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Abstract 
The pronounced dependence of photovoltaic (PV) generation on meteorological conditions, coupled with substantial fluctu-
ations in load demand, renders conventional deterministic optimization approaches inadequate. Addressing the need for 
robust multi-phase decision-making across temporal domains (e.g., day-ahead scheduling and real-time adjustment) and the 
coordinated optimization of continuous variables (such as energy storage charge/discharge rates) and discrete variables (such 
as unit commitment states), this research proposes a phased robust optimization strategy for PV-storage microgrids. This 
strategy integrates Deep Reinforcement Learning (DRL) with a Mixed-Integer Constrained Model (M-ICM). The method-
ology explicitly accounts for the coupling effects between irradiance intensity, temporal sequence efficiency, and the state-
of-charge of energy storage systems. This ensures that the microgrid control system provides sufficient resilience mecha-
nisms for dynamic energy allocation in practical applications, facilitating global optimization of microgrid energy utilization. 
The simulation results show significant improvements over conventional methods, which includes reduction in time-to-peak 
under dynamic balancing conditions, maintenance of lower output current-to-power ratios, and enhanced convergence speed 
of the neural network model. 
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1. Introduction 

With the increasing global market share of photovoltaic (PV) 
generation technology in renewable energy systems, continu-
ous technological advancements are being made in PV mi-
crogrid optimization. The inherent temporal fluctuations of 
PV power generation have intensified the demand for respon-
sive regulation in microgrid systems [1]. Unlike conventional 
renewable energy generation approaches, PV systems imple-
ment multi-layer coordination management through photoe-
lectric conversion, energy storage, grid connection mecha-
nisms within microgrid architectures. This interconnection 
establishes a correlation between reactive power output in 
distributed structures and grid system frequency. However,  
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PV generation demonstrates limited capability to enhance 
power output when confronting uneven power supply condi-
tions in grid systems, thereby compromising overall power  
system stability [2]. This limitation diminishes the potential 
coverage scope of secondary output variables in electrical 
systems. 

1.1 Current research status 

The distributed photovoltaic (PV)-energy storage system has 
the capability to inject active power into grid systems while 
providing frequency regulation in response to variations in 
grid power demand [3]. This operational characteristic proves 
instrumental in mitigating disturbances caused by renewable 
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energy fluctuations, thereby enhancing power system security 
and stability through the implementation of adaptive control 
strategies that optimize energy storage utilization for output 
balancing [4]. The operational framework for phase regula-
tion in PV microgrid-energy storage systems is illustrated in 
Figure 1. 
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Figure. 1. PV-energy storage stage regulation and 
control process. 

The generation-energy storage strategy of photovoltaic mi-
crogrid adopts a neural network model to deal with the prob-
lem of illumination uncertainty, thus improving the efficiency 
and accuracy of the solution more effectively [5]. Consider-
ing the randomness of PV microgrid output, its decision level 
depends on the preset probability distribution. When the data 
distribution changes (such as illumination data, temperature 
change, etc.), the regularization of the complete solution may 
require a new decision calculation method [6]. Although the 
optimization strategy is designed to cope with variable situa-
tions, in complex situations (meteorological data, etc.), the 
resulting scheme is still conservative and fails to fully reveal 
the physical characteristics of the abnormal distribution of 
data [7]. 

Photovoltaic energy storage microgrid is based on a distri-
bution neural network model, which seeks the best solution 
in uncertainty [8]. This can not only adapt to the current ro-
bust optimization method of neural network models to find 
the optimal solution in the worst case, but also provide new 
technical support to solve its conservative problem [9]. Con-
sidering the multi-faceted impact of robust optimization and 
the conservative optimization of neural network models in 
three-dimensional space, the combination of the two has be-
come the main direction of power research [10]. 

These technical challenges have garnered significant re-
search attention. Petersen, H. R. et al. investigated the inte-
gration of multistage distributed neural network models with 
integer-zero programming design, where the probability dis-
tributions of uncertainties at each primary stage are influ-
enced by decision-making processes from preceding stages 
[11]. The study further considered fuzzy set boundaries asso-
ciated with first- and second-order moment decision 

processes, where these boundaries remain non-deterministic 
and decision-related empirical data are represented through 
weighted averages and coprobability distribution vector 
spaces. Besides,  Ivanov, O., & Thompson, G. proposed a 
Wasserstein linear distance-based distributed neural network 
model employing fuzzy set deep learning algorithms [12]. 
This framework addresses critical challenges in renewable 
energy microgrid operations, which include real-time elec-
tricity pricing, renewable generation capacity, and load de-
mand management. Experimental validation indicates that the 
proposed architecture effectively balances energy output be-
tween main grids and microgrids through dynamic pricing 
mechanisms, while the developed DRO minimum product 
method provides reliable energy dispatch instructions under 
uncertainty. Sanchez-Lopez, R., & Bertsekas, D. employed 
an imprecise Dirichlet model to construct fuzzy sets encom-
passing all possible probability distributions of PV system 
rated output power [13]. The critical challenge of accurately 
matching multi-vector spaces across primary operational 
stages can be formulated as a system of linear equations for 
resolution [14]. 

1.2 Technical analysis 

M-ICM (Mixed-Integer Constrained Model) is a mathemati-
cal optimization problem in which the variables contain both
continuous and integer variables, and are subject to linear or
nonlinear constraints [15]. As an extended form of MIP
(Mixed-Integer Programming), it is widely used in complex
problems that requires the combination of discrete decision
and continuous optimization [16]. Traditional mixed-integer
linear programming (MILP) approaches exhibit significant
computational inefficiency when applied to microgrid opti-
mization problems. This time-intensive nature often renders
them unsuitable for real-time dispatch scenarios requiring
rapid responses. Particularly for microgrid optimization in-
volving multiple periods and numerous variables, conven-
tional MILP methods frequently entail substantial computa-
tional time. This characteristic hinders their applicability in
the rapidly evolving operational dynamics of modern power
systems.

In the field of PV-energy storage microgrid control, the 
goal is to obtain the optimal output solution under the most 
stable PV conditions. However, it is still a problem of proba-
bilistic prediction to ensure the stable output of a photovoltaic 
microgrid. Considering the advantages and disadvantages of 
DRL in computing, the performance comparison between the 
mainstream fusion method and the traditional single method 
is listed in Table 1. 

Table 1. Key issues and solutions. 
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Problems Deficiencies of the ex-
isting methods [17] 

The improved direction of fu-
sion DRO 

Over-
conserva-
tism 

Traditional DRL tends 
to be a safe but sub-
optimal strategy in 
three-dimensional 
space optimization. 

Distribution perturbation via 
DRO explicitly optimizes the 
"worst case" rather than average, 
avoiding conservatism. 

Compute 
efficiency 

High computational 
cost 

Adopt hierarchical optimization 
or approximate DRO. 

Environ-
mental 
uncer-
tainty 

DRL is sensitive to the 
distribution shift 

Adversarial training explicitly 
models distributional uncer-
tainty. 

Training 
stability 

The DRO target may 
cause a gradient explo-
sion. 

Update using a regularized or 
conservative strategy. 

 
The optimization of neural network models in three-di-

mensional space is too conservative, and related research is 
devoted to the integration of the two. A method for distrib-
uting neural network models to optimize DRO is proposed. 
The comparison of mainstream fusion methods is shown in 
Table 2. 

Table 2. Comparison of the fusion methods. 

Methods Core ideas Advantages Disad-
vantages 

Applicable 
scenarios 

DRL + 
DRO[18] 

The DRO objec-
tive is directly 
embedded in the 
DRL policy op-
timization. 

-Directly 
optimize the 
robustness 
- Adapt to 
dynamic en-
vironmental 
changes 

- High 
computa-
tional 
complex-
ity  
- Unstable 
training 

High un-
certainty 
environ-
ment 

DRO-
regularization 
strategy [19] 

DRO constraints 
are added to the 
policy gradient 
(PG) or value 
function (Q-
learning) of the 
DRL. 

- Balance 
performance 
and robust-
ness 
- The inter-
pretability is 
strong. 

- Hy-
perparam-
eter sensi-
tive 
- May be 
overly 
conserva-
tive 

Tasks that 
require a 
trade-off 
between 
robustness 
and effi-
ciency 

Layered hy-
brid architec-
ture 

The bottom 
DRL is responsi-
ble for local de-
cisions, and the 
top DRO adjusts 
the global policy 
distribution. 

- Modular 
design is 
easy to ex-
pand 
- Reduce the 
computa-
tional bur-
den 

-Stratified 
training is 
complex.  
-Two-
level opti-
mization 
objectives 
need to be 
coordi-
nated  

Multiscale 
decision 
problem 

Antagonism 
DRL [20] 

Adversarial per-
turbations are in-
troduced into the 
environment. 
Improve robust-
ness through 

- Proac-
tively ex-
pose vulner-
ability 
- Improve 
the 

-May de-
viate from 
the true 
distribu-
tion  

Safety-
critical ar-
eas 

Methods Core ideas Advantages Disad-
vantages 

Applicable 
scenarios 

confrontation 
training. 

robustness 
of confron-
tation 

- The 
training is 
difficult. 

 
While Deep Reinforcement Learning (DRL) offers signif-

icant capabilities for real-time decision-making, its practical 
application often encounters substantial challenges in satisfy-
ing system constraints. DRL algorithms typically prioritize 
the optimization of the objective function during training, ex-
hibiting a relative weakness in handling critical physical sys-
tem constraints. These constraints include, but are not limited 
to, charge/discharge limits for energy storage devices and 
power balance requirements. Consequently, the resulting op-
timal control actions derived from DRL may violate the op-
erational boundaries of the actual system, thereby compro-
mising solution feasibility. 

1.3 Research motivation and innovation 

The core of the hierarchical hybrid architecture in this paper 
is to use the general form of data statistics to divide all possi-
ble data distributions (that is, non-deterministic sets), and to 
seek the best solution on this set to ensure that the decision-
making process can maintain high quality and efficiency no 
matter how the data distribution changes [21]. 

Based on the reliable model of DERS (Distributed Energy 
Resources System), which is involved in the secondary regu-
lation of the power grid system, this paper studies the adap-
tive control strategy, including the regulation of microgrid 
output [22]. Firstly, by introducing DRL (Deep Reinforce-
ment Learning) control system design, the dynamic perfor-
mance and quality of the control system are improved; Sub-
sequently, DRO (Distributionally Robust Optimization) 
fuzzy computing control strategy is adopted to robustly opti-
mize the proposed adaptive control strategy. Through the 
comparative analysis with the traditional model constraint 
strategy, it is proved that the technical method in this paper 
integrates the hierarchical hybrid model and has a good robust 
optimization effect on the constraints of photovoltaic energy 
storage, which solves the problem of poor effect of parameter 
gradient analysis in the traditional method and avoids the risk 
of gradient explosion caused by the target [23]. 

The main innovations of this study are listed below: 
(1) Collaborative optimization of DRL and MILP is com-

pleted, which includes DRL providing a fast initial solution, 
MILP ensuring the feasibility and optimality of the solution, 
and balancing the speed and accuracy. 

(2) Stage robustness mechanism is done. Distributed ro-
bust optimization is adopted according to the PV-energy stor-
age stage, and model predictive control is used in the real-
time stage. 

(3) The hybrid Action Network is proposed to output con-
tinuous and discrete actions to avoid the dimension disaster 
caused by traditional discretization. 
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This paper proposes a hybrid optimization framework to 
address this critical limitation. By integrating the rapid re-
sponse capabilities of DRL with the precise constraint-han-
dling rigor of Mixed-Integer Linear Programming (MILP), 
the framework simultaneously ensures solution feasibility 
and meets the time-sensitive demands of real-time schedul-
ing. This synergistic approach addresses the computational 
efficiency bottleneck inherent in traditional MILP while cir-
cumventing the constraint-handling deficiencies of 
standalone DRL. Consequently, it provides a more robust and 
reliable solution for the real-time optimal scheduling of mi-
crogrids. 

2. Methodology 

The main technical route of this study is shown in Figure 2. 
 

problem target strategy result

Step 1 Data Preprocessing

Step 2 Offline Training Stage

collecting data 

Deep reinforcement learning algorithm learning

Optimal Strategy PPO algorithm

Reward Function

Train to generate preliminary scheduling plan
Robust penalty term

Data cleaning
normalization

Step 3 Online Adjustment Stage

Output initial solution

M-ICM accuracy solution

Step 4 Real time adjustment and optimization

Dynamic 
adjustment of data

MPC
Strategic fine-tuning

 

Figure. 2. Technical flow chart 

(1) Data preprocessing, namely, cleaning, normalizing, and other 
preprocessing operations are carried out on the collected data of pho-
tovoltaic power generation, load demand, energy storage state, and 
the like. 

(2)  In the offline training stage, the DRL algorithm is used to 
learn the optimal strategy. The reward function of the improved PPO 
algorithm is designed, and the economic objective and the robust 
penalty term are considered comprehensively. A preliminary sched-
ule scheme is generated through the train. 

(3) In the online adjustment stage, the DRL output is used 
as the initial solution, and the accuracy is solved by M-ICM. 

(4) Perform real-time adjustment and optimization, 
namely dynamically adjusting that schedule scheme 
according to the real-time data. MPC is used to adjust in real-
time and fine-tune the strategy. 

2.1 PV-energy storage control strategy 

During the transmission of the system based on the operation 
of the photovoltaic microgrid, the grid considers the stability 
of the new energy, combines with the power consumption en-
vironment, and has a controllable principle for the output of 
the microgrid. Therefore, it is necessary for the new energy 
island to adapt to peak shaving to ensure the stability of the 
overall operation of the grid [24]. At present, the existing 
methods are limited to traditional robust optimization, which 
is highly conservative and may sacrifice economy; it is diffi-
cult to deal with high-dimensional nonlinear constraints. If 
pure reinforcement learning lacks an explicit constraint pro-
cessing mechanism, it may violate physical constraints (such 
as energy storage SOC boundary). The output peak shaving 
model is displayed in Figure 3. 
 

 

Figure. 3. Output peak regulation model of photovol-
taic microgrid-This is based on simulation data. (Data 

from: SolarGIS dataset, https://solargis.com/). 

In the proposed photovoltaic microgrid output peak shav-
ing model, the red dotted line represents the traditional robust 
optimization boundary, and the blue solid line represents the 
multi-dimensional uncertainty description of M-ICM. 

The emergence of microgrid technology has established 
a more efficient technical pathway for renewable energy gen-
eration [25]. To face the challenges posed by the inherent un-
certainty of renewable energy output, this study investigates 
the application of hierarchical hybrid architecture neural net-
work models in photovoltaic (PV) microgrid systems and 
proposes a dynamic load regulation strategy based on a 
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mixed-integer constrained optimization framework. The reg-
ulatory model process is shown in Figure 4. 
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Figure. 4. PV-energy storage regulation and control model process 

When resolving energy storage scheduling challenges in 
distributed neural network models for PV systems, the inte-
gration of enhanced Distributionally Robust Optimization 
(DRO) with hierarchical hybrid architecture presents comple-
mentary advantages in addressing multidimensional data 
challenges associated with probabilistic distributions: 

(1) Offline training phase: The Proximal Policy Optimiza-
tion (PPO) algorithm in Deep Reinforcement Learning (DRL) 
is utilized to learn optimal strategies under dynamic mi-
crogrid environments, generating preliminary scheduling 
schemes. The reward function incorporates economic objec-
tives with robustness penalty terms through systematic de-
sign. 

(2) Online adjustment phase: DRL outputs serve as initial 
solutions for the Mixed-Integer Constrained Model (M-ICM), 
with Benders decomposition employed for precision solution 
derivation. Robustness constraints are incorporated to mathe-
matically characterize uncertainty sets encompassing PV 
generation and load fluctuations. 

This methodology not only enhances operational accuracy 
but also demonstrates global optimality characteristics. To 
minimize equipment adjustment costs, policy-constrained 
fine-tuning of multidimensional models ensures secure and 
stable system operation under fuzzy distribution conditions 
[26]. Through the application of DRL duality principles, the 
multidimensional model is subsequently transformed into 
transfer functions, thereby streamlining the problem-solving 
process. 

The proposed DRL model architecture incorporates pre-
dictive state-space representations of PV microgrids, ac-
counting for critical operational indicators including load de-
mand, energy storage state of charge (SOC), and electricity 
pricing mechanisms. Execution strategies are formulated for 
both continuous action spaces (energy storage charge/dis-
charge operations) and discrete action domains (islanding 
mode transitions) [27]. 

2.2 Objective function framework 

The objective composite function of PV energy storage-is-
landing includes two parts: minimizing the fluctuation of load 
capacity and minimizing the operation cost [28]. Robust op-
timization is introduced for specific analysis, and the imple-
mentation idea of robust optimization is shown in Figure 5. 
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Figure. 5. Robust optimization model. 

Penalize the violation of the running cost constraint 
through the adaptive weight coefficient of the reward func-
tion. Then, the mixed integer constraint is modeled, and the 
objective function is as follows: 

 
( )

1
min Wi i j

T

j
t

c P c P γ
=

+ + ⋅∑
 (1) 

In the formula, c  is the reward function, p  is the con-
straint objective, ,i j  are the reward and penalty weight coef-
ficients respectively, and W is the conditional value to en-
hance the robustness. 

Data-driven fuzzy set description is used to deal with the 
uncertainty of photovoltaic: 

 { }, , , ,
ˆ

PV t PV t PV t PV tP P P= − ≤ ∆ ∣U
 (2) 

In the formula, u  is the load uncertainty, and the robust-
ness of the DRL strategy is enhanced through the counter-

measure training ,PV tP . 
Considering that the fluctuation of the load capacity is dif-

ferent from the function of reducing the operation cost, the 
formula of the overall target composite function is converted: 

 

min 0

i j

u
p p

 ≥
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In the formula, 
,
, , ,

i j
v s q rδ  is the operation cost of distributed 

photovoltaic microgrid, where v  is the cost of photovoltaic 
power generation, s  is the cost of sales, q  is the cost of en-
ergy storage, and r  is the cost of operation and maintenance; 

,α β  are the electricity prices of islanding and grid-connected 
respectively, and ,φ φ′  are the unit price of electricity pur-
chase at the peak and valley of the grid respectively [29]. 
Simulation and performance verification 

3. Simulation and performance 
verification 

3.1 Simulation environment settings 

The algorithm performance is verified by the simulation plat-
form (OPAL-RT + MATLAB/Simulink), and the hardware 
configuration is shown in Table 3. 

Table 3. Hardware environment configuration. 

Components Specification 

Computing host 
Intel Xeon W-2295 (18 cores, 36 threads) / 
NVIDIA RTX A6000 (48GB video 
memory) 

Real-time simulator OPAL-RT OP4510 + FPGA expansion 
module 

Power hardware Chroma 61845 PV array simulator + 
Keysight BT3554A Battery Tester 

Monitoring equipment NI PXIe-5171R High speed data acquisi-
tion card (1MS/s Sampling rate) 

 
The simulation platform adopts Python + Pyomo for MIP 

solution, and the simulation environment is shown in Table 
4: 

Table 4. Configuration of the simulation environment. 

Structural 
layer Application Indications 

Hardware 
Layer 

OPAL-RT Real-time Linux 
NI LabVIEW 
2023 Equipment control 
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Middleware 
Layer 

Docker Con-
tainer 1 

Python 3.9 + Pyomo 6.4.3 

Gurobi 10.0 (MIP solver ) 

Docker Con-
tainer 2 

PyTorch 2.1 + CUDA 12.1 

Custom Gymnasium 0.29 

Application 
Layer 

Scenario Gener-
ator Wright-Fisher 

Hybrid Solver 
Router 

MIP/DRL Dynamic switch-
ing logic 

Resilience Ana-
lyzer 

Disturbance resistance eval-
uation 

 
This study is based on a high-fidelity simulation environ-

ment (including real-time hardware-in-the-loop testing), and  

will be extended to the actual microgrid system verification 
in the future. 

3.2 Experimental comparison test 

(1) Algorithm performance comparison 
To verify the optimization effect of M-ICM used in this 

paper on DRO, the Gurobi algorithm of a single MILP model 
[28], the DDPG algorithm of a DRL model [29] and the tra-
ditional TSRO (Two-Stage Robust Optimization) [30] are 
used for comparative testing. The comparison benchmark is 
calculated for the PV-energy storage DERS in the simulation 
model, and the calculation accuracy is obtained for compari-
son. The results are shown in Table 5 and Figure 6. 

 

Table 5. Indicators’ test results. 

Indicators Method in the study Pure MILP Pure DRL TSRO 

Average cost ($/day) 152.3 148.7 165.2 160.8 

Constraint violation rate (%) 0 0 12.5 3.2 

Calculation time (s/step) 1.8 45.2 0.3 30.1 

 

Figure. 6. Comparative analysis of the algorithm performance. 

In the evaluation of the DERS metrics, the proposed DRO-
integrated enhancement has shown a 20-fold improvement in 
computational efficiency compared to MILP while maintain-
ing constraint-compliant execution strategies, coupled with 
an 8.25% cost reduction relative to pure DRL implementa-
tions. All results meet the criteria for the best global optimal 

solution, thus showing greater suitability for the phased ro-
bust operational demands of PV-ESS systems.  

(2) System dispatch response test 
To verify the technical advancement and DRO optimiza-

tion level of the proposed M-ICM strategy, a PV-energy stor-
age system model was constructed on the Simulink platform. 
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Comparative analyses of regulation performance among 
MILP, DRL, and TSRO methodologies are presented in Fig-
ure 7. 

 

Figure. 7. System dispatch response test. 

Through comparative analysis of voltage and current re-
sponses in PV-energy storage systems, it is evident that all 
control systems achieve dynamic equilibrium, successfully 
attaining maximum power output. The proposed methodol-
ogy has shown superior performance with a 0.93-second tran-
sition from normal startup to maximum power output, exhib-
iting minimal overshoot and low-amplitude oscillations in 
photovoltaic voltage, current, and rated power output. This 
indicates enhanced dynamic equilibrium quality. Compara-
tively, MILP (Mixed Integer Linear Programming) and DRL 
(Deep Reinforcement Learning) methods exhibit over 25% 
inferior performance with significant oscillations, primarily 
attributable to training complexity and excessive conserva-
tism in control strategies. Although TSRO (Two-Stage Ro-
bust Optimization) incorporates secondary dynamic adjust-
ments, its insufficient sensitivity to distribution shifts results 
in suboptimal performance. 

The operational principle of the Distributed Energy Re-
source System (DERS) architecture is elucidated through 
comparative analysis with conventional approaches. A three-
dimensional coupled model of photovoltaic-energy storage 
DERS is established in MATLAB/Simulink simulation envi-
ronment. Experimental verification confirms DERS' superior 
autonomous secondary output variable coverage compared 
with traditional grid-connected PV-energy storage systems. 
The developed three-dimensional model shows consistency 
with mechanistic analysis, achieving robust optimization 
across operational phases and validating adaptive control ca-
pabilities. 

4. Conclusion 

In this paper, according to the state of photovoltaic new en-
ergy and energy storage, it is divided into different zones, and 
a two-dimensional dynamic load reduction strategy is de-
signed according to the zones to consider the state of different 
illumination stages. Based on the mixed integer constraint 
model, the coupling system of photovoltaic energy and model 
constraint strategy is designed, considering the discrete anal-
ysis of light intensity and time domain changes, as well as the 
evolution trend of energy storage charging and temperature 
variables. The model evolution effect is shown in Figure 8. 

 

Figure. 8. M-ICM and effect of traditional model evolu-
tion-This drawing is based on simulation data. (Data 

from: SolarGIS dataset, https://solargis.com/) 

In Figure 7：(1) Traditional method with simple decreasing 
uncertainty (red dashed line with red shaded area); (2) The 
paper method with complex multidimensional uncertainty 
(blue solid line, blue shadow area) 

This study integrates the deterministic characterization 
of monotonically decreasing sets into the M-ICM framework, 
which spatially represents the operational unpredictability 
and nuanced variations inherent to islanding operations. The 
proposed methodology empowers multidimensional model-
ing to delineate uncertainties embedded within multiple mon-
otonically decreasing trends, thereby enhancing the precision 
in quantifying computational feasibility boundaries. Further-
more, through a comprehensive analysis of multi-source, in-
tricate uncertainties arising during monotonic decay pro-
cesses, decision-makers' adaptive capabilities are signifi-
cantly strengthened through improved scenario awareness. 

Future research directions will focus on game-theoretic in-
teractions and cooperative optimization among multiple mi-
crogrids. Transfer learning techniques will be employed to 
adapt pre-trained control strategies to microgrids in diverse 
climatic zones. Real-time control validation will be con-
ducted through RT-LAB platform integration to enhance pho-
tovoltaic microgrid robustness against environmental varia-
bility. 
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