EAIl Endorsed Transactions

on Security and Safety Research Article EALLEU

SeFS: A Secure and Efficient File Sharing Framework
based on the Trusted Execution Environment

Yun He!?, Xiaoqi Jia"?", Shengzhi Zhang?, Lou Chitkushev®

nstitute of Information Engineering, Chinese Academy of Sciences, Beijing, China
2School of Cyber Security, University of Chinese Academy of Sciences,Beijing, China
3 Computer Science Department, Boston University Metropolitan College, Boston, USA

Abstract

As the cloud-based file sharing becomes increasingly popular, it is crucial to protect the outsourced data
against unauthorized access. Existing cryptography-based approach suffers from expensive re-encryption
upon permission revocation. Other solutions that utilize Trusted Execution Environment (TEE) to enforce
access control either expose the plaintext keys to users or turn out incapable of handling concurrent
requests. In this paper, we propose SeFS, a secure and practical file sharing framework that leverages
cooperation of server-side and client-side enclaves to enforce access control, with the former responsible

for registration, authentication and access control enforcement and the latter performing file decryption.
Such design significantly reduces the computation workload of server-side enclave, thus capable of handling
concurrent requests. Meanwhile, it also supports immediate permission revocation, since the file decryption
keys inside the client-side enclaves are destroyed immediately after use. We implement a prototype of SeFS
and the evaluation demonstrates it enforces access control securely with high throughput and low latency.

Received on 14 November 2022; accepted on 30 June 2025; published on 18 July 2025
Keywords: Cloud storage, Trusted Execution Environment, Access Control

Copyright © 2025 Yun He et al., licensed to EAI This is an open access article distributed under the terms of the CC
BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any

medium so long as the original work is properly cited.
doi:10.4108/eetss.v9i1.2854

1. Introduction

Cloud-based file sharing has been widely adopted
by many companies and individuals during the last
few years. Relying on the cloud infrastructure, users
gain huge storage capacity, access files conveniently
across different geographic regions as well as multiple
devices, and share files easily by point-and-click.
Many commercial cloud providers, e.g., Google Drive,
Dropbox, One Drive, etc., offer such services. In such
cloud-based file storage and sharing model, the cloud
providers enforce access control policies on behalf of
users to ensure only the authorized users can access
the data. However, the cloud providers cannot always
be fully trusted, and may either peek at the outsourced
data deliberately or leak it to unauthorized parties
incidentally, which clearly violates the users’ access
control policy.

*Corresponding author. Email: jiaxiaoqi@iie.ac.cn

Several schemes [1-5] based on cryptographic
primitives (e.g., broadcast encryption [6], attribute-
based encryption [7], etc.) have been proposed to
perform access control faithfully given the cloud
providers are untrusted. Both A-SKY [8] and IBBE-
SGX [9] utilize Intel SGX [10-12] to address the
overhead of cryptographic operations, i.e., anonymous
broadcast encryption (ANOBE) [1] and identity-based
broadcasting encryption (IBBE) [13]. However, the
main drawback of the above cryptographic approach
is that users gain plaintext access to the keys used
to encrypt/decrypt files. Consequently, the data owner
has to re-encrypt (involving expensive cryptographic
operations) the corresponding files with a new key
to achieve permission revocation, which introduces
significant performance overhead [14]. SeGShare [15]
and NEXUS [16] are pure TEE-based schemes and
support immediate permission revocation without re-
encrypting files using new keys. However, SeGShare
does not support concurrent requests well, since
both the encryption and decryption operations inside

EAI Endorsed Transactions
on Security and Safety
| Volume 09 | Issue 1] 2025 |

< EAI |

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:<jiaxiaoqi@iie.ac.cn>

Yun He et al.

the server-side enclave introduce significant overhead.
NEXUS embeds access control policies and keys into
a data volume protected by the client-side enclave.
Therefore, accessing the whole data volume is needed
even if the user requests only one file in the data
volume. Furthermore, the data owner has to remain
online to transmit the rootkey of the data volume to the
authorized user.

In this paper, we propose and implement SeFS,
a secure and practical file sharing system that
ensures the separation of authorization (i.e., access
control check) and data access (i.e., data encryption
or decryption), as well as immediate permission
revocation without re-encryption. In particular, the
design of SeFS involves the cooperation of one server-
side enclave and multiple client-side enclaves, with the
permission check performed by the former and the data
decryption performed by the latter. Therefore, the data
decryption overhead is distributed to each individual
client enclave, allowing the server enclave to focus on
the authentication and access control check to support
concurrent requests. Since even the authorized users
do not have the access to the decryption keys directly
(only their enclaves have), there is no way for malicious
users to keep the keys locally to evade later permission
revocation.

SeFS is also a purely TEE-based solution, not relying
on cryptographic access control schemes. Furthermore,
SeFS does not depend on the underlying file systems,
which makes it flexible and easy to cooperate with
existing cloud storage services (with few changes
to them). It also supports data sharing with finer
granularity securely and easily, e.g., users still share
files by point-and-click. We implemented SeFS based
on Intel SGX [10-12], a popular TEE solution provided
by Intel processors', and deployed SeFS with an open-
source file storage and sharing solution, ownCloud [17],
with a tiny change (i.e., less than 10 lines of PHP code)
to it. To achieve high throughput, SeFS implemented
an efficient SGX-enabled TLS stack based on mbedtls
[18] using switchless ecalls/ocalls for network and file
operations.

The main contribution of this paper is summarized as
below:

(1) We propose a novel architecture that leverages the
cooperation of server-side and client-side enclaves to
decouple the access control check and data decryption
operations. SeFS transfers the decryption task to
the client-side enclaves, so the server-side enclave
only performs relatively lightweight authorization
operations to improve throughput.

1 Although our implementation of SeFS is based on Intel SGX, the
similar idea can work on other hardware-assisted TEE platforms, e.g.,
ARM TrustZone, AMD SEV, etc.

(2) We propose a series of protocols based on
TEE’s security features, e.g., unforgeable enclave
measurement, to enable trust validation between the
client-side enclaves and the server-side enclave, thus
securing data transmission between them.

(3) We implement a prototype of SeFS using
the SGX-enabled TLS stack to support efficient I/O
operations. SeFS can be easily deployed with existing
cloud-based file storage services, e.g., ownCloud. The
implementation only contains 4,489 lines of code (LoC),
with 2,984 LoC for the server-side enclave and 1,505
LoC for the client-side enclave. The evaluation results
show that SeFS can securely and efficiently share files
with high throughput and low latency.

The rest of this paper is organized as follows.
Section 2 presents the background of Intel SGX and
cloud-based file sharing. Section 3 details the threat
model of SeFS and the general design requirements
for similar solutions. The design and implementation
of SeFS are introduced in Section 4 and Section 5
respectively. We evaluate the performance of SeFS in
Section 6, and discuss potential attacks as well as the
corresponding countermeasures in Section 7. Finally,
we present related work in Section 8 and conclude in
Section 9.

2. Background
2.1. Trusted Execution Environments (TEEs)

Trusted Execution Environments (TEEs) provide
hardware-supported isolated environments where
sensitive data can be securely processed, code can be
verified via measurement and attestation. Existing
TEEs? designs mainly support three levels of TEE
abstractions, process-based (e.g., Intel SGX [10-12]),
virtualization-based (e.g., AMD SEV [21], Intel TDX
[22] and ARM CCA [23]) and separate worlds (ARM
TrustZone [24]). In this section, we first provide a
detailed introduction to Intel SGX, as the prototype
system of SeFS is based on it. Following that, we will
give an overview of other TEE technologies and conduct
a brief comparison.

Intel Software Guard Extensions (SGX). Intel SGX [10-
12] is an instruction set extension that creates an
isolated execution environment, allowing applications
to maintain data confidentiality and integrity. Even
the privileged software, e.g., OS, hypervisor or BIOS,
cannot violate its protection.

Enclave. Intel SGX creates a trusted execution
environment called an enclave and an encrypted

Due to spatial limitations, this work mainly focuses on the primary
industrial platform providers. Others which are lack commercial
availability were excluded, such as Keystone [19] and Penglai [20] for
RISC-V and so on.

EAI Endorsed Transactions
on Security and Safety
| Volume 09 | Issue 1] 2025 |

2 EA 2

SeFS: A Secure and Efficient File Sharing Framework based on the Trusted Execution Environment

memory region called Enclave Page Cache (EPC) for
the enclave to store code and data. SGX uses a
hardware Memory Encryption Engine (MEE) [25] to
encrypt/decrypt the enclave data, and also provides
a hardware access control mechanism to prevent any
illegal access to the enclave memory. An Intel SGX
application generally consists of two parts: secure code
(running in the enclave, also called enclave code)
and non-secure code (also called non-enclave code).
ecall/ocall interfaces are used to switch control
between them. Since the enclave code runs in the user
mode, i.e., ring 3, privileged operations such as system
calls cannot be executed inside the enclave. Hence, the
secure code in the enclave needs to invoke ocall to
execute those privileged operations indirectly. Before
executing the enclave code, CPU switches to the enclave
mode and jumps to the predefined enclave entry-point.

SGX remote attestation. Intel SGX remote attesta-
tion [26] ensures that the enclave is correctly initial-
ized on a remote SGX enabled platform by evaluating
the enclave identity, its structure, and the integrity
of the code inside the enclave. Furthermore, remote
attestation can also provide a shared secret between
the enclave application and its owner to setup a secure
communication channel over the untrusted network.

Sealing. An enclave can write confidential data to
the persistent storage securely by means of sealing
[26], a mechanism to encrypt and authenticate the
enclave data. Each enclave is provided with a sealing
key, derived from either the Enclave Identity or the
Signing Identity. This sealing key is private to the
executing platform and the enclave. Data sealed against
the Enclave Identity can only be unsealed by the
same enclave, whereas data sealed against the Signing
Identify can be unsealed by any enclave signed by the
same developer.

Switchless Calls. An enclave transition, i.e., switch-
ing into or out of an enclave, will introduce perfor-
mance overhead to SGX applications, due to the execu-
tion context save/restore and the security check. There-
fore, Intel SGX SDK provides switchless calls [27], a
technique to reduce the enclave transition overhead.
Specifically, the non-enclave code encapsulates ecalls
(the calls into the enclave) into tasks and submits these
tasks into an untrusted buffer. Then enclave worker
threads asynchronously read tasks from this buffer and
perform those tasks. Finally, the non-enclave code reads
results of those tasks from the same buffer. Similarly,
ocalls (the calls out of the enclave) can be handled
by the untrusted threads of the non-enclave code in a
similar way.

Virtualization-based TEEs. For VM-based TEEs, their
threat model assumes that the privileged software,
such as hypervisors or host operating systems, may be
untrustworthy or adversarial. They typically design a

customized, minimal (or lightweight) privileged hyper-
visor (or monitor) using hardware-assisted virtualiza-
tion techniques, along with hardware encryption, to
implement the TEE mechanism. The VM-based TEEs
usually treat the entire virtual machine running inside
the isolated domain as the trusted execution environ-
ment.

Intel Trust Domain Extensions (TDX) [22] is an
architectural extension that provides TEE capabilities
with conducting the Virtual Machine (VM) as a secure
and isolated environment. Intel TDX introduces the
Secure-Arbitration Mode (SEAM) to offer cryptographic
isolation and protection for Virtual Machines (VMs),
which are called Trust Domains (TDs) in the TDX
terminology. Intel TDX aims to protect the confiden-
tiality and integrity of CPU state and memory for
designated TDs, and also enables TD owners to verify
the authenticity of remote platforms. It utilizes the
Multi-key Total Memory Encryption (MKTME) [28]
to perform transparent encryption/decryption for the
cryptographic isolation. It uses the TDX Module [29] to
facilitate the construction, execution, and termination
of TDs while enforcing the security guarantees.

AMD Secure Encrypted Virtualization (SEV) [30]
leverages the AMD Secure Memory Encryption (SME)
[31] and AMD Virtualization (AMD-V) to enforce cryp-
tographic isolation between VMs and the hypervisor.
Each VM is assigned a unique ephemeral Advanced
Encryption Standard (AES) key, which is used for run-
time memory encryption. The AES engine integrated
into the memory controller handles the encryption
and decryption of data transparently as it is written
to or read from the primary memory. The keys for
each VM are managed by the AMD Platform Secu-
rity Processor (PSP), an independent Arm processor
embedded within the AMD System-on-Chip (SoC). SEV
also incorporates a remote attestation feature to verify
the integrity of a VM’s launch measurements and the
SEV-enabled platforms. AMD SEV-ES (Encrypted State)
[32] extends AMD SEV by securing the CPU register
state during the hypervisor transitions, and SEV-SNP
(Secure Nested Paging) [21] introduces integrity pro-
tection to defend against memory corruption, replay,
and remapping attacks. Particularly, SEV-SNP conducts
memory integrity protection by using the Reverse Map-
ping Table (RMP).

ARM Confidential Compute Architecture (CCA)
[23] introduces the Realm Management Extension
(RME) with two additional worlds, the Realm World
and the Root World. The Realm World provides secure
and isolated execution environments for confidential
VMs where workloads run securely. The confidential
VMs are isolated from any other domains, including
host operating systems, hypervisors, other Realms and
the TrustZone. ARM CCA uses a Granule Protection
Table (GPT) to enforce isolation of address spaces,

EAI Endorsed Transactions
on Security and Safety
| Volume 09 | Issue 1] 2025 |

2 EA 3

Yun He et al.

which is an extension to the page table that tracks
the ownership of each page with different worlds.
The Monitor running inside the Root World is
responsible for the creation and management of the
GPT, preventing hypervisors or operating systems from
directly changing it. The Monitor has the capability
to transfer physical memory between worlds by
modifying the GPT. ARM CCA aslo provides attestation
capabilities to verify both the CCA platform and the
initial state of the Realms.

TrustZone. ARM TrustZone [24] follows a System-
on-Chip (SoC) and CPU system-wide approach to
security. This technology revolves around the notion
of protection domains known as the secure world
and the normal world. The processor runs either in
the secure world or non-secure world (i.e., normal
world). The secure monitor (a privileged software)
is responsible for enforcing secure context switches
between the two worlds. Both worlds are entirely
hardware isolated and granted uneven privileges, with
non-secure world prevented from directly accessing
secure world resources. The critical applications can
run inside the secure world without depending on the
rich OS (running inside normal world) for protection.
TrustZone has been widely available on commodity
mobile devices and has become quite mature, and there
are many critical applications (e.g., facial recognition)
that operate within the secure world of TrustZone.

For a brief comparison, Intel SGX is a process-
based TEE technology. Compared to VM-based TEEs
and TrustZone, its Trusted Computing Base (TCB) is
significantly smaller. However, as a user-space TEE,
it cannot perform kernel-mode operations. VM-based
TEEs treat the entire VM as a TEE, capable of executing
both user-space and kernel-mode operations, offering
better software compatibility than SGX. TrustZone also
supports kernel-mode operations, but its secure world
depends on a thin OS with poor compatibility, making
it unsuitable for running large-scale software, although
it is sufficient for running SeFS Client (SeFS Client
enclave is lightweight and it only depends on AES
encryption/decryption and TLS connections, detailed
in Section 4) . Additionally, the design principle of SeFS
is to be independent of specific TEE hardware platform.

2.2. Cloud-based File Storage and Sharing

More and more users and companies choose to
outsource their files on remote cloud platforms that
provide huge storage space, convenient file sharing
service, and user-friendly interfaces, e.g., web UI,
to customers to manage their files. There are many
popular commercial cloud platforms, e.g.,, Google

Drive, OneDrive, Dropbox, MEGA [33], etc., and open-
source platforms, e.g., ownCloud [17], Nextcloud [34],
etc. The above-mentioned platforms conceal from users
the underlying file systems (usually distributed ones),
which are responsible for reading/writing/syncing
data blocks. For instance, Amazon S3 object storage
service [35] and Alibaba OSS [36] are representative
commercial cloud object storage platforms, mainly
focusing on vast data storage capacity. They can
be used as the external storage backends for the
above mentioned cloud platforms, e.g., ownCloud [37].
OpenAFS [38], FastDFS [39], and Ceph [40] are open-
source distributed file systems for the cloud platforms.
These distributed file systems are usually used to sync
data among multiple distributed storage servers.

3. Problem Statement

3.1. Threat Model

We mainly consider the scenario that employees of
an organization share files with their colleagues. The
files are stored on the Cloud Storage Service (CSS) and
the data owner (e.g., Alice) wants to share her files
with one of her colleagues (e.g., Bob) securely and
efficiently. For example, Alice can send a sharelink to
Bob without undermining the correct enforcement of
the access control policy or the confidentiality/integrity
of her files.

We assume the system administrator of the organiza-
tion is trusted, who should be responsible for deploy-
ing the server enclave on the CSS, and distributing
the client enclaves to the users. The CSS provider is
supposed to be willing to collaborate with SeFS to
initialize the file sharing system. Otherwise, the admin-
istrator can switch to another provider to achieve the
security guarantees provided by SeFS. Though willing
to collaborate with SeFS, the CSS providers cannot be
fully trusted, since they may tamper with user-defined
access control policies and grant access permissions to
unauthorized parties.

Since authorized users will obtain the plaintext file
contents decrypted by the client-side enclave, they
are trusted not to leak any data intentionally®. We
assume attackers can by somehow compromise the
cloud platform, thus altering any file stored there, but
they cannot access the enclave data or code protected by
Intel SGX’s security primitives. Recent researches show
that SGX is vulnerable to side-channel attacks [41-43],
which can be mitigated by integrating countermeasures
proposed in [44-47]. Finally, denial-of-service attacks
and hardware attacks are out of the scope of this paper.

3We discuss the data leakage by authorized users in Section 7.

EAI Endorsed Transactions
on Security and Safety
| Volume 09 | Issue 1] 2025 |

2 EA 4

SeFS: A Secure and Efficient File Sharing Framework based on the Trusted Execution Environment

3.2. Design Requirements

We summarize the design requirements for a secure and
practical cloud-based file sharing system as below:

(R1) Enforcement of authorization. Any entity, without
the owner’s explicit access authorization, should be
prohibited from accessing the plaintext files and the
corresponding access control policy files. Note that
some entity may be able to get the encrypted files,
but he/she cannot decrypt them to obtain the plaintext
contents.

(R2) Access revocation. The file access permission
should be revoked immediately upon the request
of the owner. This implicitly indicates that the
authorized users should not access the decryption
key directly. Otherwise, revoking their permissions
typically involves re-encrypting the files, which may
take a while to complete depending on the size of the
files.

(R3) Performance. The file sharing system should
support concurrent requests and the overhead intro-
duced by the access control enforcement should not
significantly downgrade the response time or through-
put. Meanwhile, the system should be compatible with
existing cloud storage services and independent of the
underlying file systems, thus incurring little instrumen-
tation cost.

(R4) Ease-of-use. The file sharing system should allow
users to manage/update/share their files easily and not
require users to manage any key by themselves.

4. Design
4.1. Overview

As shown in Figure 1, SeFS is composed of SeFS
server and SeFS client, running on the remote cloud
server and the users’ local computer respectively.
The former is responsible for loading the SeFS’s
server-side enclave (called Server enclave) that provides
registration, authorization, authentication and secure
I/O operation (i.e., network communication and file
reading/writing) services to the administrators. The
latter is used by both the file owners (e.g., Alice)
and users (e.g., Bob). The file owners utilize it to
register with the server, encrypt files and update access
control policy, while the users utilize it to authenticate
themselves to the server, decrypt and access files
securely.

In particular, any user first needs to register him-
self/herself by submitting his/her identity information,
e.g., email, to the server enclave. The server enclave
then generates a master token for the user, which should
never be exposed to other users or untrusted parties.
Based on the master token, the server enclave also
generates a share token for the user, which is used
by the file owner to enforce access control policy. For

each file access, users need to verify the server enclave’s
identity, and then authenticate themselves to the server
enclave using their master tokens to establish a secure
channel between them and the server enclave. The
server enclave checks the access control policy based on
the shared tokens of the users to enforce read or write
access control on files. If the users have the correspond-
ing permissions, the file key will be sent to the client-
side enclave (called Client enclave), which will decrypt
the encrypted files using the key and then destroy the
key immediately after use. Hence, the plaintext of the
key will never be exposed to the users directly, since it
is only kept inside the client enclave temporarily.

4.2. SeFS Server

As shown in Figure 1, SeFS server consists of three
major components as below.

TLS Handler. The TLS handler is partitioned into
an untrusted part (uTLS Handler) and a trusted part
(tTLS Handler), running outside and inside the server
enclave respectively. Since the I/O operations cannot
be performed inside the enclave directly, the uTLS
Handler is to create/terminate the network connection,
and forward all TLS records to the tTLS Handler. All
incoming/outgoing TLS data is decrypted/encrypted
inside the enclave by the tTLS Handler. SeFS uses the
switchless call technique to exchange data between the
tTLS Handler and the uTLS Handler efficiently.

Request Handler. The request handler consists
of three sub-handlers, which parse and process the
incoming requests. For example, the registration
request is forwarded to the tRegister to generate the
master token and the share token. The policy update
or file access request is dispatched to the Access Control,
which is responsible for access control check and access
control policy update. The Authentication is responsible
for establishing trust with SeFS Client, e.g., generating
signatures for the tRegister, encrypting the challenge
received from the client enclave.

File Interface. Similar as the TLS handler, the file
interface is also divided into two parts, tFile Interface
running inside the enclave and uFile Interface running
outside the enclave. The former invokes switchless
ocalls exposed by the latter to read/write files.

4.3. SeFS Client

The SeFS Client provides support for both the file
owner and regular users as shown in the left part
of Figure 1. The data owner (i.e., Alice) does not
require TEE-supported hardware, and uses the non-
enclave application to easily register and update policy
entries. However, to obtain the file shared by Alice, the
other regular user, e.g., Bob, demands TEE-supported
hardware (e.g., Intel SGX processors), which ensures the
file decryption key only resides inside the TEE.

EAI Endorsed Transactions
on Security and Safety
| Volume 09 | Issue 1] 2025 |

2 EA 5

Yun He et al.

SeFS Client-enclave
[tTLS Handler]

[uTLS Handler |

[Authentication] [tFile Interface] uFile Interface ‘

Bob

[tDecrypter] uDecrypter ‘

SeFS Client (Owner) SeFS Server
)
SeFS Server-enclave
a File Encrypter tTLS Handler
1- Policy Editor uTLS Request Handler
Alice Handler

l Access Control]

tFile Interface

uFile Interface

Ll tRegister]

l Authentication J

SeFS Client (User)

Figure 1. SeFS architecture

For the file owner. The SeFS client provides three
components for the file owner: Register, Policy Editor,
and File Encrypter. The Register establishes a secure
channel with the server enclave, and validates the
authenticity of the server enclave on behalf of the file
owner. If the server enclave is trusted, the Register
sends the owner’s identity formation and password to
the server enclave to generate the master token and
share token. The Policy Editor interacts with the server
enclave to insert/delete/update ACL entries remotely
and securely. The File Encrypter either uses a key
provided by the file owner or randomly generates a
key to encrypt the file to be shared. For each file
that has not been uploaded, the File Encrypter also
automatically creates an initial ACL file, where the file
encryption/decryption key will be embedded. Thus, the
file owners do not need to maintain and manage the
keys by themselves.

For other users. The SeFS client is also responsible
for loading the client enclave. Before issuing file
access requests to the server enclave, the client enclave
needs to validate the server enclave’s authenticity
using Authentication. After establishing trust between
the client enclave and the server enclave, the client
enclave submits a file access request to the server
enclave via the tTLS handler. If the user has the
corresponding permission, the server enclave will send
the file decryption key and the download URL to the
client enclave via the TLS channel. The client enclave
downloads the file using the uFile Interface that has file
downloading functionality (e.g., wget [48]) and runs
outside the enclave. The uDecrypter loads the encrypted
file into the non-enclave memory, and invokes the
switchless ecalls provided by tDecrypter to decrypt the
file in order to reduce the overhead introduced by the
enclave transitions.

Since the file decryption is performed by the client
enclave on the users’ computers, the server enclave only
performs relatively lightweight access control check,

thus achieving high concurrency and throughput. As
Intel SGX has limited enclave memory space, tDecrypter
uses a fixed-size enclave memory to exchange data
with uDecrypter. In particular, the uDecrypter loads the
encrypted files into the non-enclave memory, and then
the tDecrypter each time loads the fixed-size chunk of
the encrypted file to decrypt. Moreover, SeFS requires
that the users exclusively occupy the client-side enclave
resources, so the decryption of files can be optimized.
SeFS utilizes the switchless call mechanism to reduce
the enclave transitions overhead.

5. Implementation

5.1. Setup

The trusted administrator runs the client enclave and
the server enclave locally to generate their public keys
before assigning them to users and the cloud providers.
Note that since all the users share exactly the same
client enclave, the administrator only needs to generate
one public key for all the client enclaves and then
distributes the client enclave as well as its public key
to each user. The public key is generated inside the
enclave using the ECDSA [49] signature scheme based
on the private key derived from a combination of
the enclave identity, i.e., enclave measurement, and
the HC_key (Hard-Coded Key). The enclave identity is
constructed inside the enclave and can be obtained by
invoking the EREPORT instruction. The HC_key is a
string containing a certain number (e.g., 256) of random
numbers, which is hard-coded into each enclave by
the administrator and never exposed to any untrusted
entity. To prevent the adversaries from stealing the
HC_key by reverse-engineering the enclave binary, the
administrator needs to encrypt the enclave binary at
the build time using Intel SGX PCL [50] technique.
Hence, the adversaries can never get either the enclave
measurement or the HC_key, so the private key cannot
be forged by the adversaries. Eventually, the server

EAI Endorsed Transactions
on Security and Safety
| Volume 09 | Issue 1] 2025 |

2 EA 6

SeFS: A Secure and Efficient File Sharing Framework based on the Trusted Execution Environment

SeFS Client
X

ke — — m=SIGN(sk_sen.nonce)

Validating server enclave

Remote attestation

nonce

j Result=VERIFY(pk_sen,m)

Registration | alt

[1Result ==True]
) R
(identity,password) g

UID/SUID
- (UID,SUID) Generation

| —] Enclave Codes —— Non-enclave Codes

Figure 2. The protocol for token registration in SeFS

public key pk_sen can be generated based on its private
key sk_sen as below:

pk_sen = ECDSA_get_key(sk_sen)

The client enclave’s public key can be generated in
the same way. After generating all the keys, the
administrator can deploy the SeFS server on the cloud
platform and distribute the SeFS client as well as the
server enclave’s public key (pk_sen) to users.

5.2. Registration

Figure 2 shows token registration in SeFS. At the
very beginning, any user should validate the server
enclave’s authenticity, e.g., check if the server is
running on a genuine hardware platform via the SGX
remote attestation mechanism, and its code integrity is
not compromised via the ECDSA signature primitive
using the server enclave’s public key. Briefly, the
user randomly generates a nonce and sends it to the
server enclave via a secure channel. The server enclave
signs this nonce using its private key sk_sen, i.e.,
m = SIGN (sk_sen, nonce). The user can validate the
signature using the server enclave’s public key pk_sen,
i.e., Result = VERIFY (pk_sen, m). If Result is correct,
the server enclave is validated and can be trusted.

After validating the authenticity of the server
enclave, users should authenticate themselves to the
server enclave to get their master token (i.e., UID) and
share token (i.e., SUID) generated by the server enclave.
The UID is a unique identifier of the user in SeFS.
All the users need to protect their UIDs private and
never expose them to others. The UID is generated by
the server enclave using the user’s identity information,
e.g., email, username, etc. The server enclave uses the
UID as the key to generate the SUID (share-UID) that
is public to other users. Hence, the server enclave can
associate a certain UID with SUIDs to examine if they
belong to the same user. Both the UID and SUID are
generated inside the server enclave based on its identity,
i.e., enclave measurement and HC_key, to make sure
they cannot be forged. The UID and SUID are stored
and managed by the user, and can be used on multiple
devices of the user.

Algorithm 1: UID/SUID Generation

Input: identity,password

Output: UID,SUID

en_measurement «— gen_sel f _measurement|()
HMAC _set_type(SHA256)

HMAC _set_key(en_measurement|HC_key)
UID«—HMAC_gen_digest(identity|password)
HMAC_set_key(UID)
SUID«—HMAC_gen_digest(identity)

[N R

Algorithm 1 outlines the UID/SUID generation
scheme. After checking the format of the identity
information, the server enclave firstly gets its enclave
measurement (Line 1) by invoking a private function,
i.e., gen_self measurement(), which can only be
executed inside the enclave. Setting its measurement
and HC_key as the generation key, the server enclave
utilizes the HMAC [51] scheme to generate a UID based
on the combination of the identity and password of
the user (Lines 2-4). A SUID then can be generated
by setting the UID as the generation key based on the
identity of the user (Lines 5-6).

5.3. Policy Creation and Updating

Whenever the file owner wants to upload a new file to
the CSS, he/she first needs to encrypt the file using a
symmetric key generated randomly, and then upload
the encrypted file (f). The CSS generates a sharelink for
this encrypted file, which can be used by the owner to
share the file with other users. Note that the sharelink is
not a complete download URL, so users cannot use it to
download the file directly. Instead, it is used by the CSS
to easily locate the path of the file on the cloud platform
and construct a download URL.

Creating Access Control Policy. SeFS uses the access
control list (ACL) to maintain the user-defined access
control policy. Therefore, for each encrypted file f,
the file owner also needs to create an initial ACL
file (f.acl) that contains his/her UID, the key used to
decrypt f and a number of ACL entries. Each ACL
entry contains one SUID (indicating a specific user) and
the corresponding permissions granted to the SUID.
The file owner should upload the initial ACL file to
the server enclave via a secure channel, and the ACL
file will be encrypted by the server enclave using a
key generated in Algorithm 2. In particular, the server
enclave uses the SHA-256 cryptographic hash algorithm
to generate a digest of a random vector IV (Lines 1-
2). The server enclave updates the digest iteratively
based on its enclave measurement and HC_key (Lines
3-5), and finally derives the key at the end (Line 6).
The random vector IV is stored in the ACL file in
plaintext, so the server enclave can re-generate the same
key to decrypt the ACL entries. Note that the server
enclave encrypts each entry of the ACL file separately,

EAI Endorsed Transactions
on Security and Safety
| Volume 09 | Issue 1] 2025 |

2 EA 7

Yun He et al.

rather than encrypting the entire file. Hence, updating
any access control entry does not need to decrypt the
entire ACL file. Finally, the server enclave exports the
encrypted ACL file (i.e., f.acl) on the cloud storage
platform under the same directory as the file it is used
to protect (i.e., f).

Algorithm 2: Key Generation

Input: enclave measurement, en_measurement,
HC_key, initial vector IV

Output: key
MAC_set_type(SHA256)
digest «MAC_update(IV)
fori < 1to 8192 do

‘ digest «MAC_update(en_measurement|HC_key|digest)
end
key «MAC_finish(digest)

L B U T SR

Updating Access Control Policy.

Before any policy update, the file owner also needs to
validate the server enclave’s authenticity (the same as
in Section 5.2), and then submit the new policy entry
containing the file’s sharelink, another user’s SUID and
the corresponding permission to the server enclave.
Receiving the policy update request, the server enclave
retrieves the corresponding encrypted ACL file stored
on the CSS (Line 1 in Algorithm 3) and derives the
key from its enclave identity and HC_key (Lines 2-6).
Then, the server enclave checks whether the UID of this
request belongs to the owner of the ACL file (Line 7). If
s0, it encrypts the new ACL entry, inserts it into the ACL
file (Lines 8-9), and uploads the ACL file to the cloud
storage platform (Lines 10-11). All the ACL entries are
sorted based on the plaintext SUIDs of each entry.

When removing/updating an existing ACL entry in
the ACL file, the server enclave first locates the offset of
the target ACL entry to be removed/updated. Since all
the ACL entries are sorted based on the plaintext SUIDs,
the server enclave only needs to perform a binary search
to locate any ACL entry. Therefore, it suffices to decrypt
the corresponding ACL entries involved in the search
path, rather than iterating and decrypting each ACL
entry from the beginning. After removing/updating
the target ACL entry, the server enclave uploads the
updated ACL file to the CSS.

SeFS Client Ccss

L

1
A Remote attestation

T
< > |
nonce |
I
< — _ m=SIGN(sk_sennonce) - _____ Validating server enclave !
|
Result=VERIFY(pk_sen,m) !
d !
oy [‘ !
Policy : | |
Updating | LResut==True | rrn otk polices) |
P e (UID.shar poit > Policy file reading L
Policy updating

e Response | Policy file writin ,
s e T
T H T
| |

|—— Enclave Codes —— Non-enclave Codes

Figure 3. The protocol for policy updating in SeFS

Algorithm 3: Granting permission

Input: UID of data owner, SUID of data user,
file’s sharelink, permission
1 ACL_file_enc « get_file_from_CSS(sharelink)
2 if ACL_file_enc exist then

3 en_measutrement < gen_sel f _measurement()

4 IV « extract_IV(ACL_file_enc)

5 key « gen_key(en_measurement, HC_key, I V)

6 ACL_file < DEC(ACL_file_enc, key)

7 if UID owns ACL_file then

8 policy_entry < (SUID, permission)

9 insert_policy_entry(ACL_file, policy_entry)
10 ACL_file_enc < ENC(ACL_file, key)

11 upload_file_to_CSS(ACL_file_enc, sharelink)
12 end
13 end

5.4. Access Control

Figure 4 shows the enforcement of access control in
SeFS. At the very beginning, the client enclave and
the server enclave need to validate the authenticity of
each other, to ensure the UID of the owner and the
decryption key from the server enclave will not be
leaked to adversaries.

Reading files. After the trust established between the
client enclave and the server enclave successfully, the
client enclave submits the file read request, containing
his/her UID, SUID, identity, sharelink and read request,
to the server enclave. Since the UID is private to its
owner only, it can be used to authenticate the identity
of the client. For instance, an attacker may want to
impersonate as Bob using Bob’s SUID (everyone’s SUID
is public) to read a file that has been granted to
Bob for read but not to himself/herself. However, the
attacker cannot present the UID of Bob, which fails
the association check (Lines 1-2 in Algorithm 4). Then,
the server enclave checks if Bob has been granted read
permission to the associated file based on his SUID
(lines 3-10). If so, the server enclave will extract the
file decryption key from the ACL file and send it to

EAI Endorsed Transactions
on Security and Safety
| Volume 09 | Issue 1] 2025 |

2 EA 8

SeFS: A Secure and Efficient File Sharing Framework based on the Trusted Execution Environment

SeFS Client css
1 x

Remote attestation

noncel
mI=ENC(noncel, HC key)

RI=(noncel ?=DEC(m1,HC key))

nonce2

T
|
|
|
|
|
|
|
|

. |

Mutual trust validation !
|

~ |
|

|

|

|

|

I

T

|

|

|

|

i

m2=ENC(nonce2,HC key)
,,,,,,,,,,,,,,,,,,,,, N

R2=(nonce2 ?=DEC(m2,HC _key))
t

alt

I
|
[|R2==R2==True | }

File Sharing N (UID,SUID, identity.sharelink) | Policy file readin

Access control

File key

File downloading

j File decrypting (i.e. file reading)

File updating &encrypting
(i.c. file writing)

File uploading

T
|
t
|
|
|
|
|
|
|
I
|
I

| —] Enclave Codes —— Non-enclave Codes

Figure 4. The protocol for file reading/writing in SeFS

Bob’s client enclave via the TLS channel. Moreover, the
server enclave will send the sharelink to the CSS to
obtain a download link, which will be forwarded to the
client enclave. Following the link, the client enclave can
download the associated encrypted file, and decrypt it
using the decryption key for read inside the enclave.
After decryption, the client enclave destroys the file
decryption key immediately.

Writing files. Enforcing access control on file writing
is quite similar as that of file reading. The only
difference is that after decrypting the downloaded file,
the client enclave does not destroy the decryption key
immediately. Instead, it waits for the completion of the
update to the file from Bob, encrypts it using the key,
uploads the updated file to the CSS, and finally destroy
the key.

Ownership delegation. SeFS also supports the file
owner to delegate the ownership to other users. In
particular, if Alice wants to delegate the ownership of
the file f to Bob, she just needs to grant the write-only
permission of the ACL file of f, i.e., f.acl, to Bob. Since
f.acl contains Alice’s UID that can never be exposed
to others, Bob can write-only f.acl without read. Alice
creates a new file f.acl.acl associated with f.acl and
inserts a new ACL entry with Bob’s SUID and write-only
permission to f.acl. Note that the owner of f.acl.acl
is still Alice. Hence, Bob can insert/update/delete the
ACL entries of f.acl to grant read/write permissions of
f to others.

5.5. Integration with Cloud Storage Service

We implemented a prototype of SeFS based on Intel
SGX and integrated the SeFS prototype with ownCloud
[17], an open-source file storage and sharing system.
Since ownCloud does not depend on the underlying file

Algorithm 4: Access control check on file
reading/writing
Input: UID of data user, SUID of data user,
identity of data user, file’s sharelink,
permission
Output: file decryption key
tmp_SUID « generate_SUID(UID, identity)
if tmp_SUID==SUID then
3 ACL_file_enc «
get_file_from_CSS(sharelink)
4 if ACL_file_enc exist then

N -

5 IV « extract_IV(ACL_file_enc)
6 key «
gen_key(en_measurement, HC_key, V)
7 ACL_file < DEC(ACL_file_enc, key)
8 policy_entry « (SUID, permission)
9 if policy_entry in ACL_file then
10 file_decryption_key «
extract_key(ACL_file)
11 end
12 end
13 end

systems, deploying SeFS on ownCloud cloud platforms
makes our solution more lightweight, scalable and
flexible. In our implementation, we extended the file
sharing module of ownCloud to ensure it shares files
using the share links. In particular, when receiving a
share link from the server enclave, ownCloud returns
the file location of the share link to the server enclave.
Moreover, the server enclave can read/write the ACL
file associated with the share link. Note that the server
enclave runs as a daemon on the CSS, co-located with
ownCloud on the same physical server and waiting for
file access or policy update requests from users. The
extension to ownCloud is less than 10 lines of PHP code.
The Amazon S3 [35] or Alibaba OSS [36] can be used
as the external storage backends for ownCloud, without
any change to the Amazon S3 or Alibaba OSS platforms.

6. Evaluation

We implemented SeFS’s prototype based on Intel
SGX SDK 2.10 and Intel SGX Driver 2.11. We also
made extension and optimization on a public SGX-
enabled TLS stack, mbedtls-SGX [52], i.e., mbedtls-
2.6.0, to provide efficient SGX-supported I/O opera-
tions. The secure channel protocol is TLSv1.2 with
ECDHE-ECDSA-AES256-GCM-SHA384 cipher suite.
We deployed the prototype of SeFS on the ownCloud
10.0.2 [17], which only requires a tiny change (less than
10 lines of PHP code).

EAI Endorsed Transactions
on Security and Safety
| Volume 09 | Issue 1] 2025 |

2 EA 9

Yun He et al.

6.1. Security Analysis

Security of Keys. One of SeFS’s security objectives is to
guarantee the secrecy of the file encryption/decryption
keys. In the setup phase, the file owner generates a file
encryption key randomly to encrypt the content of a
file. The file encryption key will be embedded into the
ACL file that will be uploaded to the server enclave via a
secure channel. The enclave encrypts this ACL file using
a key derived from its enclave identity and HC_key.
When the client enclave issues a file access request to
the server enclave on behalf of the user who has been
granted access to this file, the server enclave decrypts
the file encryption key from the ACL file and sends
it to the client enclave via a TLS channel. Note that
the client enclave must also be validated by the server
enclave before sending the file decryption key to it. The
client enclave will clean this file decryption key after
use. Hence, SeFS guarantees that the file decryption key
can only be accessed within the enclaves (i.e., Client
enclave, Server enclave). In addition, other keys derived
from the enclave identity and its HC_key are also only
accessible to the enclaves, since the enclave identity can
only be generated within the enclaves and the HC_key
can never be exposed to any untrusted entity.

Confidentiality and Integrity. In the setup phase,
the files are encrypted by the file owner on the client-
side. These file encryption/decryption keys belong to
the file owner, who should protect them securely. On
the server-side, all sensitive data is placed within the
enclave, including file decryption keys and ACL files.
After performing the corresponding permission check,
i.e., validating the client enclave’s authenticity and
examining the user’s permission, the decryption of
the encrypted files can be performed inside the client
enclave. Hence, SeFS can guarantee the confidentiality
of the content of the files, file decryption keys and ACL
files. Moreover, the encryption of files is performed
using the AES cryptography primitive with GCM mode,
meaning that the data integrity is provided alongside
confidentiality. Thus, any malicious modification of
the ciphertext will be detected during the decryption
process executed in the enclaves.

Access Control Enforcement. SeFS can enforce
authorization securely inside the enclave according
to user-defined access control policies. Moreover,
SeFS uses the share token, i.e., SUID, to generate
policy entries, instead of directly using users’ identity
information, which can defeat impersonation attack.
In the impersonation attack, if an attacker gets Alice’s
identity information, he/she can use it to maliciously
register a new UID/SUID, and even gain the access to
Alice’s files. Furthermore, even the attacker gets Bob’s
SUID, he/she cannot impersonate Bob to access files,
since the server enclave will check the ownership of the
SUID before performing the access control check.

Table 1. Latency of trust validation/registration/permission check

e . . Permission_Check
Mutual verification | Registration SoFS ~wnCloud
67.04 ms 34.76 ms 77.57 ms | 81.86 ms

TCB Size. SeFS’s enclaves only comprise 4,489 LoC,
with 2,984 LoC for the server enclave and 1,505 LoC
for the client enclave, in contrast to SeGShare [15]
with 8,441 LoC. This significantly reduces the potential
programming errors and attack surfaces.

6.2. Performance Evaluation

Experimental Setup. Our performance evaluation was
performed on three virtual machines (VMs) hosted at
Microsoft Azure Confidential Computing (ACC) [53].
The SeFS server runs on a VM with 16 GB RAM and
4 vCPU cores on an Intel Xeon(R) E-2288G CPU @
3.70GHz platform, and the ownCloud shares the same
VM as the SeFS server. The other two VMs with 8
GB RAM and 2 vCPU cores on an Intel Xeon(R) E-
2288G CPU @ 3.70GHz platform located in the east
US region are used by the file owner (Alice) and the
file consumer (Bob), respectively. The latency of all the
following experiments are measured from the start of
the request to the end of the corresponding response
at the client-side applications, i.e., beginning when the
Register issuing a registration request to the tRegister
and ending at the Register receiving the response from
the tRegister. Besides, the latency is averaged over 10
runs, each of which contains 100 request-to-response
operations.

Table 1 shows the average time of establishing mutual
trust between the client enclave and server enclave as
well as registering tokens (i.e., UID and SUID) is 67.04
ms and 34.76 ms, respectively. We also measure the
time spent on performing access control check on the
file access request, which involves policy entry search
and extracting file decryption key from the ACL file,
but excluding the time to download the file from the
CSS and the time spent on decrypting the file inside
the client enclave. The experimental result indicates
that the client enclave only takes 77.57 ms to get the
file decryption key from the server enclave. Besides,
ownCloud also supports sharing a file via a URL with a
password or verification code. The users can download
the file only when they submit the correct password.
We also measured the time spent on the password
verification of ownCloud. On average, it takes 81.86
ms to perform the password check, which means that
the permission check time of SeFS and ownCloud is in
the same order of magnitude. In addition, we measure
the latency of adding/removing an ACL entry to/from
an ACL file. For an ACL file containing 2,000 ACL
entries, the average latency of permission addition and

EAI Endorsed Transactions
on Security and Safety
| Volume 09 | Issue 1] 2025 |

2 EAI ‘

SeFS: A Secure and Efficient File Sharing Framework based on the Trusted Execution Environment

Table 2. The latency of accessing file

File size (MB) 10 50 100 150 200
Mutual 0.066 | 0.066 | .064 | 0.064 | 0.065
verification (s)
Permission 1 o7 | 0 087 | 0.086 | 0.088 | 0.086
check (s)
Download | 505 1 1 004 | 1.664 | 2533 | 4.637
file (s)
Decrypt 0.379 | 1.892 | 4.059 | 5.854 | 8.242
file (s)

permission revocation is around 43.36 ms and 43.86 ms
respectively. Moreover, in the current implementation
of SeFS, each ACL entry is fixed-size, i.e., 16 bytes, so
the size of the ACL file is independent of the size of the
file it protects. An ACL file containing 100k entries only
requires about 1.5 KB storage space.

File Access. We also evaluate the end-to-end time of
the file access, including the trust validation between
the client enclave and the server enclave, the access
control check inside the server enclave, downloading
a file from the CSS, and decrypting the file inside
the client enclave. Based on the results in Table 2, as
the file size increases, the time of downloading and
decrypting the file also increases. However, the time of
file decryption is still in the same order of magnitude
as file downloading, e.g., downloading a file of 200 MB
takes 4.637 s and decrypting the same file takes 8.242
s. Moreover, the time spent on the trust validation and
permission check accounts for a quite small proportion
of the end-to-end time, since the computation workload
of the server enclave is lightweight and paralleled.

6.3. Concurrency

We evaluate the overhead of uploading and download-
ing files using SeFS, and compare it with the state-of-
the-art SeGShare [15]. Since SeGShare did not include
the total latency of uploading and downloading files
inside SeGShare’s server-side enclave, we implemented
a server-side enclave based on the mbedtls-SGX [52]
following the idea proposed by SeGShare®. The server-
side enclave (called SeGShare_enclave) is responsible
for accessing files via a TLS channel and encrypt-
ing/decrypting them in real time, excluding the access
control check of SeGShare, which is not part of our
evaluation.

Uploading Files. We start multiple threads (from 1
to 10) to simulate multiple users uploading the files
to SeFS’s server-side storage backend, i.e., ownCloud.
As shown in Figure 5, as the concurrency level
(i.e., the number of users) increases, the latency of

4We contacted the authors of SeGShare and they do not have the plan
to open-source SeGShare’s implementation.

u
o

SeGShare
| Bm SeFS

Latency (s)
= = N N w w B » w
o w o v o w o v o

v

0 ‘._._.__.__.J
1 2 4 6 8 10
Concurrency

Figure 5. The latency of uploading files concurrently

uploading files is relatively constant, which indicates
that SeFS is capable of handling concurrent requests
with high throughput and low latency. This can be
explained by the fact that the expensive file encryption
computation is done by individual client enclave,
rather than the server enclave. In contrast, since
SeGShare handles all the file encryption inside the
SeGShare_enclave, the time of uploading files directly
to the SeGShare_enclave (i.e., reading and encrypting
files inside SeGShare_enclave) significantly increases as
the concurrency level increases.

Downloading Files. To evaluate the performance
of SeFS when handling the concurrent requests of
downloading files, we created 10 Microsoft Azure
Confidential Computing (ACC) VMs, each of which
runs a client enclave respectively. These 10 client
enclaves can simultaneously issue file access requests
for a 200 MB file to SeFS’s server enclave. We still
measure the end-to-end time of the file access process
at the client-side. As shown in Figure 6, as the
concurrency level increases, the time of the file access
is relatively constant when using SeFS. This can be
explained by the fact that the server enclave only needs
to perform lightweight access control enforcement,
instead of expensive file decryption computation,
which indicates SeFS is capable of handling concurrent
requests with very little impact on the throughput.
However, as the concurrency level increases, the time
of downloading files from the SeGShare_enclave (i.e.,
reading and decrypting files inside the server-side
enclave) significantly increases.

7. Discussion and Limitation

7.1. SeFS’s implementation on Other Platforms

In the design of SeFS, we abstract the trusted execution
environment as an ‘enclave’. Although the prototype
system of SeFS is based on Intel SGX, it can be ported to

EAI Endorsed Transactions
on Security and Safety
| Volume 09 | Issue 1] 2025 |

2 EA :

Yun He et al.

w
v

SeGShare
1 BN seFs

Latency (s)
- = N N w w B » w
o v o v o v o (% o

v
L

1 2 4 6 8 10
Concurrency

Figure 6. The latency of downloading files concurrently

other hardware-assisted TEE platforms with moderate
efforts as the following: (1) As described in the previous
algorithms 1 to 4, the platform-specific function is
gen_self_measurement() and its internal implementation
will invoke different TEE platforms’ interfaces (e.g.,
Intel SGX’s EREPORT instruction, the calc_measurement
provided by the AMD sev-tool [54]). Therefore,
when porting the SeFS into other TEE platforms,
this function can be abstracted as a high-level
interface and just adjust its internal implementation
to invoke the specific platform’s interfaces. Except
for gen_self_measurement(), other functions in those
algorithm are general and independent of the specific
TEE platform. (2) Another critical platform-specific
operation is the remote attestation. Fortunately, there
exist unified attestation techniques (e.g., [55]) that
abstract away the underlying TEE platform differences,
reducing the effort required for SeFS to implement
remote attestation across platforms.

Furthermore, the SeFS server can be relatively easily
ported to a VM-based TEE. A simple approach is to
run it within a confidential container [56] (a lightweight
container designed based on VM-TEE). Given that
TrustZone is primarily employed on mobile devices,
the portion of the SeFS server to TrustZone need not
be considered. As for the SeFS client, it can also
be ported to the VM-based TEE, following the same
method as the SeFS server. When porting the SeFS client
to the TrustZone, a Trusted Application (TA) will be
developed to implement the SeFS client functionality.
This effort should also be acceptable because of that
most of the SeFS client enclave’s dependencies (e.g.,
AES encryption/decryption) have been provided by the
TrustZone TA SDK (e.g., incubator-teaclave-trustzone-
sdk [57]). It is worth noting that porting the SeFS
client to the TrustZone is meaningful future work.
On one hand, nearly all current mobile devices (such
as smartphones) support the TrustZone mechanism,

which means concerns about hardware limitations
can be disregarded. On the other hand, for scenarios
where a large number of users are utilizing SeFS,
deploying the SeFS client on a distributed multitude of
mobile endpoints is an optimal deployment model. This
deployment can also leverage the advantage of the high-
concurrency response capabilities of the SeFS server.

7.2. Rollback Attacks

An attacker may perform a rollback attack against the
encrypted file, in which the attacker uses an outdated
encrypted file to replace the latest one. In particular,
the attacker can launch DoS attack by replacing an
existing file with an outdated version. Then, even the
authorized user cannot read the file content any more,
since the newer version and the outdated version are
encrypted using different keys. By rolling back the ACL
file to an outdated version, a user whose permission
is recently revoked, may re-obtain the access to a
certain file. SeGShare [15] uses a Merkle hash tree
[58] variant to defeat the rollback attack of individual
files with the assumption that the root hash of the
Merkle hash tree is secure. However, SeGShare did
not provide rollback protection for the entire file
system. The key to mitigating the rollback attack is
to provide a trusted storage entity that can store the
state or version information persistently. Previously,
Intel SGX provided a monotonic counter that can
only be accessed by a specific enclave, which is non-
volatile across restarts with the help of Intel ME [59].
However, Intel SGX SDK removed this feature since the
version 2.8 [60]. Existing methods, such as [61] that
leverage Trusted Platform Modules (TPMs) to provide
persistent monotonic counters or ROTE [62] that stores
enclave-specific counters in a distributed system of
collaborative enclaves, can be used together with SeFS
against the rollback attack. The LCM (lightweight
collective memory) [63] protocol can also be used to
strengthen SeFS as well. We leave the protection against
the rollback attack as our future work.

7.3. Side-channel and Hardware Attacks

Recent research has shown that SGX is vulnerable to
various side-channel attacks, such as timing attack
[41], cache-based attack [64], and page fault attack
[43]. Accordingly, some methods (e.g., [44, 46, 47])
are proposed to mitigate side-channel attacks, detect
side-channel attacks [65], or design data oblivious
file system [45]. Although side-channel attacks and
the corresponding mitigation are orthogonal to our
work, SeFS can be improved using data oblivious
methods (e.g., [45]) to conceal file access patterns.
Recent research [66] presents a hardware-based voltage
glitching attack against Intel SGX, which requires
the attackers to monitor and control the CPU core

EAI Endorsed Transactions
on Security and Safety
| Volume 09 | Issue 1] 2025 |

2 EA :

SeFS: A Secure and Efficient File Sharing Framework based on the Trusted Execution Environment

voltage using professional devices. Such hardware-
based attacks are out of scope of our paper.

7.4. Data Leakage from Client-side

When the file owner shares his/her file with the
other user, the user can access the content of this
file via the decryption functionality of the client
enclave. However, the user may intentionally leak this
file to other users who have not been granted the
read permission. To the best of our knowledge, none
of the existing works, e.g., [8, 9, 15, 16] and SeFS
can address this problem. However, SeFS supports
immediate permission revocation, which can be used
to prevent users from accessing updated files if they
are detected malicious. SeFS aims to prevent the file
decryption keys from being leaked out to any user even
if he/she is authorized to access the file. If any user
can get the plaintext of the file decryption key, he/she
may perform collusion attacks with the cloud service
provider to decrypt files on which his/her permission
has been revoked. From another perspective, the data
access can be bound to a specific physical device by
prohibiting file copying and file transmission via the
network. This usually requires the support from the
underlying platforms. For instance, the ARM TrustZone
[67] maybe a promising exploration, since it can control
IO operations inside the secure world. Specifically,
Trusted Ul (user interfaces) [68] based on the TrustZone
can prevent the users from capturing screens when
show privacy-sensitive data.

8. Related Works
8.1. SGX-assisted Cloud Storage

During the past years, many approaches use TEE to
design secure file sharing systems [8, 9, 15, 16, 69].
In particular, A-SKY [8] proposed a cryptographic
access control extension based on anonymous broadcast
encryption (ANOBE) [1], which utilizes Intel SGX to
address the impracticality of ANOBE scheme and pro-
vides confidentiality and anonymity guarantees. IBBE-
SGX [9] utilizes SGX to derive cuts in the computational
complexity of the identity-based broadcasting encryp-
tion (IBBE) [13] cryptographic scheme, and also pro-
poses an efficient group partitioning mechanism that
updates membership with a constant computational
cost. However, both of A-SKY [8] and IBBE-SGX [9]
suffer from the problem that users can access to the
plaintext of file decryption keys.

SeGShare [15] and NEXUS [16] are purely TEE-based
schemes without complicated cryptographic operations
(only involving symmetric encryption), so both of them
support to revoke permission immediately without re-
encrypting files using new keys. However, SeGShare
[15] encrypts/decrypts files in real time inside the

server-side enclave running on the remote cloud
servers to respond to users’ requests, i.e., uploading
or downloading files. It suffers from the concurrency
or throughput problem, since that encrypting or
decrypting big files inside the enclave introduces
significant performance overhead. SeGShare [15] also
depends on the third-party certificate authority (CA)
to establish trust between users and the server-
side enclave. NEXUS [16] embedded access control
policies and file keys into the data volume protected
by the client-side enclave running on the client’s
computer. Data is shared as the data volumes, which
is complicated and not flexible for finer granularity
access. For example, NEXUS [16] has to access the entire
data volume even if the user only needs one file of this
data volume.

Pesos [69] leverages a combination of Intel SGX and
Kinetic Object Storage [70] solution to enforce access
control policies on untrusted commodity platforms
and also provides a guarantee of confidentiality and
integrity. However, the implementation of Pesos [69]
depends on LibOS [71] that severely increases the TCB
size and requires a special Kinetic hard disk, which
hurts the flexibility and applicability. OBLIVIATE [45]
and ZeroTrace [72] protect file access patterns and files
by using the ORAM protocol, which is immune to side-
channel attacks, but they did not support file sharing.

8.2. Cryptography-based Access Control

Several schemes [1-5] based on cryptography primi-
tives have also been proposed to perform rich access
control policies for untrusted cloud storage services.
The primary goal of ANOBE [1] is to achieve anonymity
among all file consumers by extending the broadcast
encryption primitive [6], but it has server impact on its
practicality. REED [3] uses attribute-based encryption
[7] to envelope the symmetric keys for performing
deduplication on encrypted files, but it is also not
efficient on highly dynamic access control. CloudProof
[4] still uses broadcast encryption to envelope read
access keys and write keys for conducting read/write
access control. Unfortunately, all of the purely crypto-
graphic approaches suffer from the problem that users
gain plaintext access to the file decryption key. Conse-
quently, owners have to re-encrypt the corresponding
file with a new key to achieve immediate permission
revocation, which can involve expensive cryptographic
operations. Meanwhile, the new key has to be dis-
tributed to the users who already obtain the access
permission. As shown in [14], the overhead introduced
by this permission revocation can become a critical
problem if members are removed and added frequently.

EAI Endorsed Transactions
on Security and Safety
| Volume 09 | Issue 1] 2025 |

2 EAI ”

Yun He et al.

9. Conclusion

To enable users to securely share their outsourced
files with other users, we present SeFS, a secure
and practical file sharing system that leverages a
combination of the server-side enclave and the client-
side enclave to enforce access control, to provide
the confidentiality and integrity of the outsourced
files. The server-side enclave is only responsible for
registration, authentication, and access control check,
while the data decryption is performed on the client-
side enclaves, which significantly reduces the server-
side’s computations burden. SeFS supports immediate
permission revocations without file re-encryption, since
the file decryption keys never leave the enclave memory
and will be cleaned after use. SeFS dose not depend
on the underlying file systems, which makes it flexible
to cooperate with existing cloud storage services.
We deployed SeFS on a real-world cloud storage
service, i.e., ownCloud and evaluate its practicality and
security. The experimental results show that SeFS can
perform access control enforcement securely with high
throughput and low latency.

References

[1] BartH, A., Bonen, D. and WatErs, B. (2006) Privacy in
encrypted content distribution using private broadcast
encryption. In Dr Crescenzo, G. and RusiN, A.
leds.] Financial Cryptography and Data Security (Berlin,
Heidelberg: Springer Berlin Heidelberg): 52-64.
CastiGLIONE, A., CaTtuoGNO, L., DEL SorBO, A., FIORE,
U. and PaLmiery, F (2014) A secure file sharing service
for distributed computing environments. The Journal of
Supercomputing 67: 691-710. doi:10.1007/s11227-013-
0975-y.

Ly J., Qmn, C.,, Leg, PPC. and L1, J. (2016) Rekey-
ing for encrypted deduplication storage. In 2016
46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN): 618-629.
doi:10.1109/DSN.2016.62.

(2]

(3]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

(16]

(17]
(18]

file sharing over untrusted clouds. In 2019 38th
Symposium on Reliable Distributed Systems (SRDS): 21—
2110. doi:10.1109/SRDS47363.2019.00013.

Conru, S., Pires, R., VAUCHER, S., PasiN, M., FELBER,
P. and Révemrkrg, L. (2018) Ibbe-sgx: Cryptographic
group access control using trusted execution environ-
ments. In 2018 48th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN): 207-
218.doi:10.1109/DSN.2018.00032.

(2014), Intel® software guard extensions programming
reference, https://software.intel.com/sites/defau
1t/files/managed/48/88/329298-002.pdf.

CostaN, V. and Devapas, S. (2016) Intel sgx explained.
IACR Cryptol. ePrint Arch. 2016: 86.

Hoekstra, M., LAL, R., PaprAcHAN, P., PHEGADE, V. and
DeL CuvirLo, J. (2013) Using innovative instructions to
create trustworthy software solutions. HASP ’13 (New
York, NY, USA: Association for Computing Machinery).
doi:10.1145/2487726.2488370.

DEeLeraBLEE, C. (2007) Identity-based broadcast encryp-
tion with constant size ciphertexts and private keys. In
Kurosawa, K. [ed.] Advances in Cryptology — ASIACRYPT
2007 (Berlin, Heidelberg: Springer Berlin Heidelberg):
200-215.

GarrisoN, W.C., SHuLL, A., Myers, S. and Leg, A.].
(2016) On the practicality of cryptographically enforcing
dynamic access control policies in the cloud. In 2016
IEEE Symposium on Security and Privacy (SP): 819-838.
doi:10.1109/SP.2016.54.

Funry, B., HirscHOFF, L., Koesnapi, S. and KErRSCHBAUM,
E (2020) Segshare: Secure group file sharing in the cloud
using enclaves. In 2020 50th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks
(DSN): 476-488. doi:10.1109/DSN48063.2020.00061.
Djoko, J.B., Lancg, J. and Leg, A.J. (2019) Nexus:
Practical and secure access control on untrusted
storage platforms using client-side sgx. In 2019
49th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN): 401-413.
doi:10.1109/DSN.2019.00049.

(2020), owncloud, https://owncloud.com/product/.
(2020), mbedtls, https://github.com/ARMmbed/mbedt

[4] Pora, R.A., LorcH, J.R., MoLNaR, D., Wang, H.J. and Is.
ZHUANG, L. (2011) Enabling security in cloud storage [19] Lee, D., KonrBrenNNeRr, D., SHINDE, S., Asanovi¢, K.
slas with cloudproof. In Proceedings of the 2011 USENIX and Sowng, D. (2020) Keystone. In Proceedings of the
Conference on USENIX Annual Technical Conference, Fifteenth European Conference on Computer Systems.
USENIXATC’11 (USA: USENIX Association): 31. doi:10.1145/3342195.3387532, URL http://dx.doi.o
[5] Gon, E.J., Suacuam, H., Mobabucu, N. and Bones, D. rg/10.1145/3342195.3387532.
(2003) Sirius: Securing remote untrusted storage. [20] Feng, E., Lu, X, Du, D, Yang, B. Jiang, X,
[6] Bonen, D., Gentry, C. and Waters, B. (2005) Collu- X1a, Y., Zang, B. et al. (2021) Scalable memory
sion resistant broadcast encryption with short cipher- protection in the PENGLALI enclave. Operating Systems
texts and private keys. In Proceedings of the 25th Design and Implementation,Operating Systems Design and
Annual International Conference on Advances in Cryptol- Implementation .
ogy, CRYPTO’05 (Berlin, Heidelberg: Springer-Verlag): [21] (2023), Amd sev-snp: Strengthening vm isolation with
258-275. integrity protection and more, https://www.amd.com/
[7] Betaencourt, J., Samar, A. and Warters, B. (2007) content/dam/amd/en/documents/epyc-business-doc
Ciphertext-policy attribute-based encryption. In 2007 s/solution-briefs/amd-secure-encrypted-virtual
IEEE Symposium on Security and Privacy (SP '07): 321~ ization-solution-brief.pdf.
334. [22] Cueng, P.C.,, Ozca, W., Varpez, E., Aumep, S., Gu,
[8] ConTy, S., VaucHER, S., Pires, R., Pasin, M., FELBER, P. Z., Jamjoom, H., Franke, H. et al. (2024) Intel tdx

and RévEeiLLERrg, L. (2019) Anonymous and confidential

demystified: A top-down approach. ACM Comput. Surv.

EAI Endorsed Transactions
on Security and Safety
| Volume 09 | Issue 1] 2025 |

2 EA ‘

https://doi.org/10.1007/s11227-013-0975-y
https://doi.org/10.1007/s11227-013-0975-y
https://doi.org/10.1109/DSN.2016.62
https://doi.org/10.1109/SRDS47363.2019.00013
https://doi.org/10.1109/DSN.2018.00032
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://doi.org/10.1145/2487726.2488370
https://doi.org/10.1109/SP.2016.54
https://doi.org/10.1109/DSN48063.2020.00061
https://doi.org/10.1109/DSN.2019.00049
https://owncloud.com/product/
https://github.com/ARMmbed/mbedtls
https://github.com/ARMmbed/mbedtls
https://doi.org/10.1145/3342195.3387532
http://dx.doi.org/10.1145/3342195.3387532
http://dx.doi.org/10.1145/3342195.3387532
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/solution-briefs/amd-secure-encrypted-virtualization-solution-brief.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/solution-briefs/amd-secure-encrypted-virtualization-solution-brief.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/solution-briefs/amd-secure-encrypted-virtualization-solution-brief.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/solution-briefs/amd-secure-encrypted-virtualization-solution-brief.pdf

SeFS: A Secure and Efficient File Sharing Framework based on the Trusted Execution Environment

(23]

(24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

doi:10.1145/3652597, URL https://doi.org/10.114
5/3652597. Just Accepted.

L, X., Li, X,, Darr, C.,, Gu, R.,, Nien, J., Sarr, Y.
and StockweLrL, G. (2022) Design and verification of
the arm confidential compute architecture. In 16th
USENIX Symposium on Operating Systems Design and

(42]

(43]

Murpock, K., Oswarp, D., Garcia, ED., Van BuLck, J.,
Gruss, D. and Piessens, E (2020) Plundervolt: Software-
based fault injection attacks against intel sgx. In 2020
IEEE Symposium on Security and Privacy (SP): 1466-
1482. doi:10.1109/5P40000.2020.00057.

Xu, Y., Cur, W. and Pemnapo, M. (2015) Controlled-

Implementation (OSDI 22) (Carlsbad, CA: USENIX channel attacks: Deterministic side channels
Association): 465-484. URL https://www.usenix.org for untrusted operating systems. In 2015 IEEE
/conference/osdi22/presentation/1i. Symposium on Security and Privacy: 640-656.

PiNto, S. and Santos, N. (2019) Demystifying arm
trustzone: A comprehensive survey. ACM Computing
Surveys : 1-36d0i:10.1145/3291047, URL http://dx.d
oi.org/10.1145/3291047.

GuEeroN, S. (2016) Memory encryption for general-
purpose processors. IEEE Security Privacy 14(6): 54-62.
doi:10.1109/MSP.2016.124.

(2013), Innovative technology for cpu based attestation
and sealing, https://software.intel.com/en-us/ar
ticles/innovative-technology-for-cpu-based-att
estation-and-sealing.

(2020), Intel® software guard extensions (intel® sgx) sdk
for linux* os, https://download.01.org/intel-sgx/s
gx-linux/2.12/docs/Intel_SGX_Developer_Referen
ce_Linux_2.12_0Open_Source.pdf.

(2023), Runtime encryption of memory with intel® total
memory encryption—multi-key (intel® tme-mk), https:
[/www.intel.com/content/www/us/en/developer/ar
ticles/news/runtime-encryption-of-memory-wit
h-intel-tme-mk.html.

(2023), Intel® trust domain extension (intel® tdx)
module, https://www.intel.com/content/www/us
/en/download/738875/intel-trust-domain-extensi
on-intel-tdx-module.html.

(2023), Amd memory encryption, https://www.amd.co
m/content/dam/amd/en/documents/epyc-business-d
ocs/white-papers/memory-encryption-white-paper
.pdf.

Karran, D. (2016) AMD x86 memory encryption
technologies (Austin, TX: USENIX Association).

(2023), Protecting v register state with sev-es, https:
[/www.amd.com/content/dam/amd/en/documents/epy
c-business-docs/white-papers/Protecting-VM-Reg
ister-State-with-SEV-ES.pdf.

(44]

(45]

[46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

(54]

doi:10.1109/SP.2015.45.

SuiH, M.W,, Lkg, S., Kim, T. and Peinapo, M. (2017) T-sgx:
Eradicating controlled-channel attacks against enclave
programs. In Proc. of NDSS.

Anmap, A., Kim, K., SarrarAaz, M.I. and Leg, B. (2018)
OBLIVIATE: A data oblivious filesystem for intel SGX.
In 25th Annual Network and Distributed System Security
Symposium, NDSS 2018, San Diego, California, USA,
February 18-21, 2018 (The Internet Society).

Gruss, D., LerTNER, J., Scuuster, E, Ourimenko, O.,
Hatier, I. and Costa, M. (2017) Strong and efficient
cache side-channel protection using hardware trans-
actional memory. In 26th USENIX Security Symposium
(USENIX Security 17) (Vancouver, BC: USENIX Associ-
ation): 217-233.

CRrANE, S., HoMmEscu, A., BRUNTHALER, S., LarseN, P. and
Franz, M. (2015) Thwarting cache side-channel attacks
through dynamic software diversity. In In Network and
Distributed System Security Symposium.

(2020), Gnu wget, https://www.gnu.org/software/w
get/.

(2020), Elliptic curve digital signature algorithm, https:
[len.wikipedia.org/wiki/Elliptic_Curve_Digital
_Signature_Algorithm.

(2021), Intel(r) software guard extensions (sgx) protected
code loader (pcl) for linux* os, https://github.com/i
ntel/linux-sgx-pcl.

(2020), Hmac, https://en.wikipedia.org/wiki/HMAC.
(2020), mbedtls-sgx: a tls stack in sgx, https://github
.com/bl4ck5un/mbedtls-SGX.

(2020), Azure confidential computing, https://azure.
microsoft.com/en-us/solutions/confidential-com
pute/.

(2023), Amd sev tool, https://github.com/AMDESE/se

[33] (2020), Mega, https://mega.nz/. v-tool.

[34] (2020), Nextcloud, https://nextcloud.com/. [55] (2023), Jinzhao attest, https://github.com/asterinas
[35] (2020), Amazon s3, https://aws.amazon.com/cn/s3/. /jinzhao-attest.

[36] (2020), aliyun oss, https://cn.aliyun.com/product/ [56] (2023), confidential-containers, https://github.com/c

(37]
(38]
(39]

[40]
[41]

0ss.
(2020), Storage backends, https://doc.owncloud.com
/server/developer_manual/app/advanced/storag
e-backend.html.

(2020), Openafs, http://www.openafs.org/.

(2020), Fastdfs, https://github.com/happyfish100/
fastdfs.

(2020), Ceph, https://ceph.io/.

WEeicHBrODT, N., Kurmus, A., PieTzucH, P. and Karitza,
R. (2016) Asyncshock: Exploiting synchronisation bugs
in intel sgx enclaves. In Askoxyrakis, I., IoANNIDIS,
S., Karsikas, S. and Meapows, C. [eds.] Computer
Security — ESORICS 2016 (Cham: Springer International
Publishing): 440-457.

(571

(58]

(59]

onfidential-containers/confidential-containers.
(2023), incubator-teaclave-trustzone-sdk, https://gith
ub.com/apache/incubator-teaclave-trustzone-sdk
[wiki/.

Merkig, R.C. (1987) A digital signature based on a
conventional encryption function. In A Conference on the
Theory and Applications of Cryptographic Techniques on
Advances in Cryptology, CRYPTO ’87 (Berlin, Heidelberg:
Springer-Verlag): 369-378.

(2017), Some notes on the monotonic counter in intel sgx
and me, https://davejingtian.org/2017/11/10/so
me-notes-on-the-monotonic-counter-in-intel-sgx
-and-me/.

EAI Endorsed Transactions
on Security and Safety
| Volume 09 | Issue 1] 2025 |

< EAI :

https://doi.org/10.1145/3652597
https://doi.org/10.1145/3652597
https://doi.org/10.1145/3652597
https://www.usenix.org/conference/osdi22/presentation/li
https://www.usenix.org/conference/osdi22/presentation/li
https://doi.org/10.1145/3291047
http://dx.doi.org/10.1145/3291047
http://dx.doi.org/10.1145/3291047
https://doi.org/10.1109/MSP.2016.124
https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing
https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing
https://software.intel.com/en-us/articles/innovative-technology-for-cpu-based-attestation-and-sealing
https://download.01.org/intel-sgx/sgx-linux/2.12/docs/Intel_SGX_Developer_Reference_Linux_2.12_Open_Source.pdf
https://download.01.org/intel-sgx/sgx-linux/2.12/docs/Intel_SGX_Developer_Reference_Linux_2.12_Open_Source.pdf
https://download.01.org/intel-sgx/sgx-linux/2.12/docs/Intel_SGX_Developer_Reference_Linux_2.12_Open_Source.pdf
https://www.intel.com/content/www/us/en/developer/articles/news/runtime-encryption-of-memory-with-intel-tme-mk.html.
https://www.intel.com/content/www/us/en/developer/articles/news/runtime-encryption-of-memory-with-intel-tme-mk.html.
https://www.intel.com/content/www/us/en/developer/articles/news/runtime-encryption-of-memory-with-intel-tme-mk.html.
https://www.intel.com/content/www/us/en/developer/articles/news/runtime-encryption-of-memory-with-intel-tme-mk.html.
https://www.intel.com/content/www/us/en/download/738875/intel-trust-domain-extension-intel-tdx-module.html
https://www.intel.com/content/www/us/en/download/738875/intel-trust-domain-extension-intel-tdx-module.html
https://www.intel.com/content/www/us/en/download/738875/intel-trust-domain-extension-intel-tdx-module.html
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/memory-encryption-white-paper.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/Protecting-VM-Register-State-with-SEV-ES.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/Protecting-VM-Register-State-with-SEV-ES.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/Protecting-VM-Register-State-with-SEV-ES.pdf
https://www.amd.com/content/dam/amd/en/documents/epyc-business-docs/white-papers/Protecting-VM-Register-State-with-SEV-ES.pdf
https://mega.nz/
https://nextcloud.com/
https://aws.amazon.com/cn/s3/
https://cn.aliyun.com/product/oss
https://cn.aliyun.com/product/oss
https://doc.owncloud.com/server/developer_manual/app/advanced/storage-backend.html
https://doc.owncloud.com/server/developer_manual/app/advanced/storage-backend.html
https://doc.owncloud.com/server/developer_manual/app/advanced/storage-backend.html
http://www.openafs.org/
https://github.com/happyfish100/fastdfs
https://github.com/happyfish100/fastdfs
https://ceph.io/
https://doi.org/10.1109/SP40000.2020.00057
https://doi.org/10.1109/SP.2015.45
https://www.gnu.org/software/wget/
https://www.gnu.org/software/wget/
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://en.wikipedia.org/wiki/Elliptic_Curve_Digital_Signature_Algorithm
https://github.com/intel/linux-sgx-pcl
https://github.com/intel/linux-sgx-pcl
https://en.wikipedia.org/wiki/HMAC
https://github.com/bl4ck5un/mbedtls-SGX
https://github.com/bl4ck5un/mbedtls-SGX
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://azure.microsoft.com/en-us/solutions/confidential-compute/
https://github.com/AMDESE/sev-tool
https://github.com/AMDESE/sev-tool
https://github.com/asterinas/jinzhao-attest
https://github.com/asterinas/jinzhao-attest
https://github.com/confidential-containers/confidential-containers
https://github.com/confidential-containers/confidential-containers
https://github.com/apache/incubator-teaclave-trustzone-sdk/wiki/
https://github.com/apache/incubator-teaclave-trustzone-sdk/wiki/
https://github.com/apache/incubator-teaclave-trustzone-sdk/wiki/
https://davejingtian.org/2017/11/10/some-notes-on-the-monotonic-counter-in-intel-sgx-and-me/
https://davejingtian.org/2017/11/10/some-notes-on-the-monotonic-counter-in-intel-sgx-and-me/
https://davejingtian.org/2017/11/10/some-notes-on-the-monotonic-counter-in-intel-sgx-and-me/

Yun He et al.

[60]

[61]

[62]

(63]

[64]

[65]

[66]

(2020), Sealeddata example missing platform service
capability, https://github.com/intel/linux-sgx/i
ssues/541.

Strackx, R. and Piessens, E (2016) Ariadne: A minimal
approach to state continuity. In 25th USENIX Security
Symposium (USENIX Security 16) (Austin, TX: USENIX
Association): 875-892.

Martetic, S., AumeDp, M., KostiaiNenN, K., DHAR, A.,
SomMmer, D., Gervais, A., Juets, A. et al. (2017)
ROTE: Rollback protection for trusted execution. In
26th USENIX Security Symposium (USENIX Security 17)
(Vancouver, BC: USENIX Association): 1289-1306.
BRANDENBURGER, M., CacHiNn, C., Lorenz, M. and
Karitza, R. (2017), Rollback and forking detection
for trusted execution environments using lightweight
collective memory. 1701.00981.

Brasser, F, MULLER, U., DMITRIENKO, A., KOSTIAINEN, K.,
CapkuN, S. and Sabechi, A.R. (2017) Software grand
exposure: SGX cache attacks are practical. In 11th
USENIX Workshop on Offensive Technologies (WOOT 17)
(Vancouver, BC: USENIX Association).

CHEN, S., ZHANG, X., Rermrer, M.K. and Znang, Y.
(2017) Detecting privileged side-channel attacks in
shielded execution with déja vu. In Proceedings of
the 2017 ACM on Asia Conference on Computer and
Communications Security, ASIA CCS ’17 (New York,
NY, USA: Association for Computing Machinery): 7-18.
doi:10.1145/3052973.3053007.

(2021) Voltpillager: Hardware-based fault injection
attacks against intel SGX enclaves using the SVID

[67]

[68]

[69]

(70]

(71]

(72]

voltage scaling interface. In 30th USENIX Security
Symposium (USENIX Security 21) (Vancouver, B.C.:
USENIX Association).

Arves, T. and Ferron, D. (2004) Trustzone: Integrated
hardware and software security .

Car, Y., Wang, Y., Lgg, L., Zuou, Q. and Li, J. (2019) Suit:
Secure user interface based on trustzone. In ICC 2019
- 2019 IEEE International Conference on Communications
(ICC): 1-7. doi:10.1109/ICC.2019.8761616.

KrauN, R., TracH, B., VAHLDIEK-OBERWAGNER, A.,
Knauth, T., Baatotia, P. and Ferzegr, C. (2018) Pesos:
Policy enhanced secure object store. In Proceedings of
the Thirteenth EuroSys Conference, EuroSys 18 (New
York, NY, USA: Association for Computing Machinery).
doi:10.1145/3190508.3190518.

(2020), Kinetic, https://www.seagate.com/cn/zh/su
pport/enterprise-servers-storage/nearline-sto
rage/kinetic-hdd/.

ARrNAuUTOV, S., TRACH, B., GREGOR, F.,, KNAUTH, T., MARTIN,
A., Priesg, C., LinD, J. et al. (2016) Scone: Secure linux
containers with intel sgx. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’16 (USA: USENIX Association):
689-703.

Sasy, S., GorsunNov, S. and Frercuer, C.W. (2018)
Zerotrace : Oblivious memory primitives from intel
SGX. In 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego, California,
USA, February 18-21, 2018 (The Internet Society).

EAI Endorsed Transactions
on Security and Safety
| Volume 09 | Issue 1] 2025 |

2 EA "

https://github.com/intel/linux-sgx/issues/541
https://github.com/intel/linux-sgx/issues/541
1701.00981
https://doi.org/10.1145/3052973.3053007
https://doi.org/10.1109/ICC.2019.8761616
https://doi.org/10.1145/3190508.3190518
https://www.seagate.com/cn/zh/support/enterprise-servers-storage/nearline-storage/kinetic-hdd/
https://www.seagate.com/cn/zh/support/enterprise-servers-storage/nearline-storage/kinetic-hdd/
https://www.seagate.com/cn/zh/support/enterprise-servers-storage/nearline-storage/kinetic-hdd/

	1 Introduction
	2 Background
	2.1 Trusted Execution Environments (TEEs)
	Intel Software Guard Extensions (SGX)
	Virtualization-based TEEs
	TrustZone

	2.2 Cloud-based File Storage and Sharing

	3 Problem Statement
	3.1 Threat Model
	3.2 Design Requirements

	4 Design
	4.1 Overview
	4.2 SeFS Server
	4.3 SeFS Client

	5 Implementation
	5.1 Setup
	5.2 Registration
	5.3 Policy Creation and Updating
	5.4 Access Control
	5.5 Integration with Cloud Storage Service

	6 Evaluation
	6.1 Security Analysis
	6.2 Performance Evaluation
	6.3 Concurrency

	7 Discussion and Limitation
	7.1 SeFS's implementation on Other Platforms
	7.2 Rollback Attacks
	7.3 Side-channel and Hardware Attacks
	7.4 Data Leakage from Client-side

	8 Related Works
	8.1 SGX-assisted Cloud Storage
	8.2 Cryptography-based Access Control

	9 Conclusion

