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Abstract 

INTRODUCTION: Brain-Computer Interfaces (BCIs) embedded with Artificial Intelligence (AI) have created powerful 
closed-loop cognitive systems in the fields of neurorehabilitation, robotics, and assistive technologies. However, these 
tightly bound systems of human-AI integration expose the system to new security vulnerabilities and adversarial 
distortions of neural signals. 
OBJECTIVES: The paper seeks to formally develop and assess neuro-adversarial attacks, a new class of attack vector that 
targets AI cognitive feedback systems through attacks on electroencephalographic (EEG) signals. The goal of the research 
was to simulate such attacks, measure the effects, and propose countermeasures. 
METHODS: Adversarial machine learning (AML) techniques, including Fast Gradient Sign Method (FGSM) and 
Projected Gradient Descent (PGD), were applied to open EEG datasets using Long Short Term Memory (LSTM), 
Convolutional Neural Networks (CNN), and Transformer-based models. Closed-loop simulations of BCI-AI systems, 
including real-time feedback, were conducted, and both the attack vectors and the attacks countermeasure approaches (e.g., 
VAEs, wavelet denoising, adversarial detectors) were tested. 
RESULTS: Neuro-adversarial perturbations yielded up to 30% reduction in classification accuracy and over 35% user 
intent misalignment. Transformer-based models performed relatively better, but overall performance degradation was 
significant. Defense strategies such as variational autoencoders and real-time adversarial detectors returned classification 
accuracy to over 80% and reduced successful attacks to below 10%. 
CONCLUSION: The threat model presented in this paper is a significant addition to the world of neuroscience and AI 
security. Neuro-adversarial attacks represent a real risk to cognitive-AI systems by misaligning human intent and action 
with machine response. Mobile layer signal sanitation and detection. 
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1. Introduction

In the arena of AI, intelligent systems that can read brain 
activity to influence or fully automate human decision-
making processes have been developed, combining 
advances in neurotechnology and AI. Several fields are  

quickly benefiting from this approach, including 
neurorehabilitation, cognitive workload estimations, brain- 
controlled robotics, and AI-empowered medical 
diagnostics. Central to these advancements are BCIs, 
which read neuronal signals, most commonly using EEG 
data, to facilitate direct communication, or reactivity, 
between the human neurological system and computing 
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agents [1]. When BCIs are used in AI systems that also 
involve human interaction, they form a feedback loop in 
which the system's behaviour is determined by neural 
intent, and the brain's activity is used to determine the next 
action [2]. 
These closed-loop neuro-AI systems hold tremendous 
potential for transformational applications, everything 
from assisting paralysed individuals to regain movement 
[3], to augmenting human performance in industrial and 
military settings [4]. As these systems become embedded 
within critical infrastructure, however, new vulnerabilities 
emerge at the intersection of neuroscience and AI security. 
Specifically, existing system designs do not understand or 
consider that, unlike traditional digital sensor systems, the 
channel of neural input is susceptible to both involuntary 
and intentional forms of interference [5]. 
Deep learning (DL)models trained on EEG data often 
suffer from stability and reliability issues. Recent studies 
show that these models are highly sensitive to small input 
perturbations.[6]. Small changes to the input can produce 
high-confidence misclassification in vision and language, 
again according to adversarial machine learning, which is 
the study of adversarially defined misleading models in 
ML [7]. If we extend this to BCI, then neuro-adversarial 
attacks could be possible that leverage subtly modified 
EEG signals or features in such a way as to mislead the AI 
into believing the user was trying to do something against 
their will. Accidental movement of limbs can happen with 
neuroprosthetic systems due to adversarial perturbations, 
which could lead to unsafe outcomes for users [8]. 
Deliberate manipulation of signals through AI-enabled 
cognitive assessments could also result in false clinical 
diagnoses such as Alzheimer's or ADHD [9]. Adaptive AI 
agents can be preset using reinforcement learning. 
However, this process may unintentionally reinforce 
adversarial neuronal feedback. Over time, the system could 
then drive harmful behaviour [10]. Research into the 
security of BCI-AI systems is scant, with few frameworks 
in place to identify, stop, or recover attacks at the signal 
level, despite extensive investigations [11]. In this paper, 
we introduce a new threat model that we refer to as neuro-
adversarial attacks. In these attacks, the cognitive-AI 
feedback loop is altered by physical (through sensory 
inputs) or digital (during signal processing) adversarial 
perturbations in the brain signal [12]. To position our work 
within existing research, we now review prior studies on 
AML and EEG-based systems. Thus, the objectives of our 
research are:  
• To locate neuro-adversarial attacks in cognitive-AI 
feedback systems and provide a formal definition of such 
attacks.  
• To apply adversarial perturbation techniques and utilize 
real artefactual BCI data to simulate attacks.  
• To evaluate how adverse types of attacks on cognitive-AI 
functionally degrade both AI usability and the usability of 
AI systems with humans.  
• To recommend preventative measures in early steps, such 
as adversarial detection models, and signal sanitisation. 

The remainder of this paper is organized as follows: 
Section 2 reviews prior work, Section 3 describes the 
methodology, Section 4 presents results, Section 5 
summarizes contributions, and Section 6 concludes with 
future research directions. 

2. Literature Review 

The emerging area of AML is generating substantial 
interest across fields such as computer vision, natural 
language processing, and structured/tabular data. Image or 
text classifiers are easily subjected to attacks using 
classical methods in the image and text literature, which 
have included methods such as the Fast Gradient Sign 
Method (FGSM), PGD , and DeepFool [13]. In particular, 
it is remarkable that a relatively small perturbation to an 
input can lead to an incorrect classification. Following the 
results of this sort, there have been a number of potential 
strong defensive strategies suggested, including adversarial 
training [14] or input transformations. However, it is worth 
highlighting that this general literature has not yet been 
fully translated to fields dealing with EEG and other 
neurophysiological inputs [15]. 

EEG signals present unique modelling and reliability 
challenges compared to visual or text data. They are 
dynamic, vary between users, and are rooted in biological 
processes. Unlike images or text, brain waves are not 
standardized [16]. There are a considerable number of 
studies that have indicated EEG-based BCIs are sensitive 
to noise, motion artefacts, and user-specificities, and not 
many studies have examined competitors disrupting brain 
signals. Zhang et al. is one of the first papers that identified 
that EEG classifiers based on DL are subject to confusion 
based on time-series adversarial attacks. More recently, 
researchers have shown, health data can also be affected 
when modifying time-series patterns [17]. This includes 
biological time series signals like ECG and EMG, which 
directly relate to and provide new opportunities for AML. 
However, although these types of models are generally 
evaluated in open-loop classification systems, very few 
studies examine across human-in-the-loop (HITL) closed-
loop control systems (such as this one), where the 
neurological intent of the user and what the adaptive 
system does are continuously interacting in real-time [18]. 

Feedback damage effects are exacerbated in neuro-AI 
systems since not only do they classify brain states, but 
they can also learn from brain properties online. Secondly, 
while there has been some investigation into adversarial 
robustness of sequential signals (e.g., RNN-based NLP 
systems) [19] and exploring and developing some attempts 
on EEG classification, neither of those positions has yet 
sufficiently examined the cognitive loop dynamics of an 
adaptive agent and human-user. There is even less 
literature to investigate the double-edged sword of 
neurotechnology and machine learning, namely, how 
physically plausible and digitally construed attacks can 
exploit brain intention for downstream AI models [20]. 
Security studies associated with BCI generally speak to 
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privacy concerns related to inferring private mental states 
from public electroencephalogram signals [21] or side 
channel attacks such as reconstructing user identities from 
shared BCI signals [22]. For systems that involve 
continuous human-AI alignment, such as cognitive 
decision support or adaptive robotics, there is very little 
literature that explores how an adversary might exploit the 
brain-control interface in order to make downstream AI 
function through an adversarial influence [23].A 
synthesized model of risk, including notions of neuro-
cognitive interface context and adversarial machine 
learning.Simulating an adverse feedback loop in which the 
AI and human parts engage in real-time interaction, and the 
attack can corrupt or impact the adaptation cycle [24]. The 
presented work is evaluative around the risk of combining 
brain and AI, particularly in contexts where the AI system 
is capable of not only interpreting input from the human 
brain but also modifying that input. Building on these gaps 
in prior work, the next section details our methodology for 
simulating and evaluating neuro-adversarial attacks on 
BCI–AI systems. 

3. Methodology 

The purpose of this research is to simulate and examine the 
feasibility of using neuro-adversarial attacks on human-in-
the-loop BCI and AI systems. The proposed methodology 
includes the selection of a dataset, modelling of the BCI-
AI system, designing and applying an adversarial attack, 
evaluation criteria, and defense mechanisms.  

3.1 Data Set Selection 

The EEG datasets we access publicly comprise many 
different BCI techniques, which will allow us to simulate 
and study real-world cognitive-AI feedback loops: 
Datasets 2a and 2b of the BCI Competition IV contain 250 
Hz, multi-channel EEG of motor imagery tasks (e.g., 
left/right hand movement). Modelling intent-based control 
systems is a good use for these [25]. The PhysioNet EEG 
Motor Movement/Imagery Dataset is another rich resource, 
allowing researchers to experiment with inter-subject 
variability and generalisation. This set includes EEG 
signals of imagined movement and also signed activity 
from over 100 people. Clinical EEG data from TUH is part 
of the EEG corpus. This is useful, as it will allow modelling 
of AI use cases in medicine, such as predicting diagnostic 
use cases.  
 
Dataset Description: We employed several standard 
open-access EEG/BCI datasets to evaluate adversarial 
attacks and defenses. The BCI Competition IV dataset 
(datasets 2a/2b) provides 250 Hz multi-channel motor 
imagery EEG signals from nine subjects and has been 
widely used as a benchmark for motor control 
classification [26]. The PhysioNet EEG Motor 

Movement/Imagery dataset includes recordings from 109 
participants at 160 Hz, covering both executed and 
imagined movements, enabling cross-subject variability 
studies [27,28]. For clinical applications, the Temple 
University Hospital (TUH) EEG Corpus constitutes the 
largest publicly available clinical EEG database, 
comprising recordings from over 1,000 patients with 
sampling rates between 250–500 Hz. To explore affective 
and cognitive domains, we also utilized the SEED dataset 
(15 subjects, 200–1000 Hz) and the DEAP dataset (32 
subjects, 128 Hz), both of which are standard benchmarks 
for emotion recognition and cognitive workload analysis 
[29,30]. 
- The SEED and DEAP datasets contain emotion 
recognition tasks as well as cognitive effort tasks. These 
can be useful in examining potential adversaries’ 
susceptibility within emotion recognition or affective 
computing systems. Table 1 shows the Summary of EEG 
Datasets 

Table 1: Summary of EEG Datasets 

Dataset Number of 
Subjects 

Task Type Sampling 
Rate (Hz) 

BCI 
Competition 
IV 

9 Motor 
Imagery 
(left/right 
hand) 

250 

PhysioNet 
Motor 
Imagery 

109 Motor 
Imagery & 
Movement 

160 

TUH EEG 
Corpus 

1000+ Clinical EEG 
(diagnosis) 

250-500 

SEED / DEAP 15-32 Emotion & 
Cognitive 
Workload 

128-512 

3.2 Baseline BCI-AI System 

We develop a multimodal baseline BCI-AI pipeline that 
represents neuroadaptive systems in the wild. The 
components will include:  Preprocessing: all EEG signals 
will be filtered, normalized, and segmented into windows 
(e.g., 1s windows, with 50% overlap) - Feature extraction: 
the raw time series domain and frequency domain (e.g., 
using Short-Time Fourier Transform). The Model 
architectures  are 

• LSTM-based models: To account for temporal 
dynamics in the EEG time series. 
• CNN-based models: For spatial-temporal EEG 
feature extraction, especially from the raw EEG 
matrices. 
• Transformer-based models: For attention-based 
modeling of long-range dependencies in EEG 
chunks[26]. 
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We simulate closed-loop cognitive-AI systems 
using reinforcement learning agents trained on EEG 
inputs. These agents perform tasks such as moving 
or selecting a cursor. Feedback loops then allow the 
AI system to update itself over time. In normal 
cases, this process reinforces alignment with the 
user. Under adversarial conditions, however, it can 
reinforce misalignment. 

Table 2: Model Architectures 

Model Type Key 
Characteristics 

Use Case 

LSTM Captures 
temporal 
dependencies 

EEG time-
series 
classification 

CNN Extracts spatial-
temporal features 

Raw EEG 
matrix 
processing 

Transformer Attention on 
long-range 
dependencies 

Modeling 
adaptive 
feedback loops 

 

 

Figure 1: System Architecture of a Human-in-the-
Loop BCI-AI Pipeline 

Figure 1 represents the entire end-to-end architecture of a 
human-in-the-loop BCI system integrated with AI, 
showing both the intended signal flow and where 
adversarial attacks could occur. The Signal Flow and Key 
Components are 
EEG Signal Acquisition: The very start of this process is 
the user’s brain signals being recorded via EEG electrodes. 
These signals represent the user’s intent or mental state 
[31].  
Pre-Processing:  The raw EEG signals will be filtered, 
normalized, and segmented in the pre-processing stage to 

remove noise and prepare them for analysis. This is the 
stage where input vulnerabilities may introduce the first 
adversarial attack [32]. 
AI Model (LSTM, CNN, Transformer): All of these DL 
models use features:  

- LSTM models capture time-series dynamics, 
- CNNs extract spatio-temporal patterns, and 
- Transformers account for long sequences using 

attention 

The AI Model then labels or classifies the brain states under 
consideration for follow-up actions.  
Feedback Loop: The output resulting from the AI model 
is fed back to the user either through neurofeedback or 
executed control actions (e.g., robotic movement) [33]. 
This loop returns a warning to the user to complete the 
feedback loop and adapt to the user in real time.  
Adversarial Injection Point: Raw EEG: An adversary 
could potentially disrupt this signal level with perturbations 
[34]. Preprocessing and Feature Space: This is where 
adversarially created features could also be established. 
Attention Layers: In a Transformer model, adversarial 
attacks are also possible in the attention layers. 
The system diagram 1 provides a basic visualization that 
underpins threat modeling of neuro-AI pipelines. It 
successfully highlights functional flow and portrays the 
attack surface inside a closed-loop BCI system. The 
addition of adversarial paths illustrates that there are ways 
to undermine integrity at several layers that inform attack 
design and defense countermeasure planning. This makes 
it a primary reference point in methodology and risk 
assessment. 
 

 

Figure 2: Neuro-Adversarial Feedback Loop 

Feedback loops are likely to occur when the AI system 
updates itself over time by matching the user’s brain state 
in reinforcing the system’s alignment to the user, or in the 
case of adversarial situations, its misalignment. The Neuro-
Adversarial Feedback Loop, Figure 2, depicts the variance 
between a BCI-AI loop and an adversarial BCI-AI loop. On 
the left (normal BCI-AI loop), the normal Brain signals are 
picked up by EEG and transferred to the adaptive AI 
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system, which receives the input and then processes the 
EEG signals, eventually providing a feedback signal - 
visual, behavioral, or assistive - back to the user in 
alignment with their intended aim. On the right side, there 
were adversarial perturbations (imperceptible insertions of 
noise and other manipulations of brain signals). These 
perturbations will cause the AI to misinterpret the user’s 
intentions and provide erroneous outputs or signals that are 
out of alignment with the user’s intentions or objectives. 
Once this distorted feedback is looped back to the brain, a 
reinforcing causal loop can proceed, which increases the 
misalignment and dissociation of user and system over 
time. This describes the security critical risk of neuro-
adversarial attacks in closed-loop management systems, 
particularly in systems for prosthetics, cognitive support, 
or for assistance and diagnostics of mental health issues. 
The Model Architectures figure 3 provides a comparative 
illustration of the three DL models used in the study: 
LSTM, CNN, and Transformer, each designed to identify 
EEG signals in different ways. The LSTM model is built to 
handle sequential EEG data, which holds temporal 
dependencies since it processes the signal as time-series 
windows. This architecture is particularly effective at 
tracking changes in brain states through time. The CNN 
(Convolutional Neural Network) processes EEG as spatial-
temporal EEG matrices, where convolutional layers extract 
features of local size across both EEG channels and time. 
This approach is useful for motor imagery and emotion 
recognition because EEG sensors capture the signals in real 
time. Lastly, the transformer model applies self-attention in 
order to learn long-range dependencies in the tokenized 
EEG input [35]. Due to the ability to model contextual 
relevance through time without relying on recurrence, 
Transformers are particularly useful for adaptive feedback 
systems when trying to isolate distinct brain states. 
Ultimately, the three models compose a baseline structure 
that can analyze the many ways that adversarial attacks 
could skew various levels of EEG signal detection in 
cognitive-AI feedback systems. 
 
 

 

Figure 3: Model Architecture for EEG-based AI 
Systems 

3.3 Adversarial Attack Framework 

We provide a structured approach to evaluate neuro-
adversarial assaults on three different levels:  
a. Direct attack on raw signals: using FGSM, PGD, and 
time-series Carlini-Wagner methods to disrupt EEG 
waveforms. 
 Ensuring physiological plausibility through perturbations 
confined by L2 or L∞ norm budgets.  
b. Attacks at the Feature Level: - Inject adversarial noise 
into the extracted EEG characteristics (such as ERP 
components or frequency bands). 
 Attacks on both features that are hand-engineered and 
those that are learnt by deep models should be tested.  
c. Attacks at the Attention Level: - Change the attention 
weights in Transformer-based models to refocus the 
model's objectives. 
 To learn how vulnerable models are in decision regions, 
use saliency-guided adversarial training. Key Equations are 
FGSM (Fast Gradient Sign Method) Attack:            
xᵃᵈᵛ = x + ε · sign(∇ₓ J(θ, x, y)) 
Where, 

• x: Original input (e.g., image or data sample) 
• xᵃᵈᵛ: Adversarial input (perturbed version of x) 
• ε: Perturbation magnitude (a small scalar 
controlling attack strength) 
• ∇ₓ J(θ, x, y): Gradient of the loss function J 
with respect to input x 
• sign(·): Sign function applied element-wise to 
the gradient 
• θ: Model parameters 
• y: True label 

PGD (Projected Gradient Descent) Attack:  
xᵃᵈᵛₜ₊₁ = Πₓ₊𝒮𝒮 (xᵃᵈᵛₜ + α · sign(∇ₓ J(θ, xᵃᵈᵛₜ, y))) 
Where, 
 • xᵃᵈᵛₜ: Adversarial example at iteration t 
• xᵃᵈᵛₜ₊₁: Adversarial example at next iteration 
• α: Step size for each iteration 
• Πₓ₊𝒮𝒮(·): Projection operator to ensure the perturbed 
input remains within the allowed perturbation set 𝒮𝒮 
around the original input x 
• Other terms are as defined in the FGSM equation 

 
Adversarial Attack Algorithms for Neuro-AI Systems. 
This paper describes two of the main algorithms for 
producing adversarial attacks on EEG-based AI models 
within closed-loop brain-computer interface (BCI) 
systems[36]. The first, Fast Gradient Sign Method 
(FGSM), provides a fast, one-step adversarial attack 
method, and the second, PGD, provides an iterative 
extension to FGSM that produces stronger adversarial 
inputs. 
 
Connecting FGSM and PGD: FGSM provides a fast one-
shot adversarial generation method using a 
computationally efficient one-step estimator, with an easy 
implementation, but it may not be as strong enough to work 
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against the stronger models or defenses[37]. Because of 
this, we also use the related PGD method, which is a much 
stronger FGSM-like iterative method. PGD is a very 
iterative process, where it performs FGSM-style updates a 
certain number of times, re-projecting the adversarial 
sample into a constrained perturbation space at each 
iteration. Using the iterative method allows storing many 
FGSM-style attack updates to develop more effective 
adversarial examples that are more difficult to defend 
against, so PGD has become a standard in performance 
evaluations for adversarial machine learning. 
 
Algorithm 1: FGSM Attack Generation 
Input: 
    x: Original EEG input sample 
    y: True label corresponding to x 
    f: Trained DL model (e.g., LSTM, CNN, Transformer) 
    J: Loss function used to train model (e.g., cross-
entropy) 
    ε: Perturbation budget (controls intensity of the attack) 
 
Output: 
    x_adv: Adversarial EEG input sample 
 
Steps: 
1. Forward propagate x through model f to compute the 
prediction: 
       y_pred = f(x) 
2. Compute the loss between the prediction and the true 
label: 
       loss = J(y_pred, y) 
3. Calculate the gradient of loss with respect to the input 
x: 
       g = ∂loss/∂x 
4. Determine the direction of perturbation: 
       perturbation = ε · sign(g) 
5. Create an adversarial example by adding a perturbation 
to the original input: 
       x_adv = x + perturbation 
6. Return x_adv 
 
The FGSM algorithm perturbs the original EEG signal by 
a small step ε in the direction that most increases the 
model's loss function. This simple, fast approach is 
effective in deceiving neural networks with minimal 
changes to the input. 
 
Algorithm 2: PGD Attack Generation 
Input: 
    x: Original EEG input sample 
    y: True label corresponding to x 
    f: Trained DL model 
    J: Loss function (e.g., cross-entropy) 
    ε: Maximum allowed perturbation (perturbation 
budget) 
    α: Step size per iteration 
    T: Number of iterations 
 
Output: 

    x_adv: Final adversarial EEG input sample 
 
Steps: 
1. Initialize x_adv = x + small random noise (e.g., 
uniform or Gaussian) 
2. For t in 1 to T do: 
       a. Compute prediction: y_pred = f(x_adv) 
       b. Compute loss: loss = J(y_pred, y) 
       c. Compute gradient: g = ∂loss/∂x_adv 
       d. Update x_adv: x_adv = x_adv + α · sign(g) 
       e. Project x_adv back into valid ε-ball around x: 
              x_adv = clip(x_adv, x - ε, x + ε) 
3. Return x_adv 
 
PGD is an iterative, stronger version of FGSM. It takes 
multiple small steps in the direction of increasing loss, and 
projects the updated adversarial sample back into an 
allowed perturbation range. This makes PGD more 
powerful and harder to defend against compared to FGSM. 
Although FGSM is an easy, relatively fast adversarial 
generation method that computes a single adversarial 
perturbation quickly and efficiently, it may not provide 
enough “power” to defeat stronger models or defenses. For 
that reason, we implement PGD is a stronger iterative 
variant of the FGSM method. Instead of issuing just a 
single adversarial update, PGD applies a series of small 
steps exactly like FGSM; however, PGD then projects the 
adversarial sample each time back into a constrained 
perturbation space. This iterative process helps generate 
harder-to-defend adversarial examples. PGD is used as the 
baseline in many AML studies due to its simplicity and 
efficiency[38]. 
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Figure 4: Adversarial Attack Flowchart 

The Adversarial Attack Flowchart, figure 4, visually 
portrays the sequential steps to identify and generate 
adversarial perturbation inputs to compromise AI-based 
models utilized in brain-computer interface (BCI) systems.  
The sequence of events initiates with the original EEG 
input, which is then computed using a gradient-based 
approach (e.g., FGSM, PGD).  Those gradients direct the 
construction of adversarial perturbations (s) that mislead 
the AI model.  Before generating the input, the system will 
evaluate constraints (parameters) to ensure the perturbation 
is in compliance with physiological bounds or 
imperceptibility (i.e., L₂ or L∞ norms); if the constraints 
are neglected, the loop repeats to develop the perturbation 
[36].  Once the adversarial input is assessed and passed 
through those constraints, the adversarial input is inputted 
into the AI model, which results in an impeded output.  The 
diagram also illustrates variations of attacks based on 
where the injections occurred: attacks at the raw EEG state, 
after feature extraction and preprocessing, or internally at 
the attention layers in transformer models.  The above 
flowchart provides a requisite design in modeling how 
malicious interference may be technically engineered, 
while providing insight into the mitigation opportunities in 
overlapping and distinct stages, to ensure AI-based 
robustness in neuroadaptive systems. 
 
Algorithm 3: General Workflow of Neuro-Adversarial 
Attack Evaluation 
Input: EEG dataset DDD, baseline AI models (LSTM, 
CNN, Transformer), adversarial attack methods (FGSM, 
PGD), defense mechanisms (VAE, wavelet denoising, 
adversarial detector). 
Output: Performance evaluation of neuro-adversarial 
attacks and defenses. 
Steps: 

1. Dataset Preparation 
o Select appropriate EEG datasets (e.g., 

BCI Competition IV, PhysioNet). 
o Preprocess signals (filtering, 

normalization, segmentation). 
2. Model Training 

o Train baseline BCI-AI models (LSTM, 
CNN, Transformer) on clean EEG data. 

o Record clean baseline performance 
(accuracy, misalignment rate). 

3. Adversarial Attack Generation 
o Generate adversarial perturbations using 

FGSM, PGD, or attention manipulation. 
o Ensure perturbations remain 

physiologically plausible (bounded by 
L2L_2L2 or L∞L_\inftyL∞ norms). 

4. Attack Deployment 
o Apply adversarial inputs at three levels: 

a. Raw EEG signals 

b. Extracted features 
c. Attention layers (Transformer) 

5. Evaluation Metrics 
o Measure accuracy degradation, attack 

success rate (ASR), and user intent 
misalignment (UMR). 

o Assess imperceptibility using SNR and 
cosine similarity. 

6. Defense Mechanism Application 
o Apply signal sanitization (VAE, wavelet 

denoising). 
o Apply adversarial signal detection 

(binary classifier). 
o Combine defenses for layered 

protection. 
7. Post-Defense Evaluation 

o Recalculate classification accuracy, 
ASR, and detection rate. 

o Compare restored performance with 
baseline. 

End: Report results, analyze vulnerabilities, and 
recommend robust neuro-AI design strategies. 
 

3.4 Evaluation Metrics 

We have decided upon different metrics to assess the 
efficacy of the assaults and mitigating solutions. 
Classification accuracy declines as a result of the 
difference in precision between malicious inputs and clean 
inputs. "Misalignment between user intent and AI 
response" means the percentage of outputs in which the AI 
has wrongly labeled those signals from one's brain. One 
can define attack success rate as how many of times an 
adversarial input produces a misclassification of the target 
class. System robustness against attack: performance drop 
with and without defences. 
- The invisibility of disturbances could be measured using: 
dynamic temporal warping, SNR, and cosine similarity. 
Evaluation Metrics are in Table 3. 

Table 3: Evaluation Metrics 

Metric Description 
Accuracy Degradation Difference in 

classification accuracy 
due to the attack 

User Intent Misalignment Percentage of incorrect AI 
interpretations of brain 
signals 

Attack Success Rate Frequency of successful 
misclassification under 
attack 
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Robustness Model performance with 
and without defense 
mechanisms 

Perturbation 
Imperceptibility 

Signal similarity 
measures (SNR, cosine 
similarity) 

 
Attack Success Rate (ASR): This metric quantifies how 
effective the adversarial attack is in fooling the model. A 
higher ASR indicates a more successful attack. 
 
ASR = (Number of Successful Adversarial 
Misclassifications / Total Number of Attacks) × 100 
 
User Intent Misalignment Rate (UMR): This measures 
the rate at which the system output diverges from the user’s 
intended action [39]. It is particularly important in real-
time closed-loop BCI systems. 
 
UMR = (Number of Misaligned Predictions / Total 
Predictions) × 100 
 
Accuracy Degradation (AD): This reflects the drop in 
model performance due to adversarial attacks, giving 
insight into the robustness of the model under attack. 
 
AD = Clean Accuracy − Adversarial Accuracy 
 
 

3.5 Proposed Defense Mechanisms 
 
To keep the neuro-adversarial assaults at bay, we propose 
two main approaches: 
a. Cleaning Up the Signal: VAEs may be trained on clean 
EEG data to re-create denoised inputs with less intensity of 
adversarial artefacts. Wavelet denoising can suppress 
undesirable noise while preserving vital physiological 
information via the use of multi-resolution wavelet 
decomposition.  

b. Adversarial-Signal Detectors: Binary classifiers are 
trained to distinguish between pristine and adversarial EEG 
signals[40,41]. Detection thresholds are either fixed with 
reconstruction errors or dynamically set with ensemble 
statistical anomaly detection. The alternatives lie in the 
evaluation of contrastive learning approaches in classifying 
representations into neutral and hostile.  Table 4 explains 
the Defense Mechanisms. 

Table 4: Defense Mechanisms 

Defense Method Description Purpose 
Variational 
Autoencoder 
(VAE) 

Reconstructs the 
denoised EEG 

Signal 
sanitization 

from corrupted 
signals 

Wavelet 
Denoising 

Removes high-
frequency 
adversarial noise 

Signal 
sanitization 

Adversarial 
Signal Detector 

Classifies 
signals as clean 
or adversarial 

Attack 
detection 

 
Figure 5  illustrates the passage of EEG signals through the 
defense modules before entering the AI models. As shown, 
signal sanitization (with VAE & wavelet denoising) 
removes adversarial noise, and the detection modules 
identify, and segregate manipulated signals. Using all these 
defenses together strengthens the system and reduces 
adversarial impacts [42]. The Defense Mechanism 
Illustration provides a visual summary of how the system 
defends itself from neuro-adversarial attacks.  
 

 

Figure 5: Defense Mechanisms Against Neuro-
Adversarial Attacks 

Incoming EEG signals will pass through the system's 
signal sanitization layers first - examples of this include 
Variational Autoencoders (VAEs), which reconstruct 
cleaned versions of noisy EEG or adversarially perturbed 
signals; as well as wavelet denoising, which removes high-
frequency components (and possible artificial distortions). 
Additionally, the signals will have adversarial detection 
performed using binary classifiers that have been trained to 
differentiate between clean and manipulated EEG 
patterns[43]. If the signal is rejected or flagged for 
adversarial activity, it will not pass through, and only 
verified or sanitized signals will be routed to the DL model 
(LSTM, CNN, or Transformer) for classification or control 
outputs. The layered safeguarding structure ensures that the 
system can defend itself both reactively (i.e., detection) and 
proactively (i.e., sanitization). This significantly improves 
system robustness and reduces the likelihood of successful 
attacks to below 10% in simulation.Having defined our 
experimental setup, dataset choices, and defense 
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mechanisms, we now present the results of our adversarial 
attack simulations. 

4. Results 

 We deployed standard AI models for motor imagery and 
cognitive state classification, including LSTM, CNN, and 
Transformer, conducting full study simulations using 
public EEG datasets such as PhysioNet and BCI 
Competition IV. The simulation included adversarial 
approaches (FGSM and PGD) at various levels (raw EEG 
data, feature space, and attention maps). We performed 
evaluations of how effective adversarial attacks could be 
with defence strategies such as adversarial detectors and 
VAE-based sanitisation methods. 

4.1 The Degradation of Accuracy 

Because of Neuro-Adversarial Attacks: The classification 
accuracy across all models was severely impaired by 
adversarial perturbations, attacks on raw signals provided 
a reduction of approximately 30%, and attacks on features 
reduced accuracy by about 25%. The Transformer models 
demonstrated a degradation of 20% when subjected to 
attention-based attacks. The mismatch rates from human 
intent vs output of the AI systems were significantly higher 
and, in some instances, exceeded 40%. This indicates that 
these attacks can potentially lead to catastrophic failures of 
BCI systems in real-time.  
Perturbation Constraints with a Signal-to-Noise Ratio 
(SNR) of over 20 dB and low visual distortion, 
perturbations were very imperceptible while still producing 
a significant performance drop. This affirms that Neuro-
Adversarial attacks are stealthy. These performance 
degradations demonstrate the severity of neuro-adversarial 
attacks. We therefore evaluate how well various protection 
strategies can restore model reliability 

4.2 The Efficiency of Protection Measures 

While defenses showed promising recovery, a deeper 
analysis is needed to understand their broader implications 
and limitations. This is provided in the following section, 
Using VAEs on input signals demonstrated consistent 
capability for denoising signals, achieving restoration 
model accuracy back to 80% of the model as originally 
trained in regard to attack. VAEs were slightly less 
effective for feature-level attack, but wavelet denoising 
was equally effective.  
Alerts to Malicious Signals: The trained binary classifiers 
were able to achieve detection accuracies above 90% for 
corrupted signals; this made it easy to detect malicious 
inputs in real-time. The best defence combined signal 
sanitisation and adversarial detection, enabling to system 

to be responsive while reducing the attack success to less 
than 10%. 

Summary Table 5: Attacks and Defenses 

Attack Type Target Level Impact Suggested Defense 
FGSM Raw EEG High VAE, Wavelet 
PGD Feature Space High VAE 
Attention Transformer Layer Medium Detector + VAE 
 
Table 5 summarizes key adversarial threats along with 
their impact and recommended defense strategies for an at-
a-glance understanding. 

4.3 Analysis 

Considering the biological nature of the signals, these 
simulation results demonstrated the clear presence and risk 
of neuro-adversarial attacks on BCI–AI systems, and 
suggest the need for targeted defenses. Our study shows 
that to ensure the safety and reliability of neuroadaptive AI 
systems, they should use a level of multi-layered security. 
Table 6 shows how much each adversarial method 
degrades model performance. 

Table 6: Accuracy Degradation Under Different 
Attack Methods 

Model 
Clean 
Accuracy 
(%) 

FGSM 
(Raw 
EEG) 

PGD 
(Feature 
Space) 

Attention 
Attack 
(Transformer) 

LSTM 85.2 62.7 65.3 N/A 
CNN 88.5 66.9 67.8 N/A 
Transformer 90.1 68.4 70.1 72.5 
 
All models experience a large decrease in performance 
under adversarial attacks, as seen in the table. For example, 
when ants are faced with FGSM on raw EEG, the LSTM 
model decreases from 85.2% to 62.7%, showing how 
susceptible attacks on input space can be. Although we see 
from the table that the transformers show slightly more 
robust model performance, they are still subject to around 
18% accuracy loss against targeted attention attacks, 
compared to losses we see with other models under feature-
level attacks using PGD, with the effect showing a constant 
decrease across the board. The findings lend support to the 
idea that malicious distortion attacks targeting the raw 
signal, which are possible through models such as the one 
used in this research, can severely degrade the 
dependability of BCI systems. 
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Figure 6 shows the performance of adversarial attacks on 
the classification accuracy of three DL models LSTM, 
CNN, and transformer in EEG signal classification within 
BCI-AI systems. When looking at clean performance, all 
three models produce excellent performance, with 
accuracy ranging between 85.2% (LSTM) to 90.1% 
(transformer). However, performance declines drastically 
when these models are subjected to an FGSM attack on raw 
EEG, with LSTM score at 62.7%, CNN score at 66.9%, and 
the transformer model scoring at 68.4%. This indicates that 
these models at an input level are vulnerable to input-level 
perturbations. Similarly, conducting PGD attacks on the 
feature space, the LSTM reduced accuracy would be at 
65.3%, with the CNN score at 67.8% and the transformer 
model score at 70.1%. Attention adversarial attacks were 
only applied to the transformer model, reducing the 
accuracy to 72.5%, suggesting that the transformer model 
at this level is also vulnerable despite its more sophisticated 
architecture. The visualization suggests the model's 
performance degrades under adversarial conditions; with 
the transformer model performing slightly more robustly, 
but they were not immune, as they still degraded to reduced 
classification accuracy. This context highlights the 
importance of existing targeted and sustainable defense 
mechanisms in neuro-AI pipelines. 
 

 

Figure 6: Accuracy Model Under Different Attack 
Methods 

 
 
 

Table 7: User Intent Misalignment Rate (% of 
incorrect system responses) 

Condition LSTM CNN Transformer 
No Attack 5.3 4.8 4.2 
FGSM (raw signal) 39.1 34.7 31.8 
PGD (feature space) 36.4 33.2 30.5 
Attention Perturbation N/A N/A 29.7 
 

Table 7 indicates the User Intent Misalignment Rate (the 
rate of incorrect system responses). When under hostile 
influence, there is a significant increase in user intent 
misalignment. By varying FGSM on raw EEG, the rates of 
misalignment for LSTM and CNN are over 39% and 34% 
respectively, with a less than 6% misalignment to signify 
baseline. This shows a significant weakness; the cognitive 
feedback loop is very fragile with respect to even small 
disturbances, and an AI can misconstrue human intentions 
or emotions. Notably, the Transformer maintains itself 
somewhat more in alignment, possibly due to attention-
based contextual filtering, and indicates possible 
durability. 
 

 
 

Figure 7: User Intent Misalignment Rate (% of 
incorrect system responses) 

Figure 7 shows how adversarial attacks cause the User 
Intent Misalignment Rate, which displays the extent to 
which the AI misinterprets the user's brain signals. Based 
on the results of the normal (no attack), normal conditions, 
the LSTM (5.3% misalignment), CNN (4.8% 
misalignment), and the Transformer (4.2% misalignment) 
are all aligned with the user's intent well. For adversarial 
attacks using FGSM applied to raw EEG signals, the 
misalignment rates had sharp deviations from the normal 
conditions—39.1% (LSTM), 34.7% (CNN), and 31.8% 
(Transformer) misalignment rates, indicating severe 
degradation of interpretability. In regard to PGD attacks 
applied to the feature space, the misalignment rates were 
also quite substantial for misalignment after attacks (36.4% 
misalignment for LSTM, 33.2% misalignment for CNN, 
and 30.5% misalignment for Transformer). Adversarial 
perturbation of the attention mechanism was only targeted 
at the transformer at a misalignment rate of 29.7%. 
Attention mechanisms also experienced degradation, 
confirming that there are still advanced architectures, such 
as the Transformer model, that are vulnerable to adversarial 
attack methods. This analysis supports the adage that 
adversarial perturbation impacts not only classification 
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accuracy but also affects the AI system's ability to 
accurately capture the user's intent when sensitivity is 
important, which will be the case for real-time 
neuroadaptive systems. 

Table 8: Effectiveness of Defense Mechanisms 

Defense 
Strategy 

Accuracy 
Restored (%) 

Attack 
Success Rate 
(%) 

Detection 
Accuracy (%) 

VAE Denoising 78.6 12.1 N/A 
Wavelet 
Denoising 74.3 15.7 N/A 

Adversarial 
Detector N/A N/A 92.4 

VAE + Detector 
(Combined) 83.1 6.5 94.8 

 
Table 8 illustrates the Assessment of the performance of 
various defense methods under the simulation of possible 
attack conditions. Overall, defense strategies significantly 
mitigate the impact of adversarial attacks. Using VAE 
denoising returns more than 78% of the accuracy of the 
model, which mitigates the impact of the attacks. Wavelet 
denoising also helps improve accuracy, but is not as 
effective, particularly for attacks such as deep feature 
attacks. The adversarial signal detector has over 92% 
detection accuracy and is highly likely to be a viable 
approach to identify perturbations in real-time. The most 
effective combination of denoising and detection returned 
83% accuracy and reduced the attack success to 6.5%, 
highlighting the positives of using layers of defense in BCI-
AI systems. 
 

 

Figure 8: Effectiveness of Defense Mechanisms 

Figure 8 describes the comparative performance of a 
variety of different defense mechanisms to mitigate neuro-

adversarial attacks on BCI-AI systems. The following 
defenses were evaluated based on three performance 
metrics: accuracy restored, attack success rate, and 
detection accuracy. The VAE (Variational Autoencoder) 
denoising added the most to restoring the accuracy of the 
model, with an endpoint accuracy at 78.6%, while also 
substantially reducing the attack success rate to 12.1%, 
thus suggesting very adequate signal reconstruction 
capabilities. The wavelet denoising, albeit slightly less 
capable, did restore a close to similar amount of accuracy, 
with an endpoint accuracy of 74.3% and an attack success 
of 15.7%, thus representing a reasonable lightweight 
option. The adversarial detector, while an indirect measure, 
was designed to measure the accuracy of detecting 
manipulated signals and achieved a solid and reliable 
detection accuracy of 92.4%. Detection accuracy measures 
the likelihood that the model can accurately distinguish 
clean neural signals from adversarial signals; thus, while 
gesture execution by the BCI agent may degrade execution 
accuracy, it was a proven detection method, thus providing 
elements of confidence and building for future systems. 
The hybrid solution of VAE + Detector was the most 
effective strategy; this approach re-inserted accuracy back 
to 83.1%, reduced attack success to their lowest level at 
6.5%, and detected the presented data at 94.8%. This 
demonstrated that layered defense mechanisms, namely the 
combination of a signal sanitation layer and then a real-
time detection layer, provided the most robust protection in 
closed-loop neuroadaptive systems. 
 

 

Figure 9: Comparing Attack Success Rate (ASR) 
before and after applying defense mechanisms  

Figure 9 provides a comparison of the Attack Success Rate 
(ASR) prior to and following defenses being applied. All 
models initially had high ASRs: 39.1% for LSTM, 34.7% 
for CNN, and 31.8% for the Transformer, meaning it was 
very likely that adversarial examples would mislead the 
models. However, when combined defenses were applied, 
ASRs were greatly reduced, at 6.5%, across all models. 
This demonstrates the robustness achieved in both signal 
sanitization and detection. The graphical information 
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further supports that the proposed defense pipeline not only 
improved classification accuracy but also decreased the 
model's susceptibility to adversarial disturbances greatly. 
 

 

Figure 10: Clean Accuracy Versus Restored 
Accuracy and Transformer Models 

 
Figure 10 compares clean accuracy versus restored 
accuracy for the LSTM, CNN, and Transformer models. 
All three models perform well under clean conditions; in 
fact, the performance of the Transformer model is 
particularly noteworthy, being at 90.1%. After applying 
defense strategies such as VAE denoising and the 
VAE+Detector combination, the models can recover 
significant classification performance, meaning they 
achieved restored accuracies of 78.6% for LSTMs, 74.3% 
for CNNs, and 83.1% for Transformers. This indicates that 
the defenses applied were able to recover the performance 
lost due to adversarial perturbations, with particular 
success in the more complex architecture. 

5. Summary and Contributions 

This research aims to contribute to the rapidly growing 
area of study at the intersection of neurotechnology and 
AML by identifying and investigating a new type of 
security risk to BCIs that utilize AI. The key anticipated 
outcomes are as follows: 

5.1 Neuro-Adversarial Attacks: A Formal 
Definition and Classification  

The establishment of a formal theoretical framework for 
understanding hostile attacks on neuro-cognitive AI 
systems is an important eventual outcome. We would like 
to: 

-  Provide a clear, explicit definition of a neuro-
adversarial attack in distinction to conventional 
adversarial behavior exhibited in vision and 
natural language processing, and provide a 

categorization of attack vectors that divides 
threats, 

- The layer of the target (raw neural signal, 
extracted features, internal model states),  

- The mode of perturbation (physical sensory 
signals, electrical signal distortions, digital signal 
disturbances),  

- The goal of an attack (misclassification, service 
denial attacks, hijacking) and its effect on real-
time closed-loop processes.  

5.2 Proven Exposure of Human-in-the-Loop 
Systems to Manipulated Signals  

We offer compelling evidence of the susceptibility of state-
of-the-art BCI-AI systems to adversarial perturbations 
through rigorous empirical evaluation that will 
demonstrate how miniaturised, physiologically plausible 
perturbations, which the user cannot visibly perceive, can 
undermine the accuracy of AI models and decision fidelity. 
How attacks in closed-loop systems can lead to tremendous 
downstream consequences, including the consequences of 
the cascade of misaligned human intent and system 
behaviour arising from corrupted neural feedback. The 
ramifications must also address the practical implications 
of this type of error, including neuroprosthetic control 
failures, erroneous cognitive burden estimates, and 
misleading clinical decision support. This finding will shed 
light on the neurotechnology and AI safety communities on 
emergent security issues unique to AI systems operating as 
part of a living biological organism. 

5.3 Neuro-Adversarial Attacks: A Formal 
Definition and Classification  

Integrating Neuroscience with Adversarial Machine 
Learning. We propose a new multidisciplinary approach in 
this research by combining Adversarial attack techniques 
from advanced machine learning, Signal processing, and 
neurophysiological modelling from neuroscience and 
biomedical engineering. Reinforcement learning 
paradigms surrounding the cognitive feedback dynamics of 
closed-loop systems. The Key advances are  

- Developing an adversarial attack specific to 
biological signals with realism in their 
neurophysiological limitations.  

- Transitioning from static classification to adaptive 
feedback loops by modelling the dynamics of 
brain and machine interactions.  

 
- Developing more robust defences with 

neuroscience recommendations while utilizing 
brain signal variability and redundancy that may 
enhance robustness.  
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This integrated approach of working with experts in 
neurology, AI security, and clinical practice will provide 
new avenues for more research on safe neuro-AI systems. 

5.4 Suggestions for Embedded Cognitive 
Security in Future BCI-AI System Design  

This report offers design principles and operational 
provisions to guide the design of neuro-AI systems that are 
resilient to adversarial interference. The principles 
promulgated here are drawn from experiences in attack and 
defence trials. One principle is the application of signal 
sanitising (e.g., Variational Autoencoders or wavelet 
denoisers) as standard preprocessing pipelines. When 
proposing real-time hostile detection systems, disinfecting 
the signals before entering them into the AI models. We 
also provide various strategies to consider to lessen the risk 
of perturbation, e.g., adaptive retraining of models and 
other robust feature extraction approaches.  Proposition 
protection (e.g., encryption and/or shielding) measures 
should be included in both the software and hardware co-
design for the acquisition pipeline of neural signals. When 
it comes to deployment experiences that involve privacy 
and safety risk, we propose that ethical principles and 
security audits should be implemented before launch. 
Overall, these findings confirm that adversarial 
perturbations pose a serious risk to BCI–AI systems, while 
layered defenses can substantially reduce attack success. 
The next section summarizes our contributions and situates 
them within the broader research context. 

6. Conclusion 

       Cognitive AI systems and BCIs have progressed 
rapidly with the emerging convergence between 
neurotechnology and AI. However, this convergence 
creates new vulnerabilities related to the interpretation and 
utilization of neurological signals, and here we introduce 
the concept of neuro-adversarial attacks, which are low-
level, deliberate disturbances to the neural inputs that may 
disrupt the connection between human intent and AI 
response, especially in any closed-loop cognitive feedback 
systems. We present a novel framework based on AML 
that draws on neuroscience to identify, simulate, and 
evaluate these attacks on EEG-based BCIs in real-world 
settings. At the signal level, a thorough evaluation of safety 
in a brain-AI coupled mechanism must consider 
manipulation of signals and feedback dynamics. Our 
results show that neuro-adversarial perturbations are a 
significant risk, and we suggest first-line defence 
mechanisms based on signal sanitisation and adversarial 
detection using large-scale experimentation with the 
publicly available datasets and state-of-the-art AI models. 
We have initiated a wholly new multidisciplinary space 
that will cover safeguarding neuro-cognitive AI. In light of 
these contributions, we conclude by highlighting the 

broader significance of neuro-adversarial attacks, 
summarizing main findings, and outlining directions for 
future research. 
 

Dataset Availability 
All the above datasets are publicly accessible to the 
research community. The BCI Competition IV datasets are 
available through the BBCI competition portal, while the 
PhysioNet EEG Motor Movement/Imagery dataset can be 
downloaded from the PhysioNet repository. The TUH EEG 
Corpus is distributed by the Neural Engineering Data 
Consortium (NEDC) at Temple University. The SEED 
dataset is hosted by the BCMI lab at Shanghai Jiao Tong 
University, and the DEAP dataset is maintained by Queen 
Mary University of London. This open availability ensures 
transparency, reproducibility, and comparability across 
BCI and EEG research, allowing results to be validated and 
benchmarked against prior studies. 
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