
EAI Endorsed Transactions
on Tourism, Technology and Intelligence Research Article

Efficient Machine Learning for Wi-Fi CSI-based
Human Activity Recognition Using Fast Monte Carlo
based Feature Extraction
Emelia Logah1

1Memorial University, Canada, Email: elogah@mun.ca

Abstract

High-dimensional doppler data extracted from Wi-Fi channel state information (CSI) offers distinctive
velocity and time patterns that are useful for human activity recognition (HAR), but its scale poses
significant challenges for real-time inference and deployment on resource-constrained devices. This work
proposes an efficient, fast monte carlo (MC) feature selection framework based on the frieze-kannan-
vempala (FKV) algorithm and coefficient estimation to address this bottleneck. The CSI is preprocessed,
and doppler traces are computed to encode the velocity and direction of distinct activities. Afterwards,
we perform FKV to decompose the doppler data, and the coefficient of the resulting singular vectors
is estimated. Using rejection sampling, the topmost features are selected on the basis of their weights,
thereby reducing the size of our features. The method identifies a compact set of velocity-time features that
preserve critical motion information while significantly reducing computational overhead. The experimental
evaluations demonstrated that the decision tree classifier achieved the highest precision at 99.8%, followed by
convolutional neural networks (CNN) 96%, the hybrid CNN-long-short-term memory (CNN-LSTM) achieved
87%, while the LSTM model lagged at 53%. These results demonstrated that the integration of fast MC-based
feature selection significantly reduced computational overhead without sacrificing classification performance,
making it suitable for scalable and real-time HAR applications.
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1. Introduction
Human activity recognition (HAR) has traditionally
relied on sensing technologies such as wearable sensors
and camera-based systems [1, 2]. Although these
approaches can capture human activity, they have
many limitations, including user compliance, privacy
concerns, and obstructed signals by environmental
features [3].

The evolution of WiFi has enabled standards such
as the IEEE 802.11ac for WiFi 5 to support higher
bandwidth and multi-user multiple-input-multiple-
output (MU-MIMO), enabling better performance. Wi-
Fi 6 (IEEE 802.11ax), the most recent standard,
further optimized network efficiency with orthogonal

∗Corresponding author. Email: elogah@mun.ca

frequency division multiple access (OFDMA) and
enhanced spatial reuse, and integrates sensing and
communication functions [4]. In OFDMA, the available
bandwidth is divided into smaller sections called
resource units (RUs), which allows multiple devices
to transmit data over multiple frequency subcarriers
simultaneously to ease network congestion and better
use the available spectrum [5, 6]. The advancement
of wireless sensing technologies has introduced a
transformative shift in the field of HAR [7]. Wi-
Fi-based sensing has stood out for its ability to
seamlessly integrate into existing infrastructure and
offer a contactless, privacy-preserving alternative using
the received signal strength indicator (RSSI) for activity
patterns [7]. Although RSSI provided foundational
information, its sensitivity to environmental changes
has limited its scalability and overall accuracy.
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The ubiquitous applications of Wi-Fi-based sensing
technology have attracted considerable attention from
industry and academic communities through channel
state information (CSI). CSI captures both amplitude
and phase changes across subcarriers and antenna
pairs, offering a fine-grained view of signal propagation
affected by human motion. Variations in the CSI
matrix encode information about the amplitude and
phase of the received signal, which are critical to
classifying human activities. The CSI provides spatial
and temporal information about signal propagation,
reflecting changes caused by human motion [4, 8]. The
adoption of these technologies has catalyzed research
in various domains, including healthcare, smart homes,
and security, demonstrating the versatility of Wi-
Fi-based sensing in detecting human activities in
various environments [2, 9, 10]. Recent research also
attempted to improve model accuracy by analyzing
the time-varying components of CSI, particularly the
phase information, to extract doppler shifts that reveal
velocity-related features of moving subjects. Doppler
information visually represents human movement by
capturing micro-motion patterns such as arm swings or
leg strides, resulting in high-resolution, time-frequency
representations called doppler traces. However, using
doppler-based CSI features for HAR introduces a
new challenge of high-dimensional input data. This
increases computational demands, makes models prone
to overfitting, and hinders real-time deployment,
especially on resource-constrained devices.

This paper proposes an efficient feature selection
framework based on the frieze-kannan-vempala (FKV)
fast monte carlo (MC) algorithm. This method employs
length-squared (LS) sampling to construct a compact
submatrix. It performs approximate singular value
decomposition (SVD) to extract a low-rank approx-
imation of the doppler CSI matrix, then coefficient
estimation enabling dimensionality reduction without
sacrificing the temporal and spatial information critical
for activity classification. Our approach significantly
reduces the number of trainable parameters in machine
learning (ML) models, making them more lightweight
and deployable in real-world environments.

2. Related Works
This section reviews some relevant literature in three
core areas: ML architectures for HAR, dimensionality
reduction and feature extraction, and randomized
algorithms for matrix sketching.

2.1. Machine Learning for HAR Models
Recent advances in Wi-Fi-based HAR have enabled
the use of CSI for device-free activity detection.
However, raw CSI is often noisy and unstable due to
phase distortions. Phase sanitization techniques have

been widely adopted to mitigate these artifacts and
improve the consistency of CSI. Studies such as [8, 9]
introduced preprocessing pipelines to correct phase
offset and enhance motion sensitivity, while [4, 11]
demonstrated that phase sanitization leads to robust
classification in obstructed or dynamic environments.
Several works have incorporated doppler processing to
extract motion-specific features from CSI to address
environmental variability and occlusions. Doppler-
based signatures help encode subtle velocity and
gesture differences, enabling more fine-grained activity
recognition to better distinguish overlapping or rapid
motions [10, 12]. Researchers have applied various ML
architectures to model activity from cleaned CSI data.
For example, convolutional neural networks (CNN)
and the recurrent neural network (RNN) have been
used to capture spatial and temporal activity patterns,
achieving high accuracy in dynamic scenarios [13].
Hybrid architectures like bidirectional long short-term
memory with convolutional layers (BLSTM-CNN) have
improved performance by capturing both frequency-
localized features and time-dependent behavior [14,
15]. In addition to supervised models, unsupervised
and semi-supervised methods have been explored to
reduce reliance on labeled data. For instance, [13]
proposed an unsupervised deep network to extract
discriminative features from CSI without manual
annotation. Meanwhile, more advanced structures such
as inception-attention networks have been employed to
enhance feature extraction in cluttered environments,
improving classification accuracy in complex activity
scenarios [16, 17].

2.2. Feature Selection and Dimensionality Reduction

Feature extraction and dimensionality reduction are
essential to mitigate the curse of dimensionality and
enhance the performance of the ML models, hence
the need for feature extraction and dimensionality
reduction. Feature selection aims to identify the
most informative features while eliminating redundant
or noisy attributes. Principal component analysis
(PCA) has been widely used for dimensionality
reduction in domains such as medical diagnostics,
imaging, and signal processing, projecting data into
directions of maximum variance [18–21]. However,
PCA is unsupervised and does not account for class
discriminability, often discarding critical features for
classification. This makes it suboptimal for HAR tasks
where activity-specific motion cues may have low
variance but high predictive value. SVD is another
tool that has been used in tasks such as image
fusion, biometric identification, and collaborative
filtering [18, 20, 22]. Advanced variants such as
randomized SVD have been developed to reduce
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computational complexity and improve scalability [23].
CUR decomposition methods follow a similar strategy
by approximating a matrix using sampled columns
and rows [24]. Another research further extends
this by iteratively decomposing matrices into low-
rank and sparse components, which proves useful
in noisy domains like hyperspectral imaging [25].
These randomized methods have shown effectiveness in
reducing the complexity of linear algebra problems and
have been explored in applications such as stochastic
regression and semidefinite programming [26–28].

2.3. Overview of SVD and FKV

SVD expresses any real-valued matrix A ∈ Rm×n as the
product of three matrices and is given by

A = UΣV T , (1)

where A ∈ Rm×n is the original real-valued matrix to
be decomposed; U ∈ Rm×m is an orthogonal matrix
whose columns are the left singular vectors of A,
forming an orthonormal basis for its row space; Σ ∈
Rm×n is a diagonal matrix whose non-negative entries
are the singular values of A, representing the magnitude
or energy of each component; and V ∈ Rn×n is an
orthogonal matrix whose columns are the right singular
vectors of A, forming an orthonormal basis for its
column space. Each matrix plays a distinct role in
revealing the structure of A. We define the matrix A

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 ∈ Rm×n. (2)

The matrix U ∈ Rm×m is an orthogonal matrix whose
columns, denoted u1,u2, . . . ,um, are the left singular
vectors of A. These vectors form an orthonormal basis
for the row space of A, and satisfy uT

i uj = 0 for i , j,
and uT

i ui = 1. The matrix has the form

U =


u11 u12 · · · u1m
u21 u22 · · · u2m
...

...
. . .

...
um1 um2 · · · umm

 . (3)

The matrix Σ ∈ Rm×n is a diagonal matrix containing
the singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0, where r =
rank(A), and all other entries are zero. These singular
values quantify the contribution of each singular vector
in explaining the variance or energy present in A. The

matrix Σ takes the form

Σ =



σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σr
...

...
. . .

...
0 0 · · · 0


. (4)

The matrix V ∈ Rn×n is an orthogonal matrix whose
columns v1, v2, . . . , vn are the right singular vectors of
A. These vectors form an orthonormal basis for the
column space of A, satisfying vTi vj = δij , where δij is the
Kronecker delta. The matrix V has the structure

V =


v11 v12 · · · v1n
v21 v22 · · · v2n
...

...
. . .

...
vn1 vn2 · · · vnn

 . (5)

Together, U , Σ, and V provide a geometric inter-
pretation of the original matrix A as a transformation
involving rotation, scaling, and another rotation. This
makes SVD a powerful tool for dimensionality reduc-
tion, denoising, and low-rank approximations. In radar
signal processing, for instance, SVD enables clutter
suppression by filtering out components corresponding
to low-energy singular values [29]. It is also effective
for robust target detection in sea clutter environments,
where features such as the maximum singular value and
spectral norms extracted from Σ are highly discrimi-
native [30]. Together, U , Σ, and V provide a geometric
interpretation of the original matrix A as a transforma-
tion involving rotation, scaling, and another rotation.
Moreover, the scalability of SVD has enabled its deploy-
ment in cloud-based frameworks, where it facilitates
outsourced computation for large-scale matrix decom-
position tasks [31]. This makes SVD a powerful tool
for dimensionality reduction, denoising, and low-rank
approximations.

Although SVD provides the optimal low-rank
approximation of a matrix in terms of the Frobenius
norm, its computational complexity typically O(mn ·
min(m, n)) makes it computationally expensive for
large-scale data. To address this challenge, a study
proposed a randomized algorithm that offers a
fast and scalable alternative to traditional SVD by
approximating the topk singular values using a
sampling-based approach [32]. The FKV algorithm
assumes that matrix entries can be sampled with
probabilities proportional to their squared magnitudes,
which is reasonable in many real-world applications
after a single data pass. It selects a small number of rows
and columns based on this probability distribution,
forming a sketch matrix whose low-rank structure
approximates that of the original matrix. The core result
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guarantees that with high probability, the algorithm
outputs a rank-k matrix Ã such that

∥A − Ã∥F ≤ min
rank(D)≤k

∥A −D∥F + ε∥A∥F , (6)

where A ∈ Rm×n denotes the original high-dimensional
data matrix, and Ã ∈ Rm×n is its low-rank approxima-
tion obtained through a randomized algorithm, ∥ · ∥F
denotes the Frobenius norm, D represents any matrix
of rank at most k, and the term minrank(D)≤k ∥A −D∥F
denotes the best possible error in approximating A
by a rank-k matrix, typically achieved via truncated
SVD. The scalar ε > 0 is the additive error tolerance,
and the term ε∥A∥F provides a bound on how far the
approximation Ã may deviate from the optimal low-
rank approximation. This inequality ensures that the
approximation error of Ã remains within a controlled
additive margin of the best achievable rank-k error,
with failure probability at most δ, where ε > 0 is the
approximation error tolerance. Crucially, the runtime
of the algorithm is polynomial in k, 1/ε, and log(1/δ),
but independent of the dimensions of the matrix m
and n, making it highly efficient for high-dimensional
data. The method essentially reduces the problem to
computing the SVD of a small sketch, bypassing the
need to fully decompose the original matrix. Given
its efficiency and provable accuracy guarantees, the
FKV algorithm has become a key component in large-
scale matrix approximation pipelines, including appli-
cations in feature selection, recommendation systems,
and latent semantic indexing [32]. Generally, the algo-
rithm proceeds as follows:

Length-Squared (LS) Probabilities and Row Rescaling. The
FKV algorithm uses a two-level sampling strategy to
identify the most informative rows and columns in
a high-dimensional matrix A ∈ Cm×n. This approach
is based on computing LS probabilities, which assign
higher sampling probabilities to rows and columns that
contribute more significantly to the overall energy of
the matrix.

Row Norm Calculation. The squared euclidean norm also
called the ℓ2 norm of the i-th row of matrix A is
computed as

∥Ai,:∥22 =
n∑

j=1

|Aij |2, (7)

where Ai,: denotes the entire i-th row of the matrix A,
n is the number of columns, and |Aij |2 is the squared
magnitude of the complex entry in row i, column j.

Frobenius Norm of the Matrix. The total Frobenius norm
of matrix A is defined as

∥A∥2F =
m∑
i=1

n∑
j=1

|Aij |2, (8)

Here m is the number of rows, n is the number of
columns, and ∥A∥2F represents the total energy (sum of
squared magnitudes) of all entries in A.

Row Sampling Probability
Using the above quantities, the probability of selecting
the row i is computed as

Pr(i) =
∥Ai,:∥22
∥A∥2F

. (9)

This probability reflects the relative contribution of
the row i to the total energy of the matrix. Rows with
higher norms are more likely to be selected.

Column Sampling Probability within a Row
Once a row i is sampled, a second-level distribution is
computed to sample columns from within that row. The
probability of selecting column j from row i is given by

Pij =
|Aij |2

∥Ai,:∥22
, (10)

where |Aij |2 is the squared magnitude of the element
at position (i, j), and ∥Ai,:∥22 is the squared norm of the
sampled row.

Row Rescaling. To correct for the bias introduced by
non-uniform sampling, each sampled row is rescaled
to maintain an unbiased approximation of the matrix.
Let r be the total number of rows sampled. For each
sampled row index is, the corresponding rescaled row
Rs is computed as

Rs =
∥A∥F√

r · ∥Ais ,:∥2
· Ais ,:, (11)

where Rs ∈ C1×n is the rescaled version of the sampled
row, ∥Ais ,:∥2 is the norm of the sampled row, ∥A∥F is
the Frobenius norm of the original matrix, and r is
the total number of rows sampled. This normalization
ensures that each row in the resulting matrix R ∈ Cr×n

contributes equally in expectation.

Column Sampling from Matrix R. In the second stage of
the FKV algorithm, a uniform sample of one of the
r rescaled rows is selected. From this row, c columns
are sampled using the same LS method as above. Each
selected column is also rescaled similarly, to form a
matrix C ∈ Cr×c. To compute the LS probability for a
column directly from matrix A, it is defined as

Pc(j) =
∥A:,j∥22
∥A∥2F

, (12)

where A:,j is the j-th column of A, and ∥A:,j∥22 is the
squared norm of that column. This reflects how much
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column j contributes to the total energy of the matrix.
This hierarchical sampling and rescaling process allows
the FKV algorithm to construct a compressed sketch of
the original matrix while preserving its dominant low-
rank structure. It enables efficient approximation with
strong theoretical guarantees.

Construction of Submatrix C. Given the large and high-
dimensional nature of the matrix A, performing SVD
directly would be computationally expensive and
inefficient. To address this, the sampled rows and
columns construct a submatrix C, which serves as
a compressed representation of A. This submatrix
encapsulates the most informative aspects of A, thereby
facilitating efficient computation in subsequent steps:

C = Ar,c, (13)

where Ar , c represent the rows and columns sampled
from A.

Singular Value Decomposition of C. Once the submatrix
C is established, SVD is performed to decompose
C into its singular vectors and singular values. This
decomposition is expressed as

C = WΣV †, (14)

where W ∈ Cm×m is a unitary matrix for the left singular
vectors, Σ ∈ Rm×n is a diagonal matrix with singular
values, and V † ∈ Cn×n is the conjugate transpose of
the matrix for the right singular vectors. The singular
values are derived from the SVD of the sampled
submatrix C. By focusing on the most significant
singular values, we achieve a low-rank approximation
of the matrix that preserves critical information while
significantly reducing computational complexity.

3. Dataset Aquisition
The dataset used in this study was collected as
described in SHARP (sensing human activities through
Wi-Fi radio propagation), and comprises seven distinct
activities: empty space, arm gym, jumping in place,
sitting (standing and sitting for some time), sitting
continuously, running, and walking. The experimental
setup was implemented in a bedroom with a desk
in the middle to introduce natural obstructions,
ensuring different signal propagation paths. This study
utilized readily available Wi-Fi infrastructure to ensure
practical deployment and ease of use. Specifically, two
commercial IEEE 802.11ac Asus RTAC86U routers were
used, one serving as a transmitter with a single antenna
and the other as a receiver with four antennas. The
system operated with an 80 MHz channel bandwidth,
divided into 246 subcarriers, resulting in complex CSI
samples for each subcarrier. Multiple participants were
involved, each with varying physical characteristics

such as height, weight, and movement styles. The
activities were carried out in several sessions, covering
different times of the day and environmental conditions
to ensure that the data collected are independent of
individual participants and the environment [8].

4. CSI Data Preprocessing
This section discusses the concept of CSI and the phase
sanitization process. The received signal in an OFDM
system y is expressed as

y = Hx + n, (15)

where H represents the CSI matrix, x is the transmitted
signal, and n denotes additive noise. Each element of
H represents the amplitude and phase of a specific
subcarrier, enabling the precise recognition of activity
even in complex environments [8, 9]. In an OFDM-
MIMO system, the CSI matrix is represented as

H(f , t) =


H11(f , t) · · · H1N (f , t)

...
. . .

...
HM1(f , t) · · · HMN (f , t)

 , (16)

where Hij (f , t) is the channel response for the i-th
transmitting and j-th receiving antenna at frequency
f and time t. This study specifically considers a Wi-
Fi sensing setup consisting of one transmit antenna
(Nt = 1) and four receive antennas (Nr = 4). We operate
using an 80 MHz channel bandwidth comprising 246
subcarriers, providing detailed CSI characterization for
each subcarrier-frequency pair. Consequently, the CSI
matrix at any subcarrier frequency f and time t can
explicitly be represented as

H(f , t) = [H11(f , t), H21(f , t), H31(f , t), H41(f , t)]T ∈ C4×1.
(17)

The CSI obtained is illustrated in Fig. 2(a), which
shows the amplitude and phase information in four
frames as a result of the four receive-transmit antenna
pairs.

4.1. Phase Sanitization
Phase sanitization mitigates offsets caused by signal
propagation and hardware imperfections such as
channel frequency offset (CFO), phase-locked loop
offset (PLO), and phase ambiguity (PA), which are
consistent across subchannels. Subchannel-dependent
factors include sampling frequency offset (SFO) and
packet detection delay (PDD). The steps involved in
phase sanitization are expressed as in [8].

The phase offset at subchannel k, φoffs,k , is shown as
follows:

φoffs,k =
2πk + tSFO + tPDD

T

5
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(a) arm gym (b) empty (c) sitting (d) sitting continuously

(e) jumping in place (f) walking (g) running

Figure 1. Doppler spectrograms for various activities.

Using a reference path with reliably estimated
parameters, the common phase offset is removed.
The channel frequency response (CFR) vector for k
subchannels is given by

h = [H− k
2
, . . . , H0, . . . , H k

2
]⊤. (19)

To separate P multipath contributions, a grid of P ′ >
P potential paths is defined, and P components are
selected via

h = T r, (20)

where T (K × P ′) is defined by adding all delays Tp,tot =
tP + tSFO + tPDD:

Tk =
[
e−j2πkto,tot

T
, . . . ,

e−j2πktp(o−1),tot

T

]
. (21)

The vector r is modeled as

r =


A0e

−j2πfcτ0

...
AP ′−1e

−j2πfcτP ′−1

 . (22)

The minimization problem to estimate r is given by

r = argminr̃∥h − T r̃∥
2
2 + λ∥r̃∥1. (23)

CFR vector h and matrix T are respectively converted
as follows:

hest = [Re(h), −Im(h)]⊤, (24)

Test =
[

Re(T ) −Im(T )
−Im(T ) Re(T )

]
. (25)

The complex vector r is reconstructed as

r = rext[0 : P ′ − 1] + j rext[P
′ : 2P ′ − 1]. (26)

The position p∗ of the strongest path is shown as
follows:

Xk = e−j2πk(τSFO+τPDD)ej(φCFO+φPLO+φPA)

×


A0e

−j2π(fc+k/T )τ0

...
AP ′−1e

−j2π(fc+k/T )τP ′−1

 . (27)

The sanitized CFR is estimated as

Ĥk ≈ Ap∗e
j2π(fc+k/T )τp∗Hk , (28)

where Ĥk represents the CFR estimate for subchannel k
with the phase offset removed.

Fig. 2 illustrates the amplitude and phase
responses of the CSI captured across multiple
subcarrier indices over four consecutive frames,
corresponding to dynamic human activities. The
amplitude spectrum exhibits substantial variations
and irregular fluctuations in the raw CSI data, as
shown in Fig. 2(a). These variations indicate highly
dynamic wireless channel conditions, characteristic
of rapid human motion such as jumping. The raw
phase plot accompanying the amplitude demonstrates
significant noise and frequent abrupt discontinuities
due to inherent phase wrapping between π and −π, a
common artifact in raw CSI measurements exacerbated
by multipath propagation and environmental noise. As
seen in Fig. 2(b), the amplitude has been normalized
after applying the phase sanitization process used in [8]
to clearly highlight periodic peaks. This normalization
step makes it easier to observe repetitive patterns in
the data. Similarly, the sanitization process improves
the phase information by removing discontinuities
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and reducing noise, resulting in smoother and
more consistent trends across subcarriers. The
smoother phase variations result from practical phase
unwrapping and denoising techniques, significantly
reducing discontinuities caused by phase wrapping
and multipath reflections. Consequently, the sanitized
data provides a more substantial basis for subsequent
analysis and classification algorithms in wireless-based
HAR systems.

4.2. Computation of Doppler Traces
Human movement introduces activity-specific varia-
tions in the CSI, but environmental obstructions can
interfere, creating multipath propagation of signals.
The delay of a signal along a given path is expressed
as

tp(n) =
ℓp + Dp(n)

c
, (29)

where ℓp is the static path length, Dp(n) is the dynamic
variation, and c represents the speed of light. The
dynamic variation Dp(n), due to moving objects, is
approximated as

Dp(n) = vp cos ap · nTc, (30)

where vp is the object’s velocity, ap is the angle of
motion, and Tc is the sampling period. The velocity
component is given by

vp cos ap =
uc

fcTcND
, (31)

where uc is the doppler shift, fc is the carrier frequency,
Tc is the sampling interval, and ND is the number of
doppler bins. Doppler traces are computed by dividing
the signal into small time windows. For each window,
the Doppler vector is defined as

di(u) =
K/2−1∑
k=−K/2

|F{Hi}(k, u)|2 , (32)

where k represents the signal’s frequency components,
u is the doppler index, and F{·} denotes the fourier
transform. By stacking these doppler vectors over time,
a doppler spectrogram is generated that offers a detailed
representation of how activity evolves [8]. The doppler
plots, which distinctively represent each activity, are
illustrated in Fig. 1.

(a)

(b)

Figure 2. Amplitude and phase visualizations of an activity for 4
frames across all subcarriers (a) represents the raw CSI and (b)
is the sanitized phase.

5. Proposed Method

This study employs a feature extraction method
using a fast MC sampling algorithm based on the
FKV framework. The objective is to extract the
most informative time-velocity features from high-
dimensional doppler data while preserving structural
information relevant to HAR. The method significantly
reduces computational cost by selecting a compact yet
discriminative subset of features.

The original doppler radar data is represented as a
four-dimensional tensor, which is given by

7

A ∈ R4356×4×100×340,  (33)
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where 4356 is the number of Doppler samples, 4 is the
number of antennas, 100 is the number of velocity bins,
and 340 is the number of time steps. This tensor is
reshaped into a two-dimensional matrix for processing

A ∈ R4356×136000, (34)

where each sample is flattened across antennas,
velocities, and time steps (i.e., 4 × 100 × 340 = 136000).
To avoid the computational burden of performing a full
SVD on the high-dimensional matrix A we perform a
low-rank approximation via FKV, using LS sampling
to select rows and columns from A. The number of
sampled rows r and columns c required to achieve
an approximate low-rank representation with failure
probability δ is given by

r, c ≥ k

ϵ2 log
(
k
δ

)
, (35)

where k is the target rank of the approximation, ϵ is
the allowable approximation error, and δ is the failure
probability.

In this work, we chose r = c = 1000 for computational
efficiency, k is 3, and δ is 0.01. This corresponds to
an empirical error of approximately ϵ ≈ 0.131. From
the sampled rows and columns, we form a submatrix
C ∈ R1000×1000 and compute its SVD in order to use
the output to reconstruct approximations of the full
singular vectors for A, which is given by

C = WΣV T , (36)

where W ∈ R1000×k contains the left singular vectors,
V ∈ R1000×k contains the right singular vectors, and Σ ∈
Rk×k is the diagonal matrix of the top k singular values.
After computing the SVD of C, we reconstruct the
approximations of the singular vectors of A using the
information extracted from C. These singular vectors
summarize the main patterns in the Doppler features
and are used to reconstruct approximations of the
original matrix and guide feature selection. Specifically,
we approximate the right singular vectors vl ∈ R136000

and the left singular vectors ul ∈ R4356 that would
result from a full SVD of A. These are essential for
projecting b and approximating x.

The approximate right singular vector vl is con-
structed as a weighted combination of the normalized
rows of A that were sampled during the formation of C,
and this is expressed as

vl =
∥A∥F√
rσl

∑
s∈Sr

ws,l

∥As,:∥
As,:, (37)

where Sr is the set of sampled row indices and ws,l
is the s-th component of the l-th left singular vector
obtained from the SVD of matrix C. The scaling factor
involving σl , the l-th singular value of C, ensures

consistency with the original magnitude of the data
space. This process produces approximate vectors that
span a low-dimensional subspace that captures the
essential patterns in the original matrix A.

To determine how strongly each singular vector
correlates with the label vector b, we compute
coefficients λl by using

λl = ⟨vl , A†b⟩, (38)

where vl is the l-th right singular vector, A† is the
pseudoinverse of A, and b ∈ R4356 is the activity label
vector. This helps to incorporate the label information
to find x, the solution vector as in the linear systems of
equations, which is given by

Ax = b. (39)

We construct a direction vector ω, which will
guide the rejection sampling process in selecting the
constructions of the solution vector x by emphasizing
the directions aligned with the true structure of the
label, b. The direction vector ω is then calculated as
follows:

ω =
k∑

l=1

λl

σ3
l

Wl , (40)

where σl is the l-th singular value and Wl is the l-th
column of W .

Rejection sampling is applied to select features that
are highly aligned with the vector ω. The probability of
accepting the j-th feature is given by

Pj ∝
( ⟨Rj , ω⟩
∥Rj∥∥ω∥

)3

, (41)

where Rj is the j-th column vector in the sampled
matrix. Features with low alignment are naturally
rejected.

To further validate the importance of the selected
features, we approximate the solution vector for the
system Ax = b by using

x̃j =
k∑

l=1

λl

σ2
l

vlj , (42)

where vlj is the j-th component of the l-th right singular
vector. This approximation highlights the relative
contribution of each feature in the reconstruction of the
signal. The final reduced matrix Ã ∈ R4356×1000 is thus
constructed by retaining the columns whose indices
j are sampled with high probability based on their
alignment with ω.

Fig. 4 presents a comparative visualization of the
original data set and the data set obtained after
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Figure 3. Proposed MC-based feature extraction pipeline.

applying the fast MC feature selection algorithm.
The original dataset, shown in Fig. 4(a), consists of
approximately 4356 samples with a high-dimensional
feature space of around 136,000 features. This dataset
exhibits considerable sparsity, indicated by isolated
spikes and predominantly negligible feature values
distributed across samples. Following the reduction
in dimensionality using the fast MC feature selection
method, the resulting filtered dataset is shown in
Fig. 4(b). This dataset maintains the same number of
samples but significantly reduces the dimensionality
to approximately 1,000 features. As evidenced by the
increased density and frequency of prominent feature
values in Fig. 4(b), the fast MC algorithm effectively
identifies and preserves highly relevant features while
discarding redundant or less informative features. As a
result, the filtered dataset becomes more compact and
improves the clarity of underlying patterns, suggesting
potential enhancements in computational efficiency in

(a)

(b)

Figure 4. Visualization of the original Doppler data and the
reduced data (a) original data (b) reduced features.

Figure 5. General architecture for HAR, featuring fast MC
algorithms and ML models to classify Doppler trace inputs.

resource-constrained environments and being easier to
interpret without losing essential information.

5.1. Proposed Machine Learning Architectures
Following feature selection, the resulting reduced
feature set is utilized as input for ML models,
specifically CNN, long-short-term model (LSTM), a
hybrid CNN-LSTM, and a decision tree. These models
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are chosen to leverage their strengths in pattern
recognition, extraction of temporal dependencies, and
interpretability. Finally, the trained models classify the
data into seven different activities. This section presents
the various ML architectures designed to train the
selected features as illustrated in Fig. 5.

CNN. To train a CNN, the filtered data was split
into 60% training data, 20%, text data, and 20%
validation data. The proposed CNN architecture, as
shown in Fig. 6, consists of two convolutional blocks
and fully connected layers. The first block includes a
2D convolutional layer with 16 filters and a kernel
size of 3 × 1, followed by max pooling and dropout
for regularization. The second block repeats this
structure with 32 filters. The output is then flattened
and passed through a dense layer with 64 ReLU-
activated neurons, followed by a final softmax layer
for multiclass classification. The model is trained using
categorical cross-entropy loss and the Adam optimizer.
We apply early stopping and checkpointing based on
validation loss to prevent overfitting. This architecture
effectively captures local temporal frequency patterns
in the Doppler feature space and has demonstrated
strong performance across all evaluated activity classes.
Combined with the MC-based feature selection method
we employ, the overall system provides a robust and
computationally efficient pipeline for HAR.

Let the input to the CNN be of shape (F, 1, 1), where
F is the number of input features. The model consists of
two convolutional layers, a global average pooling layer,
a hidden dense layer with D units, and a final output
dense layer for C activity classes.

The number of trainable parameters in the first
convolutional layer with f1 filters of size k1 × 1 and 1
input channel is given by

P1 = (k1 · 1 · 1 + 1) · f1 = (k1 + 1)f1. (43)

The second convolutional layer applied to the f1
input channels has f2 filters of size k2 × 1, which is
shown as follows:

P2 = (k2 · 1 · f1 + 1) · f2 = (k2f1 + 1)f2. (44)

Following global average pooling, the feature dimen-
sion becomes f2, which feeds into a dense layer with D
units:

P3 = f2 ·D + D = D(f2 + 1). (45)

The final classification layer outputs the probabilities
for C classes:

P4 = D · C + C = C(D + 1). (46)

Hence, the total number of trainable parameters in
the model is given by

Ptotal = P1 + P2 + P3 + P4, (47)

where k1, k2 denote kernel heights; f1, f2 are the number
of filters in the respective convolutional layers; D is the
number of units in the dense layer; and C is the number
of output classes.

Figure 6. CNN Architecture.

CNN-LSTM Hybrid. The hybrid architecture illustrated
in Fig. 7 extends the CNN by adding the LSTM
layer. Following the convolutional blocks, the output is
reshaped to form a 2D tensor suitable for sequential
modeling. This reshaped representation is passed to
a unidirectional LSTM layer with 50 units, which
captures temporal dynamics and sequential patterns
across time windows. The LSTM output is then
processed by a dense layer with 128 ReLU-activated
neurons and a dropout layer (rate = 0.5), followed by
a final softmax layer that outputs class probabilities for
multiclass activity recognition.

Figure 7. CNN-LSTM Architecture.

LSTM. We also implemented a deep learning model
based entirely on LSTM units as illustrated in Fig. 8 to
capture the temporal dependencies inherent in Doppler
radar time series data. The architecture begins with an
LSTM layer consisting of 64 units and configured with
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return_sequences=True to output an entire sequence
of hidden states. This allows the subsequent LSTM
layer to process the complete temporal evolution of
the data. A dropout layer with a rate of 0.25 is
used to mitigate overfitting. The second LSTM layer
contains 32 units and is set to output only the final
hidden state (return_sequences=False), effectively
summarizing the sequential information into a fixed-
length vector. This is again followed by a dropout
layer to further regularize the network. The output of
the LSTM layers is passed through a fully connected
dense layer with 128 ReLU-activated neurons, followed
by another dropout layer with a rate of 0.5. The
final output layer is a softmax-activated dense layer
that outputs class probabilities for multiclass activity
classification.

Figure 8. LSTM Architecture.

Decision Tree. In addition to deep learning architec-
tures, we implemented a decision tree classifier as a
baseline method for HAR. Decision trees are inter-
pretable, nonparametric models that make predictions
by recursively partitioning the feature space based
on threshold-based decisions. Fig. 9 shows a trun-
cated decision tree structure, where each internal node
applies a feature-based threshold decision, and each
leaf node represents a final activity class prediction.
Given the filtered and standardized Doppler feature
set, the decision tree is trained to learn a hierarchical
structure that maps input features to activity labels.
To control complexity of and improve generalization,
the tree is configured with a maximum depth of 15, a
maximum of 50 leaf nodes, a minimum of 10 samples
required to split an internal node, and at least five
samples per leaf. These hyperparameters were selected
to prevent overfitting, especially given the high dimen-
sionality of the Doppler data. The model is trained
using the Gini impurity criterion and evaluated on a
hold-out test set 20% of the data, with label strati-
fication to preserve class distribution. The resulting
model achieved competitive accuracy on the test set and
provided interpretable decision paths for each activity

class. In addition, the number of nodes and splits was
analyzed to quantify the complexity of the model. This
baseline is a comparison point for neural network-based
methods and highlights the effectiveness of simpler
classifiers in HAR using Doppler traces. To calculate the
total number of parameters, the following formula was
used

Ptree ≈ S × F, (48)

where Ptree denotes the approximate total number of
parameters in the decision tree, S is the total number
of decision splits or internal nodes, and F represents
the number of features available at each split. This
estimate assumes that each split evaluates all F features
when choosing the best split condition. Although actual
implementations may optimize this via heuristics or
greedy selection, this upper bound gives insight into the
model complexity.

Figure 9. A truncated version of the proposed decision tree
structure.

5.2. The Impact of The Number of Selected Features
on Accuracy
The plot in Fig. 10 illustrates how our fast MC-based
feature selection method impacts CNN performance
on a dataset across all activity classes. We evaluated
training, validation, and test accuracy at various
numbers of feature samples from 10 to 1400. The results
show a clear improvement in accuracy as the number of
selected features increases from 10 features that achieve
an accuracy of 75% to around 97% with 300 features,
where the model reaches its maximum generalization
performance. Between 200 and 500 features, the
validation and test accuracy remain consistently
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high, indicating that our method successfully retains
the most informative components of the original
Doppler matrix. Beyond this range, accuracy begins
to plateau and eventually declines, particularly after
1000 features, suggesting the inclusion of noisy or
redundant information. At the same time, training
accuracy gradually decreases as more features are
added, which reflects a reduction in overfitting and
supports the claim that our approach also encourages
better generalization. This performance trend confirms
that the fast MC method effectively identifies a compact
and high-quality subset of features.

Figure 10. CNN accuracy as a function of the number of
selected features. The fast MC method maintains high test and
validation accuracy with 200 to 500 features while reducing
model complexity, confirming its effectiveness in selecting the most
informative Doppler features.

6. Experimental Results and Analysis
This section evaluates the experiment performed for
the proposed method compared to the latest models,
namely the decision tree, CNN, LSTM, and CNN-
LSTM hybrids. Table 1 illustrates the performance
of ML models supported by features from the fast
MC dimensionality reduction to classify Doppler
image features. Model performance is evaluated using
standard classification metrics: accuracy, precision,
recall, and F1-score. These metrics are defined in a
multiclass setting with C activity classes.

Accuracy. Accuracy measures the proportion of cor-
rectly predicted instances across all classes and is given
by

Accuracy =
T P + TN

T P + TN + FP + FN
, (49)

where T P is the number of true positives, TN is
true negatives, FP is false positives, and FN is false
negatives.

Activity Metric Models With Fast MC Algorithm

CNN CNN + LSTM Dec. Tree LSTM

Empty
Precision 1.00 1.00 0.98 0.86

Recall 1.00 0.97 1.00 0.78
F1-score 1.00 0.98 0.99 0.82

Arm Gym
Precision 0.97 0.92 0.98 1.00

Recall 0.98 1.00 1.00 0.01
F1-score 0.98 0.96 0.99 0.03

Jumping
Precision 1.00 0.97 1.00 0.92

Recall 1.00 1.00 0.99 0.89
F1-score 1.00 0.98 1.00 0.90

Sitting
Precision 1.00 1.00 1.00 0.50

Recall 1.00 1.00 1.00 1.00
F1-score 1.00 1.00 1.00 0.66

Sitting Cont.
Precision 0.98 1.00 1.00 1.00

Recall 0.97 0.91 0.99 1.00
F1-score 0.98 0.95 1.00 1.00

Running
Precision 0.90 0.75 1.00 0.00

Recall 0.75 0.95 0.99 0.00
F1-score 0.82 0.84 1.00 0.00

Walking
Precision 0.78 0.93 0.99 0.46

Recall 0.91 0.68 0.98 0.99
F1-score 0.84 0.79 0.99 0.63

Test Accuracy (%) 96 87 99.8 53

Table 1. Classification performance of all models.

Per-Class Metrics. Let T Pc, FPc, and FNc denote the
number of true positives, false positives, and false
negatives for class c, respectively. Then, we have

Precisionc =
T Pc

T Pc + FPc
, (50)

Recallc =
T Pc

T Pc + FNc
, (51)

F1c = 2 · Precisionc · Recallc
Precisionc + Recallc

. (52)

As shown in Fig. 11, the confusion matrices derived
from the validation set highlight the comparative
classification effectiveness of all models.

The results in Table 2 demonstrate that fast MC
algorithms significantly reduce trainable parameters
while maintaining or improving accuracy in most mod-
els. By applying approximate SVD on this submatrix,
only the most informative and discriminative com-
ponents are retained, effectively reducing the input
feature size and dimensionality. The number of train-
able parameters is proportional to the number of fea-
tures, particularly in models with dense layers. Hence,
a reduced number of input features minimizes the
size of the corresponding weight matrix and biases,
causing a cascading effect on the overall complexity
of the model and training time. Even in non-neural
models like decision trees, input dimensionality sig-
nificantly impacts the computational cost and model
size. Additionally, the method suppresses noise and
removes redundant information because it only focuses
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(a) CNN (b) CNN-LSTM

(c) LSTM (d) Decision Tree

Figure 11. Confusion matrices for different models using the fast MC based feature selection.

on relevant subspace projections, improving generaliza-
tion and training stability. The result is a lightweight
and efficient HAR model architecture suitable for real-
time inference on resource-constrained edge devices.
CNN achieved a substantial parameter reduction from
387,943 to 2,343 with an accuracy constant of 96%.
Similarly, decision tree saw a decrease in parameters
from 163,2000 to 26,000 and a slight improvement
in accuracy from 99.7% to 99.8%. CNN-LSTM also
benefited, with parameters reduced from 6,680,903 to
36,767 and accuracy increasing from 80% to 87%. How-
ever, LSTM experienced a notable decrease in accuracy
from 84% to 53%, suggesting that fast MC techniques
may be less effective for sequence-based models. Fast

MC optimization proves to be highly effective for CNNs
and decision trees, offering substantial efficiency gains
without sacrificing performance. The confusion matri-
ces evaluate the performance of the four models for the
classification task using the low-dimensional data from
the proposed feature selection process.
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MLModels With fast MC Without fast MC

# Params Acc (%) # Params Acc (%)

CNN 2,343 96 387,943 96

Decision Tree 26,000 99.8 1,632,000 99.7

CNN+LSTM 36,767 87 6,680,903 80

LSTM 34,439 53 17,528,071 84
Table 2. Number of parameters and accuracy for each ML model
with and without fast MC algorithms.

7. Conclusion

This study introduced a feature extraction method
using fast MC sampling based on the FKV framework
to tackle the challenge of high-dimensional doppler
radar data in HAR. The original four-dimensional
doppler tensor was reshaped into a two-dimensional
matrix, making it suitable for efficient matrix sampling.
By applying LS probability sampling, we selected a
subset of informative rows and columns that preserved
the essential structure of the signal. A low-rank
approximation was performed using SVD on the
sampled submatrix. From this, the approximate left and
right singular vectors were reconstructed to serve as
latent directions in the data. These latent directions
were used to guide a rejection sampling step, where
the features most aligned with the informative structure
of the data were selected. The final filtered data
retained only the most relevant 1000 features, achieving
significant dimensionality reduction while maintaining
class-separable information across activities. Visual
analysis revealed that the unique structure of each
activity was preserved, while the classification results
highlighted the strong ability of the selected features
to distinguish between different activities. CNN and
decision tree models showed significant parameter
reductions without performance loss, making them
suitable for resource-efficient implementations. The
accuracy of the LSTM model improved slightly
with a significant reduction in model complexity,
but the standalone model experienced a drop in
accuracy, highlighting the need for careful evaluation
in sequence-based architectures. Fast MC algorithms
generally provide a promising approach for optimizing
model efficiency, particularly in computational and
resource-constrained scenarios such as real-time HAR
in edge deployment, in systems such as elderly
monitoring systems, smart homes, and clinics, where
reducing the size of the model without sacrificing
accuracy is key.

7.1. Future Works
Future research will aim to exploit the potential of
quantum technologies to make ML models more effi-
cient and scalable. A key focus will be on exploring
quantum SVD, which holds promise for accelerating
tasks like dimensionality reduction and feature extrac-
tion, particularly for datasets of high complexity. Efforts
will also include developing quantum ML (QML) mod-
els, such as quantum-enhanced CNNs and decision tree
versions, and creating hybrid quantum-classical frame-
works. These advances could significantly improve
training processes and model accuracy. These initiatives
aim to push the limits of ML by integrating quantum
innovations into real-world problem-solving.
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