-
ers, circuit breakers, insulators, normal or faulty operating 
status, and detection modes such as visible light and infrared 
thermal imaging [29]. For example, the same device will ex-
hibit significantly different visual characteristics under 
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different fault modes, such as partial discharge and mechani-
cal deformation. 

The image data characteristics are complex in the field of 
electricity. The appearance of the equipment is significantly 
affected by environmental factors [30], such as changes in 
daytime and nighttime illumination, and attenuation of infra-
red images in rainy and snowy weather. Multiple background 
interferences: Images often contain complex scenes [31], 
such as multiple equipment stacks in substations and stag-
gered cable layouts, requiring differentiation between target 
devices and background elements such as brackets and vege-
tation. Coexistence of multi-scale features: There is a need to 
capture both macroscopic overall states [32], such as the over-
all distribution of equipment, and microscopic defects, such 
as surface cracks on insulators. 

High annotation are required. It is necessary to accurately 
label the equipment type, fault type such as arc, overheating, 
mechanical damage, severity level and location information, 
and defect area boundary [33]. Cross modal alignment is also 
crucial. Some images need to be associated with textual de-
scriptions, such as fault descriptions in maintenance reports 
[34]. 

Construction process of power image data is important. It 
includes collecting power company operation and mainte-
nance databases, public datasets, shared data from research 
institutions, and on-site filming. Types include device appear-
ance images, infrared thermal images, discharge detection 
spectra, circuit schematics, etc [35]. Data annotation process 
is to annotate the main body of the equipment, such as trans-
former oil pillows, defect areas, such as insulator cracks, 
safety signs, such as high voltage warning signs [36]. Attrib-
ute annotation includes recording device model and operating 
parameters, such as load rate, ambient temperature, and fault 
codes. 

Data preprocessing is to perform image processing, unify 
resolution, and align multispectral image channels [37]. Sim-
ulated data augmentation includes adding noise and blurring. 
Text processing includes professional terminology cleaning, 

such as unifying circuit breaker and CB expressions. Entity 
recognition and linking is to associate the device model in the 
text description with the knowledge base. 

This study used 3000 collected and organized multimodal 
images of power equipment as the dataset. This dataset is de-
signed specifically for power system fault diagnosis, covering 
typical power equipment, equipment faults, equipment ap-
pearance defects, surrounding environmental information, 
discharge detection images, etc. Each image contains a corre-
sponding number and manually generated descriptive state-
ments, such as the Infrared image of circuit breaker shows 
overheating at terminal connections, indicating loose contact. 
The fine-tuning dataset details are as Figure 2. 

 

Figure. 2. Fine-tuning dataset details 

Each electrical image contains corresponding numbers and 
manually generated descriptions, such as typical equipment, 
equipment failures, equipment appearance defects as shown 
in Figure 3. 

 

Figure. 3. Typical example of fine-tuning dataset image 

In this section's task, we mainly use the first 500 images 
and process and format them, with the goal of combining 
them into a JSON file in the following format: 

[ 
{ 

    "id": "identity", 
    "conversations": [ 
      { 
        "role": "user", 
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        "value": "Electric: <|electirc_start|>Image file 
path<|electirc_end|>" 

      }, 
      { 
        "role": "model", 
        "value": "A capacitor in a circuit is used for storing 

electrical energy temporarily in an electric field." 
      } 
    ] 
}, 
... 
] 
Among them, role refers to the role, user represents hu-

man, model represents Qwen2.5-VL, value refers to the con-
tent of the conversations, where <|electrirc_start|> and <|elec-
trirc_end|> are markers for the Qwen2.5-VL model to recog-
nize images, and the file path or URL of the image can be 
placed in the middle. 

Load the dataset, save the images locally, convert the im-
age path and description text into a CSV file, and convert the 
CSV file into a JSON file. 

The electrical field data has unique characteristics, mainly 
including multi-source heterogeneity, spatiotemporal correla-
tion, and strong professionalism. Multi source heterogeneity 
is reflected in the diversity of data types, including device op-
eration logs, circuit topology diagrams, infrared thermal im-
aging, monitoring videos, sensor timing data, etc. Spatiotem-
poral correlation refers to the strong correlation between elec-
trical data and grid node locations and time series, such as 
power load fluctuation data, equipment aging trends, fault 
propagation paths, etc. Strong professionalism is reflected in 
the unique professional terminology and knowledge system 
in the field of power systems, such as relay protection setting, 
power electronic converter technology, insulation material 
characteristics, etc. 

The main types of tasks in the electrical field include: tech-
nical document classification, such as equipment manual 
classification, standard specification analysis, intelligent 
question and answer systems, such as fault diagnosis consul-
tation, operation specification query, image recognition, such 
as insulator damage detection, equipment nameplate recogni-
tion, etc. These tasks pose higher requirements for the model's 
ability to integrate power knowledge and multimodal collab-
orative processing. Based on these characteristics, it is neces-
sary to design fine-tuning strategies for the power system to 
improve the application performance of the model in profes-
sional scenarios. 

There are many impacts of data characteristics on fine-tun-
ing. Data diversity: The diverse features of electrical equip-
ment images, such as transformers and circuit breakers, re-
quire models to have cross device generalization ability. Alt-
hough the large-scale pre training data of Qwen2.5-VL covers 
common industrial scenarios, the fine-grained recognition of 
specific power equipment still requires domain adaptive fine-
tuning to enhance the model's ability to represent subtle fea-
tures. 

Equipment state recognition under complex working con-
ditions, such as overlapping installation scenarios of multiple 
devices, poses a challenge to the robustness of the model. The 

multi-stage fine-tuning strategy of Qwen2.5-VL can effec-
tively improve the environmental adaptability of the model, 
but in actual deployment, it is necessary to supplement ex-
treme operating condition samples, such as outdoor equip-
ment images under rainy and foggy weather, and simulate 
various abnormal states of equipment operation through data 
augmentation. 

High precision labeling is crucial for electrical equipment 
analysis. It is necessary to construct a multidimensional an-
notation system that includes equipment models, fault levels, 
and hazardous area markings. Especially for professional data 
such as partial discharge maps and relay protection action 
characteristic curves, power experts need to participate in an-
notation verification to ensure that the model can accurately 
learn the complex mapping relationship between equipment 
status and fault modes. 

4. Experiments and Evaluation 

This experiment used two NVIDIA RTX4090 graphics cards 
and installed CUDA and PyTorch environments. The fine 
tuned model has improved accuracy compared to the original 
model in electrical equipment fault detection and image 
recognition tasks.  

Use the transformers library to load the pre trained 
Qwen2.5-VL model for model fine-tuning. Based on the 
characteristics and requirements of electrical field images, 
configure parameters such as learning rate, batch size, and 
training epochs for the model. Fine tune the Qwen2.5-VL 
model using the preprocessed dataset. The fine-tuning pro-
cess can reduce GPU memory requirements and computa-
tional costs by adjusting a subset of model weights (such as 
using LoRA technology). Save the fine tuned model weights 
locally for future use. Perform performance evaluation and 
application of the model after fine-tuning. Use a test set to 
evaluate the fine tuned model, which should be independent 
of the training set. Select metrics such as accuracy and F1 
score to evaluate the performance of the model. The basic hy-
perparameter settings of the model are shown in Table 1. 

Table 1. The summary of hyperparameters 

No Hyperparameter Set value 
1 lora_rank 64/128 
2 lora_alpha 16 
3 lora_dropout 0.05 
4 lr 0.001 
5 batch_size 4 
6 train_epoch 1 
7 weight_decay 0.1 

 
To evaluate the performance of the fine tuned model, we 

designed a series of experiments. The experimental data in-
cludes text data and equipment image data in the electrical 
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field, covering three major tasks: technical document classi-
fication, intelligent question answering, and image recogni-
tion. The data is divided into training set, validation set, and 
testing set in a ratio of 6 : 3 : 1. 

In the technical document classification task, the fine tuned 
model achieved improved accuracy in classifying power 
equipment manuals. The accuracy of the intelligent question 
answering system in fault diagnosis consulting tasks has im-
proved compared to before fine-tuning. In terms of image 
recognition, the top-1 accuracy of the model in insulator dam-
age detection tasks is improved compared to the basic model. 

Compared with existing specialized models in the power 
industry, our fine-tuning model demonstrates significant ad-
vantages. When handling cross modal joint analysis tasks, 
such as combining fault text descriptions to identify equip-
ment infrared thermal imaging features, the model demon-
strates excellent multimodal fusion capabilities. 

The experimental results show that the domain adaptive 
fine-tuning strategy based on Qwen2.5-VL effectively im-
proves the application performance of the model in the power 
system. The model not only performs well in core tasks such 
as equipment state recognition and fault diagnosis, but also 
demonstrates practical engineering value in cross modal cor-
relation analysis, providing reliable technical support for 
smart grid operation and maintenance. Especially in the task 
of identifying equipment defects under complex working 
conditions, the adaptability of the power industry scene has 
been enhanced. 

The experimental needs to download and load the 
Qwen2.5-VL-7B-Instruction model, and load the dataset for 
training. It needs to configure Lora with parameter r = 64 / 
128, lora_alpha = 16, lora_dropout = 0.05, and trains for 1 
epoch with batch size of 1. 

Figure 4 and  Figure 5 show the variation curve of training 
loss with training epochs (Epoch). The horizontal axis repre-
sents training epochs (Epoch), ranging from 0 to 1; the verti-
cal axis represents the loss value, ranging from 0 to 10. The 
curve shows that as the training epochs increase, the loss 
value gradually decreases and tends to stabilize, indicating 
that the model gradually converges during the training pro-
cess. The annotation of the curve is "LoRA_rank = 64 / 128", 
indicating that the training used a specific model configura-
tion (LoRA, rank 64 / 128). The initial learning rate is 1e-3. 

 

Figure. 4. Train loss diagram rank = 64 

 

Figure. 5. Train loss diagram rank = 128 

Choosing the appropriate LoRA_rank requires a trade-off 
between model performance, training efficiency, memory us-
age, and computational cost. Lower LoRA_rank is suitable 
for environments with limited resources, but may sacrifice 
some model performance. A higher LoRA_rank can improve 
model performance, but it will increase computational and 
storage requirements. In practical applications, the appropri-
ate LoRA_rank can be selected based on the specific task re-
quirements and resource limitations. 
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Figure. 6. Overall fine-tuning results 

The Figure 6 above shows three main categories: Traina-
ble, Runtime, and Train_sample_per_decond, each corre-
sponding to LoRA_rank at 64 and 128, respectively. 

Firstly, the bar chart of Trainable shows that as 
LoRA_rank increases, the percentage of trainable parameters 
also increases. Specifically, when LoRA_rank is 64, Traina-
ble is approximately 18.99 %; when LoRA_rank is 128, it 
further increases to 20.16 %. 

The following is a bar chart of Runtime (minutes and sec-
onds), which is similar to Trainable. As LoRA_rank in-
creases, the runtime also increases. Specifically, when 
LoRA_rank is 64, the running time is 3 minutes and 22 sec-
onds; when LoRA_rank is 128, further decrease to 3 minutes 
and 24 seconds. 

Finally, there is a bar chart for Train_sample_per_decond, 
where the situation is opposite to that of Runtime. As 
LoRA_rank increases, the number of training samples per 
second decreases. Specifically, when LoRA_rank is 64, the 
number of training samples per second is 9.72; when 
LoRA_rank is 128, it further increases to 9.7. 

These data indicate that by adjusting LoRA_rank, the pro-
portion of trainable parameters, runtime, and training effi-
ciency of the model can be optimized to some extent. These 
changes, although not significant, are of great significance for 
understanding the role of LoRA_rank in model fine-tuning. 

Through the above analysis of the experimental process of 
fine-tuning LoRA for the large model, taking dialogue gener-
ation as an example，the specific performance evaluation ta-
ble is as Table 2. 

Table 2. Evaluation of the fine tuned model of electric 
domain 

Dimen-
sion 

Metric 
Baseline 

LLM LoRA Result Analy-
sis 

Accuracy ROUGE-L 0.36 0.43 
↑ 

19.4 % 
Quality F1 0.73 0.81 ↑ 11 % 

Cost Training 
VRAM GB 

Full parame-
ter fine-tun-

ing: 120 

LoRA: 22 
Rank = 64 ↓ 82 % 

 
From the table above, we can see that after fine-tuning, the 

large model has improved in task accuracy, ROUGE-L im-
proved from 0.36 to 0.43, indicating better overlap with ref-
erence answers. In terms of generation quality, F1 improved 
by 11 %, confirming higher semantic relevance. In terms of 
resource efficiency, VRAM usage dropped from 120 GB to 
22 GB, enabling single-GPU training. 

Table 3. Performance comparison with models on test 
set 

Dimen-
sion 

Metric 
Baseline 

LLM LoRA Result Analy-
sis 

Accuracy 92.3 78.5 88.1 81.7 
F1-Score 0.91 0.72 0.83 0.75 

mAP@0.5 89.7 65.4 76.5 68.9 
The comparative models include the general model (Res-

Net / Win) and the domain specific model (PowerPM). The 
key indicators include accuracy, F1-Score,  Average accuracy 
of object detection, mAP@0.5 as shown in Table 3 above. 

Table 4. Performance across different electric scenar-
ios 

Scenario 
Preci-
sion 

Recall 
F1-

Score 
Challenge 

Classification of elec-
trical equipment 

94.5 % 93.8 % 0.941 
Differential 

identification 

Identification of faulty 
equipment 

83.6 % 80.3 % 0.819 
Background 

overlap inter-
ference 

Monitoring of viola-
tion modification 88.2 % 85.7 % 0.869 

Covering and 
disguising 

 
The Table 4 above divides different electrical application 

scenarios and assigns task types based on the actual needs of 
the electrical field and selects appropriate indicators based on 
the unique challenges of each scenario and the nature of the 
task. 

In the output results of the model after fine-tuning, it can 
be seen that the model uses a brief English style to describe 
its response style: 

And for the same image, the output of the model without 
fine-tuning is as follows: 

1-No fine-tuning: The image depicts a transformer. The 
transformer works on the principle of electromagnetic 

mailto:mAP@0.5
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induction and is used to change the voltage level of alternat-
ing current. It consists of two coils: the primary and second-
ary, which are not electrically connected but linked by a mag-
netic field. 

1-After fine-tuning: Transformers in a power grid are used 
to step up the voltage for efficient transmission over long dis-
tances and then step it down for safe use. 

2-No fine-tuning: Circuit breakers are protective devices 
that automatically stop the flow of current in an electrical cir-
cuit as a safety measure. They trip, or open the circuit, when 
they detect an overload or short circuit, preventing damage 
and potential fires. 

2-After fine-tuning: A circuit breaker is overcurrent pro-
tection device. It trips to interrupt the circuit when excessive 
current flows through it.  

By adjusting the answers, it is evident that there has been 
a change in style after the fine-tuning. After fine-tuning the 
model, the LoRA fine tuned model can be loaded and used 
for inference applications. Apply the fine tuned Qwen2.5-VL 
model to tasks such as image recognition, classification, and 
description in the electrical field. Adjust the input and output 
formats of the model based on actual application scenarios 
and requirements. 

5. Conclusion 

This study has successfully implemented the fine-tuning of 
the Qwen2.5-VL model for the electrical domain to address 
the unique challenges of intelligent applications in the elec-
trical domain. By integrating domain specific knowledge, op-
timizing multimodal alignment, and designing adaptive train-
ing strategies, the performance of the model in tasks such as 
electrical equipment classification, fault detection, violation 
image recognition, and text classification has been signifi-
cantly improved. We have demonstrated a significant im-
provement in the model's ability to interpret complex electri-
cal data, including heterogeneous images such as infrared 
thermography, circuit diagrams, and technical texts such as 
fault reports and equipment manuals. Future work will focus 
on expanding the dataset in the electrical field, optimizing the 
multimodal fusion capability of models, and exploring more 
refined fine-tuning strategies to promote the development of 
electrical intelligence.  

Modifications to Qwen2.5-VL, such as the introduction of 
electrical term and device imaging, effectively bridge the se-
mantic gap between general visual language abilities and 
electrical system professional requirements. By providing 
clearer insights into the model's decision-making process, 
these techniques will enhance the model's ability to handle 
complex situations effectively. 

The construction of a comprehensive dataset, including 
multimodal electrical data with precise annotations, solves 
the scarcity problem of specific domain benchmarks. Ad-
vanced preprocessing techniques ensure high-quality input 
representation. 

Hybrid fine-tuning strategy - combining parameter effi-
cient adapters, knowledge distillation, and synthetic data aug-
mentation - achieves excellent performance while reducing 

the risk of overfitting. The progressive learning rate schedul-
ing and mixed precision training further improve the conver-
gence efficiency, making the framework scalable for indus-
trial deployment. 

The experimental verification on practical tasks such as 
cross modal fault retrieval and equipment status monitoring 
has confirmed the practicality of the model. For example, 
compared to the baseline VLM, the fine tuned Qwen2.5-VL 
shows improved fault classification accuracy and strong gen-
eralization ability on unseen device types. These results em-
phasize the potential of VLM applicable to the field to funda-
mentally change power infrastructure management by 
achieving automated, interpretable, and safety aware deci-
sion-making. 

Despite these advances, challenges still exist. Firstly, the 
current framework relies on static datasets, while real-time 
grid data streams require dynamic adaptation mechanisms. 
Secondly, although synthesizing data reduces annotation 
costs, the domain gap between simulated and actual fault sce-
narios may affect robustness. Researchers will focus on how 
to expand the model to include real-time sensor streams and 
graph based grid topology modeling, and how to eliminate the 
gap between simulated and actual fault scenarios to affect the 
model's robustness, and how to improve interpretability 
through attention visualization and causal analysis of safety 
critical scenarios. All relevant parties must explore the col-
laborative learning paradigm to address data privacy issues in 
multi stakeholder power systems. 

This work not only advances the application of artificial 
intelligence in the electrical domain, but also provides a blue-
print for adapting multimodal models to other industrial sec-
tors with strict domain specific requirements. 
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