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Abstract

Stock market prediction plays a crucial role in investment decision-making, portfolio management, and risk
assessment, significantly impacting financial stability and economic growth. Accurately forecasting stock
prices, which are chaotic and nonlinear, has become a main point of financial research. Deep learning
approaches, such as neural networks and long-short-term memory (LSTM) models, have been more reliable
than traditional approaches such as the ARMA and ARIMA models. However, these methods require a lot
of computational power, complex fine-tuning procedures, and often overfit, especially with limited or noisy
data. Reservoir Computing (RC) has emerged as a potential alternative for financial time series prediction. It
uses a fixed, randomly connected reservoir to capture patterns in data, requiring only the output layer to be
trained. This design makes RC computationally efficient and simpler to use. However, RC models can struggle
with overfitting when the reservoir is too large compared to the data or when the model can not adapt well
to unseen data. To address these drawbacks, we propose a multi-step RC model, focusing on popular stock
indices, including CSI300, FTSE100, S&P500, and SSE50. Our approach includes a retraining step where
the reservoir evolves by forecasting some of the training data and simulating real-world testing conditions.
These evolved internal states, affected by prediction errors, are used to retrain the output layer, making the
model more robust and less likely to overfit. Our experiments show that our model performs more accurately
and efficiently than conventional RC and LSTM models, making it a workable and trustworthy option for
stock market prediction. This work contributes to utilizing RC-based approaches in terms of the financial
forecasting domain.
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as auto-regressive moving average model (ARMA)

1. Introduction and auto-regressive integrated moving average model
o . ) (ARIMA) in predicting financial time series [3][4].

Stock market prediction is crucial for making smart Although these models are highly predictive, they often
investment choices, managing assets effectively,and  encounter issues such as high computational resources,
identifying potential risks, as it influences financial complex hyper-parameter tuning, and vulnerability to

stability and economic growth. Accurately forecasting overfitting, especially when dealing with limited data
stock prices, known as chaotic and nonlinear, has . noisy inputs [5].

become a key focus in financialr esearch [1][2].
Recently, improvements in machine learning have
enhanced stock price prediction, providing robust
tools to solve this challenging task. For example,
neural networks and long-short term memory (LSTM)
networks approaches have shown stronger performance
over conventional statistical predictive models such

As an alternative, Reservoir Computing (RC) has
recently gained interest in the financial field. Originally
based on the concept of recurrent neural networks,
RC leverages a fixed, randomly created reservoir layer
with sparse connections to capture complex dynamics,
requiring only the output layer to be trained. This
architecture offers significant computational efficiency,
*Corresponding author. Email: gtdao@mun.ca as the fixed input layer and internal reservoir eliminate
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the need for back-propagation training throughout the
network [6][7]. There are multiple motivations for
applying RC to stock data. For example, Wang et al.
[8] showed the outperformance of RC with EMD2FNN,
which was developed by integrating empirical mode
decomposition with a neural network and ModAugNet
(LSTM model with overfitting prevention module) on
various indices. Tian et al. [9] applied sparrow search to
optimize the RC models. The results are compared with
other deep learning models and show the RC model’s
superiority. Wang et al. [5] proposed a compressed
sensing method to improve the connectivity between
nodes within the internal states of the RC model.
Consequently, the model was applied to the financial
data. These contributions have pushed the potential of
applying RC in the financial domains.

In practice, the RC model has to have significant
memory to capture all the necessary patterns of indices.
The memory capacity can be improved by adding more
nodes to the reservoir, meaning increasing its size.
However, some studies have shown that increasing the
reservoir size only improves RC performance up to a
certain point in various computational tasks [10][11].
Moreover, if the reservoir size significantly exceeds the
length of the input time series data, it can cause an
"ill-posed problem" during the training of the linear
readout layer [12][13], leading to the RC not being able
to predict the data correctly.

A possible solution to overcome the aforementioned
limitations is to use multiple reservoirs (as known as
multi-step reservoir models). In this work, inspired by
the multi-reservoir approaches [14][15], we develop a
multi-step RC model tailored for financial time series
prediction, focusing on four popular stock indices,
such as CSI300, FTSE100, S&P500, and SSE50. Our
proposed model introduces a retraining mechanism to
mitigate overfitting commonly observed in standard RC
models. After an initial training phase, the reservoir’s
internal states are evolved by forecasting a portion
of the training data, allowing the system to replicate
the dynamics encountered during testing. This strategy
captures the impact of small prediction errors on inter-
nal states, which are later used to update the readout
layer. Furthermore, we employ grid search to identify
the optimal set of hyperparameters, ensuring efficient
model performance. By demonstrating the reservoir’s
sensitivity to prediction errors and retraining accord-
ingly, our method improves generalization and reduces
test errors. We also compare the predictive perfor-
mance of our model against traditional RC and LSTM
models, showcasing both effectiveness and efficient
resource usage. This work contributes to utilizing RC-
based approaches in terms of the financial forecasting
domain.

2. Methodology

2.1. Reservoir computing model

Figure 1l.a illustrates the structure of a reservoir
computing (RC) model. At each time step t, the model
includes:

* Input vector represents K input features.

i(t) = (g (1), uz(t), ..., ug(t)) (1)

* Internal states vector represents the N-node
network’s dynamic reservoir.
X(t) = (x1 (), %2(t), .., XN (1) (2)

* Output vector represents predictions of L fea-
tures.

y(t) = 31(8), p2(t), -, 9 (F) (3)

Assuming t = 1,2,..,T where T is the data length. The
reservoir state updates at each step are defined by the
following equation:

-

X(t) = (t —a)xX(t — 1) + ax(t) (4)
where

2

) = f (WhiE(t) + Rt 1)+ WPk - 1)) (5)

Where Win € RN*K (¢ RNxN pyback ¢ RNxL are the
weights connecting the input to the internal states, the
connections between nodes inside the reservoir, and
weights from the output to the reservoir, respectively.
All these weights are randomly initialized and remain
unchanged throughout the training phase. Besides, f/(.)
can represent nonlinear activation functions, such as
tanh(.) or ReLU(.). The leaking rate a € (0,1] is used
to enhance the effect of previous states on the current
state. This value might help enhance the memory
capacity of the internal network. The output of the
network is computed using the following formula:

yt) = WD) (6)

where Wout ¢ RIXN © which is the only one trained
in the network, denotes the readout weights and
is obtained by least-square regression with Ridge
regularization (regularization parameter y) to prevent
overfitting. With X = (x(1), x(2),.., x(T)) € RN*T, y =
(»(1),9(2),...,v(T)) € RE*T are the set of internal states,
and labels in each discrete time respectively, the
optimized values of W are archived by:

weout = yXT(xxT + y1)™! (7)

In RC, the echo state condition is an important
requirement [6]. It depends on the spectral radius,

EAI Endorsed Transactions on
Tourism, Technology and Intelligence
| Volume 2 | Issue 2 | 2025 |

2 EA 2



GS-MultiRC: Multi-step Reservoir Computing Leveraging Grid Search for Stock Indices Prediction

a)

Internal states x(t)

b)
- (%)
/' u,
j —
L ~ 3 = yl
Y (T)

Original stock data

- - - out 2 > 2
X1, ...,xtl,..., xttmin Wl —_— y—> MSE(y,y)

uy (t)

Q=0

out
Wy

y2(t)

5 S >
Xty 4+ Xt 420 Lo

—uy (t)

Q=0

$1()—MSE (y,(£),9: (1))

out
Wy

|

Figure 1. a. The architecture of a traditional reservoir computing model, b. Proposed model for financial data.

p(W) of the reservoir weight matrix, W. The spectral
radius is the largest absolute value among the matrix’s
eigenvalues and gives a rough idea of how much
memory the reservoir can retain. A smaller spectral
radius means the reservoir remembers things for a short
time, while a larger one allows for longer memory.
Nevertheless, when the spectral radius grows too
large, the system can lose stability, and the echo state
condition breaks down [16]. Besides, the sparsity value,
referring to how many connections between nodes in
the reservoir are set to zero, is also used to enhance the
model’s performance [17].

2.2. The proposed multi-step reservoir computing
model

When the standard RC with linear readout layer
overfits the training data, even small changes in the
internal states caused by prediction errors can lead
to large prediction mistakes [18]. In our proposed
method, during the initial training phase, we let the
internal states change by predicting part of the training
data, thereby replicating the testing scenario where
prediction errors naturally occur and accumulate.
These errors are passed to the internal states and
then used to update the readout layer. This learning
approach shows how small prediction errors influence
the internal states during the testing phase. This

< EAI

effect significantly reduces the test errors by reducing
overfitting. The training strategies are shown as:

» Step 1: Split the training data into two parts.

1]
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* Step 2:In the first training part, the internal reser-
voir states X; € RN*11 are computed, followed by
applying ridge regression to determine the output
weights W',
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e Step 3: Evolve the internal states of the reservoir
X, € RN*2 by letting the reservoir predict the
values of 7.

* Step 4: The readout layer is retrained using all
internal states X € RN*(11*%2) along with the full
training data y to optimize a new value for W',

Regarding the stock indices data, the price of the
current step is the input for the next day. Figure.
1.b provides a visual overview of the proposed model
designed for stock data.

2.3. Assessment metrics

We evaluate our model’s performance using several
standard metrics: mean absolute percentage error
(MAPE), mean absolute error (MAE), root mean square
error (RMSE), symmetric mean absolute percentage
error (SMAPE), and theil inequality coefficient (TIC).
Besides, to depict the fluctuation, we also use trend
direction accuracy (DA), to capture the model’s ability
to track trend changes [19]. DA is defined in the
following equation:

N-1
DA(d,y) _ Zk:1 F(sgn(dk+1 - dk) - Sgn(?kﬂ - yk))’
N

(10)
where dj indicates the predicted value, y; represents the
true value, and N denotes the total number of samples
in the target sample set. The function sgn(x) is the sign
function. Both F(x) and sgn(x) are defined as follows:

1 ifx=0,
F(x) = 11
() {0 if x 2 0. (1)
1 ifx>0,
sgn(x) =40 ifx=0, (12)
-1 ifx<0.

Smaller MAE, MAPE, RMSE, and SMAPE values
and a TIC value closer to 0 show higher prediction
accuracy and smaller errors. Conversely, larger MAE,
MAPE, RMSE, and SMAPE values, with a TIC value
closer to 1, reflect lower accuracy. Besides, a higher DA
value suggests better alignment between the predicted
and actual trends, enhancing the model’s ability to
accurately capture upward and downward movements
in stock prices.

3. Experiments and Results

3.1. Experiment settings

To assess the performance of the proposed model,
experiments were conducted using daily opening

prices of four popular datasets (CSI300, FTSE100,
S&P500, SSE50) sourced from different regions (US,
UK, China), ensuring a diverse representation of data
characteristics. The datasets cover the period from 2004
to 2024 and include a total of 19472 data points. The
data was divided into training and testing subsets,
where 80% allocated for training and the remaining
20% used for testing. Table 1, including key statistics,
provides a summary of the datasets.

As mentioned, the training process was carried out
in two phases. In the first phase, 75% of the training
data was used to optimize the model’s output weight
WO"! The remaining 25% of the training data was then
used to evolve the internal states X,. To ensure the best
performance of the model, a grid search was performed
to find the optimal values for the key hyperparameters,
including spectral radius p(W), sparsity, reservoir size
N, and warm-up time t,,,. The ranges and step sizes
for these parameters are detailed in Table 3.

To evaluate performance, the proposed model was
compared with two commonly used baseline models:
the traditional RC model and the LSTM network. Since
each market index represents a separate prediction
task, the experiments were performed independently
for each one. Accordingly, a distinct RC model was
constructed, trained, and evaluated for every index,
and the same process was followed for the LSTM
model to maintain a fair comparison. The accuracy and
robustness of the models were evaluated using metrics
stated in Section 2.3.

3.2. Results

Figure 2 shows the predictions in the test data
of the proposed model, traditional RC model, and
LSTM model. Aside from applying grid search for the
proposed model, we also used that method to find
the best-performing traditional RC model. In terms
of the LSTM model, we repeated the training process
by changing configurations such as the number of
epochs, size of hidden layers, etc. to achieve the highest
accuracy. Intuitively, while the LSTM model can only
simulate the patterns of the data, traditional RC and
our model fit the actual prices very well. Furthermore,
all methods seem hard to fit the FTSE100 data in the
period after April 2024.

More specifically, Figure 3 displays the absolute
percentage errors (APE) of the predicted stock prices
generated by our model. As shown, these error values
remain below 1% across all indices, indicating that the
predicted prices closely match the actual values with
minimal errors. Moreover, the APE values in 2022 of the
S&P500 show higher values than average, and all errors
show sudden high values after 2024.

Finally, Table 2 calculates the performance of models
in the stated metrics. The results show that the
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Figure 2. Plots of predicted index prices of LSTM, traditional RC, proposed model, and ground truth price for each stock market index
in the test period. The predicted prices result from the best-performing models obtained in the training period.
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Table 1. Summary statistics for various indices.

Index Study Period Total Training | Testing Min Max Mean | Std.Dev
(Start-End) Number Size Size
CSI300 | 2005/01/04-2024/11/21 4833 3866 967 816.55 | 5922.07 | 3237.69 | 1080.64
FTSE100 | 2005/02/21-2024/11/22 4991 3992 999 3512.10 | 8445.80 | 6444.75 | 949.60
S&P500 | 2005/11/21-2024/11/21 4783 3826 957 679.30 | 6008.86 | 2387.79 | 1256.31
SSE50 2004/11/22-2024/11/22 4865 3892 973 699.27 | 4726.08 | 2281.72 | 754.41

Table 2. Best performances for individual index achieved by different network structures and settings. Three types of networks are

LSTM, traditional RC, and proposed model.

Index Model MAE MAPE RMSE SMAPE TIC AD
CSI300 LSTM 43.876 1.022 62.471 1.023 0.0074 0.484
Traditional RC 38.254  0.901 55.048 0.903 0.0065 0.477
Proposed model | 37.994  0.895 54.728 0.897  0.0065 0.472
FTSE100 | LSTM 58.923 0.786 74.347 0.789 0.0049 0.484
Traditional RC 44.308 0.597 61.085 0.597 0.0041 0.490
Proposed model | 43.996  0.593  60.595 0.593  0.0040 0.484
S&P500 | LSTM 108.085 2.257 133.724 2.291 0.0149 0.527
Traditional RC 31.725 0.722  42.409 0.722 0.0047 0.523
Proposed model | 31.701  0.722  42.408 0.722  0.0047 0.524
SSE50 LSTM 25.809 0.894  37.304 0.894 0.0065 0.475
Traditional RC 25.856 0.897 36.871 0.898 0.0064 0.467
Proposed model | 25.486  0.884  36.608 0.885  0.0064 0.476

Table 3. Grid Search Configurations

Parameter Range

Spectral radius (p) | 0.7,0.8,0.9,1.0,1.1,1.2,1.3

Sparsity 0.75, 0.8, 0.85, 0.9, 0.95

Reservoir size 50, 100, 150, 200, 250, 300,
350, 400

Warm-up tnin 0, 50,100

proposed method significantly outperforms the LSTM
methods, and slightly outperforms traditional RC
model.

4. Conclusion

This study explores the potential of a multi-step
Reservoir Computing (RC) model for predicting stock
market trends, focusing on the challenges posed
by chaotic and nonlinear financial time series. By
introducing a retraining mechanism and leveraging
a grid search for hyperparameter optimization, the
proposed model enhances predictive accuracy while
mitigating issues of overfitting and resource inefficiency
commonly observed in traditional RC and LSTM
models.

The experimental results on four popular stock
indices — CSI300, FTSE100, S&P500, and SSES50
— highlight the proposed model’s accuracy and
robustness. The ability to capture the dynamics
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of financial data more effectively is highlighted
through consistently lower absolute percentage errors
(APE) and improved performance metrics across most
datasets compared to the baseline models. Notably,
the retraining strategy enabled the model to adapt to
prediction errors and improve its generalization, as
evidenced by its ability to handle challenging time
periods where other models struggled, such as the
FTSE100 data after April 2024.

By showcasing the efficiency and scalability of the
multi-step RC approach, this work adds valuable
insights to the growing body of research on applying
RC in financial forecasting. The outcomes show that
the model delivers both high prediction accuracy
and strong computational performance, making it
highly suitable for real-world scenarios where speed
and precision are critical. Moreover, the work opens
up exciting possibilities for future research, such as
exploring multi-reservoir models that could further
enhance performance and be adapted to other fields
with complex time series dynamics.
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