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Abstract 

Attribute-Based Access Control (ABAC) is an emerging access control model. It is the more flexible, scalable, and most 
suitable access control model for today’s large-scale, distributed, and open application environments. It has become an 
emerging research area nowadays. However, Role-Based Access Control (RBAC) has been the most widely used and 
general access control model so far. It is simple in administration and policy definition. But user-to-role assignment 
process of RBAC makes it non-scalable for large-scale organizations with a large number of users. To scale up the 
growing organization, RBAC needs to be transformed into ABAC. Transforming existing RBAC systems into ABAC is 
complicated and time-consuming. In this paper, we present a supervised machine learning-based approach to extract 
attribute-based conditions from the existing RBAC system to construct ABAC rules at the primary level and simplify the 
process of the transforming RBAC system to ABAC. 
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1. Introduction

The access control model defines how the access of 
system resources to users is controlled and how 
information about who is authorized for what is 
maintained. An access control policy is how the system 
knows who is authorized for what operations on system 
resources. Traditional access control models 
Discretionary Access Control (DAC) [1, 2, 3, 4], 
Mandatory Access Control Model (MAC) [4, 5, 6] and 
RBAC [2, 7, 8, 9] are applicable in several application 
scenarios. However, they have their limitations and 
disadvantages in the current large, dynamic, and 
distributed application domains [10, 11, 12]. They do not 
satisfy the need of growing organizations that span over 
large geographical areas.  

ABAC being flexible and context-sensitive satisfies 
today’s application environments [13, 14, 15, 16]. It is 
based on the concept of the user, object, and 
environmental attributes of the system. Access to the 
system resources is controlled by the access rules defined 
over these attributes. These rules are the set of conditional 
expressions over the user, object and environmental 
attributes joined with “and” connectives. For example 
designation, age, experience, etc. can be the user 
attributes, department of an object can be object attribute 
while time and location of the user can be the 
environmental attributes.  The user, object, and 
environment attribute values at the time of request need to 
satisfy the conditions defined in the rule to acquire 
particular permission. For example, a policy rule can be 
stated as: "A permission to evaluate the grade-sheet of the 
student is granted to the user if and only if his 
Designation is Assistant Professor, Age >= 25 years, 
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Experience >=3 years, his Department = CS and the time 
of the request is in between 10 am to 5 pm". Defining 
ABAC policy is a complex and time-consuming process. 
Constructing ABAC policy for newly designed 
applications is worthy. However, it is better if we can 
reduce the effort of constructing them for an existing 
application that has implemented RBAC as an access 
control model. 

An earlier number of approaches [17, 18, 19, 20, 21, 
22] on role mining have been proposed. However, they do
not address the problem of ABAC policy mining.
Recently there has been little research carried out on the
automatic mining of ABAC policies. These approaches
utilize access control logs and the Access Control List
(ACL) of the system to mine the ABAC rules. Techniques
they have used are either association mining or
unsupervised machine learning. Association mining can
extract the patterns of the attribute values from the log
entries and provide association among them. They do not
extract conditional expressions with inequalities as shown
in the above example. The unsupervised machine learning
approach has issues related to clustering algorithms. It
also results in mining a large number of roles. All of these
approaches work better for categorical data. But, do
applicable for discrete data.

In this paper, we propose a supervised machine 
learning approach mainly for the applications that need to 
transform the access control model from RBAC to 
ABAC.  

The paper is organized as follows. Section 2 describes 
related work. Section 3 gives background knowledge and 
preliminaries for the RBAC and ABAC models. Section 4 
explains our approach. Section 5 contains results and 
discussion. Section 6 concludes the paper.  

2. Related Work

Recently little bit of research has been carried out on 
mining ABAC rules [19, 23, 24, 25, 26, 27].  Amani et al 
[28] have proposed an automatic approach to extract
ABAC rules from event logs of business processes. They
have used association rule mining to find associations of
the subject, object, and environmental attributes.
Association mining is applied on the event log to identify
attribute relations using frequent and in-frequent item
sets. ABAC rules are then constructed by using attribute
relations.

Zhongyuan and Scott [27] have presented an ABAC 
policy mining algorithm using Access Control Lists 
(ACLs) and attribute data. The access control list is a set 
of user-permission relations as tuple < u, o, op > 
containing user, object, and operation. The algorithm 
defined by the authors iterates over such tuples selects 
some tuples as seeds to construct candidate ABAC rules 
and attempts to generalize the candidate rules by 
considering additional tuples in the ACL. The generated 
rules are merged, and simplified and highly-quality rules 
are finally considered for constructing the ABAC policy. 

Carlos et al propose [29] the model to extract ABAC 
rules from sparse logs. This model is also based on 
association rule mining. The authors have highlighted the 
fact that most of the logs in practice contain less amount 
of information. The model invalidates overly permissive 
rules and reduces the excessive rules generated by the 
mining process. Overly permissive rules are the rules such 
assign permission to users that are undesirable according 
to security perspectives. Standard association mining 
algorithms fail to identify these rules. For this purpose, a 
new quality measure has been defined to guide the mining 
process.   

An automated ABAC rule mining proposed by 
Matthew W Sanders and Chuan Yue [24] addresses the 
under-privilege and over-privileged issues related to 
access control. Over-privilege increases the risk of 
security in the system while under-privilege restricts users 
from performing their duties. The rule mining algorithm 
they have presented minimized the privilege errors of 
ABAC policies. They have presented the new algorithms, 
evaluation metrics, and optimization methods to optimize 
the large privilege space of ABAC policy.    

Karimi et al. [23] proposed a methodology for 
extracting ABAC policy rules. They have used an 
unsupervised learning approach for mining policy rules 
from the system log. Transaction records of the system 
log are grouped into clusters. Each cluster corresponds to 
one access control rule. Features of the cluster are used to 
construct policy rules. As the approach is using a 
clustering algorithm, it has all the issues related to the 
clustering algorithm. Similarly, the approach fails to 
extract attribute conditions for non-categorical attributes. 

Most of the approaches are based on association rule 
mining leading to the large number of rule extraction 
needing pruning methods to eliminate irrelevant rules. An 
unsupervised learning-based approach also results in 
inaccurate access rules due to the issues related to 
clustering algorithms. All of these approaches do not able 
to extract attribute conditional relations for discrete data 
attributes. For example, they can extract the conditions 
like {dept = CS} for categorical attributes. But, they fail 
to extract the conditions like {experience > 5} for discrete 
data attributes. The supervised learning approach we 
present can extract such conditions and works for both 
categorical and non-categorical attributes.  

In the next section, we give some necessary 
background and definitions required to explain our 
approach. 

3. Background and Preliminaries

In this section, we briefly give an overview of the 
concepts and definitions of the components of the RBAC 
and ABAC models.  

RBAC works on the concept of role. The role is 
analogous to the user's job profile in an organization. For 
example cashiers, accountants, etc. A role is the set of 
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permissions needed to carry out the software activities to 
perform the job. Permission is the element comprising of 
(o, op). For example; a user with permission (evaluate, 
grade-sheet) can evaluate the grade sheet of the student. 
The set of such permissions is assigned to a role and the 
set of roles is assigned to users. RBAC system maintains 
the information about permission assignment and role 
assignment in the permission-to-role assignment relation 
and the user-to-role assignment relation respectively. 
ABAC works on the concept of user, object, and 
environment attributes as described in the previous 
section. Table 1 gives the difference between RBAC and 
ABAC concerning the access control mechanism. 

Table 1. RBAC Vs ABAC 

Sr. 
No 

RBAC ABAC 

1 Access to system 
resources is 
controlled by roles. 

Access to system 
resources is controlled 
by attribute-based 
policies 

2 Access is granted 
in terms of the 
group of 
permissions. (i.e. 
role) 

Access is granted single 
permission-wise. 

3 To assign 
permission to the 
user, a role 
containing that 
permission is 
assigned to the 
user manually. 

Permission is granted to 
the user at the time of 
request based on the 
values of the user, 
object, and 
environmental 
attributes. 

4 Permissions are 
granted in advance 
to the request to 
access the 
permission is 
made. 

Permission is granted at 
run-time. 

5 Access control 
information is 
maintained in 
terms of user-to-
role assignment 
and role-to-
permission 
assignment 
relations 

Access control 
information is 
maintained in terms of 
attribute-based access 
control policies per 
permission. 

Table 2 gives the symbols and their meanings used to 
describe the concepts of RBAC and ABAC models and 
the model we are presenting. 

Table 2. Symbols to Describe the Concepts of RBAC 
and ABAC 

Name Symbol Description 
Object O Set of system objects like 

file, database record, loan 
account information, etc. 

Operation OP Set of operations like read, 
write, approve the loan, etc. 

Permission p (o, op) an element 
representing an operation, 
op is allowed on the object, 
o. 

Permission 
Set 

P The set of all possible 
permissions in the system. 
i.e. P = {p1, p2, …, pn}

Role r Set of permissions required
to perform a particular task.
i.e. r = {p1, p2, …, pk} where
k<=n

Role Set R Set of all possible roles in
the system. i.e. R={r1, r2, …,
rm}

Attribute a User, object, or environment
attribute

Conditional 
Value 

v The conditional value of the
attribute that needs to
satisfy. It may be numeric,
character, or string

Relation 
Condition 

c a ⊙ v

Conditional 
Operator 

⊙ ≺ | ≼| = | ≻ |≽ 

ABAC Rule ρ c1 ˄ c 2, …, ˄ c p 
Rule Set RS Set of ABAC Rules 

Definition 1: (User-to-Role Assignment Relation). A 
user-to-role assignment relation is defined as a set of 
tuples UA = {< u, r > | u ∈ U and r ∈ R}. A tuple < u, r > 
is that the role r is assigned to the user u.  

Definition 2: (Permission-to-Role Assignment

Relation). A permission-to-role assignment relation is 
defined as a set of tuples PA = {< p, r > | p ∈ P and r ∈ 
R}. A tuple < p, r >  is that the permission p is assigned to 
the role r. 

Definition 3: (RBAC Transaction Log). A transaction 
log of the RBAC system is a set of tuples L = < u, r, p, t, d 
>. Where t is a timestamp or any contextual information 
about the transaction like the location of the user 
performing transaction and d is the decision for the 
transaction (permit /deny). 

Example 1: < John, Evaluator, (evaluate, grade-sheet), 
t1, permitted > indicates the user John with the role 
Evaluator had acquired the permission (evaluate, grade-
sheet) at timestamp t1  
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Definition 4: (ABAC Rule). An ABAC rule is a set of 
conditions φ  = {ci| ci = ai ⊙ vi }, where ai ∈ {Au ⋃ Ao ⋃ 
Ae} and ci is the relation condition for corresponding user, 
object and environmental attributes. It is interpreted as a 
conjunction c1 ˄ c2 ˄, …, ˄ cn. A rule gets satisfied if it 
evaluates to true.   
 

fu and fo are the user and object attribute value 
functions that return values for the user attributes, Au, and 
object attributes, Ao respectively. Vua and Voa are the set of 
attribute values such that Vua  = { v | ∀ai ∈ Au , v =  fu(ai, 
u) } and Voa  = { v | ∀ai ∈ Ao , v =  fo(ai, o) } 
 

Example 2: Suppose Au = {designation, appointment, 
experience}, fu(designation, John) = Assistant Professor,  
fu(appointment, John) = Regular and fu(experience, John) 
= 5   Then VJohna = { Assistant Professor, Regular, 5}.  
 

Definition 5: (User Attribute Conditions). User 
attribute conditions is a set of conditions, Cua = {ck | ck = 
ak ⊙ vk, ∀ak ∈ Au} 
 

Example 3: Cua = {{designation ∈ [Assistant Professor, 
Professor]}, {appointment ∈ [Adhoc, Regular]}, 
{experience > 3}} indicates that the value of the user 
attribute designation can be either Assistant Professor or 
Professor, an appointment can be either Contractual or 
Regular and experience can be greater than 3 years. 
 

Definition 6: (Object Attribute Conditions). Object 
attribute conditions is a set of conditions, Coa = {cm | cm = 
am ⊙ vm, ∀am ∈ Ao} 
 

Definition 7: (Environment Attribute Conditions). 
Environment attribute conditions is a set of conditions, 
Cea = {cq | cq = aq ⊙ vq, ∀aq ∈ Ae} 
 

With the above definitions and RBAC and ABAC 
concepts discussed, the next section describes our 
supervised machine learning approach for constructing 
ABAC rules. 

4. The Proposed Supervised Machine 
Learning Approach 

We present the mechanism to extract the attribute-based 
conditions from the existing RBAC system that are used 
to construct ABAC rules. It reduces the efforts of a 
system administrator while transforming the RBAC 
system into ABAC. Our approach uses the permission-to-
role assignment relation, user-to-role assignment relation, 
and transaction log for this purpose. Tables 3 and 4 show 
the sample representation of user-to-role assignment 
relation and role-to-permission assignment relation 
respectively. 

Table 3. Sample User-to-Role Assignment Relation 

User Roles 
U1 R1, R3, R7 
U2 R1, R2, R5, R8 
U3 R3, R4, R6 
U4 R3, R5, R7 
U5 R1, R3, R8 
U6 R2, R4, R6 
U7 R2, R5,R7,R8 
U8 R5,R7,R8 
U9 R1, R2, R5, R7, R8 
U10 R3, R4, R6, R7 

 

Table 4. Sample Permission-to-Role Assignment 
Relation 

Role Permissions 
R1 P1, P2, P3, P5 
R2 P1, P2, P6, P7, P8 
R3 P2, P5, P7, P8 
R4 P2, P3, P4, P8 
R5 P1, P3, P6, P7 
R6 P3, P4, P7, P8 
R7 P1, P4, P5, P6, P7, 

P8 
R8 P3, P4, P5, P6 

 
The roles of the RBAC system classify the users into 

various security classes. In ABAC, attribute-based rules 
classify the users into one of the security classes.  
Attribute conditions defined in the ABAC rule help to 
classify the users and decide whether the given 
permission can be granted to them or not. We have used 
the J48 decision tree machine algorithm to extract user, 
object, and environment attribute relation conditions 
required to construct the ABAC rule. Three separate 
decision trees are constructed to extract user, object, and 
environment attribute relation conditions respectively. 

4.1. ABAC Rule Extraction Problem 

The ABAC Rule extraction problem can be stated as: 
Given user-to-role assignment relation (UA), 

permission-to-role assignment relation (PA), and 
transaction log (L); extract attribute condition set Cua, Coa, 
and Cea and construct ABAC rules using them. 

Data sets required for constructing decision trees are 
generated by using relations UA, PA, and system log 
entries. The next section depicts how these data sets are 
generated. 
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4.2. Generating Data Set for Machine 
Learning Process 

Given the relation UA, a set of users to whom the role r is 
assigned is constructed. This set is constructed as follows: 
 

Ur = {u | ∀u ∈ U, ∀(u1 , r) ∈ UA , u  = u1 }      (1) 
 
Table 5 shows the sample of Ur concerning the 

sample UA as shown in Table 3.  
Given Ur, user attribute value data of all users, u ∈ Ur, 

is extracted by using function fu, and the data set with 
tuples as below is generated. 
 

Tu = { (Vua , r) | (u, r) ∈ Ur}   (2) 

Table 5. Sample Ur Relation 

Role Users 
R1 U1, U2, U5, U9 
R2 U2, U6, U7, U9 
R3 U1, U3, U4, U5, U10 
R4 U3, U6, U10 
R5 U2, U4, U7, U9 
R6 U3, U6, U10 
R7 U1, U4, U7, U8, U9, U10 
R8 U2, U5, U7, U8, U9 

 
Example 4: Suppose (John, Evaluator) ∈ Ur, then the 

corresponding tuple in Tu will be < Assistant Professor, 
Regular, 5, Evaluator > 
 

Assume Au = {a1, a2, a3, a4} are the overall user 
attributes in the system. Table 6 represents the set of 
tuples in Tu for the users to whom role R1 is assigned 
(Table 5). 

Table 6. Sample Tu Dataset 

User a1 a2 a3 a4 Role 
U1 v a11 v a12 v a13 v a14 R1 
U2 v a21 v a22 v a23 v a24 R1 
U5 v a51 v a52 v a53 v a54 R1 
U9 v a91 v a92 v a93 v a94 R1 

 
Similarly, given the relation PA, object attribute value 

data for the objects o in p ∈ P is extracted using fo, and the 
data set with the tuples as below is generated. 
 

To = {(Voa , p) | o is in p ∈ P }   (3) 
 

Given the transaction log L, environment attribute 
value data is extracted from log entry, and data set with 
the tuples as below is generated.  
 
     Te= {(t, p) | (t, p) is in l ∈ L}   (4) 
 

Once the datasets are ready, decision trees are 
constructed to extract the attribute relation conditions for 
generating ABAC rules. The decision tree construction 
process is explained in the next section. 

4.3. Extraction of Relation Conditions 

The decision tree classifier is applied to the above-
generated data sets and the three separate decision trees 
for the user, object, and environmental attributes are 
constructed. The role is considered a categorical attribute 
for building the user classifier while permission is 
considered a categorical attribute for building the object 
and environment classifiers. Relation conditions are then 
extracted from decision rules provided by decision trees. 
The steps of the process for extracting relation conditions 
are summarized in algorithm1. 

In Lines 1, 2, and 3 of the algorithm, decision trees are 
constructed by applying a decision tree classifier on the 
training datasets Tu, To and Te respectively. Loop in lines 
4 to 6 extracts user attribute conditions from decision tree 
TRu while loop in lines 7 to 10 extracts object and 
environment attribute conditions from decision trees TRo 
and TRe respectively. 

Extracted attribute conditions can now be useful to 
construct ABAC rules. The next section explains the rule 
generation process. 

4.4. Generating ABAC Rules 

Given user, object, and environment attribute relation 
conditions, the ABAC rules are constructed as per the 
steps summarized in algorithm 2.  
 

Algorithm 1: Extracting Attribute Relation Conditions 
 

Input: Tu, To, Te, P, R 
Output: Cua[], Coa[], Cea[] 
 
1. TRu ← DecisionTreeClassifier(Tu) 
2. TRo ← DecisionTreeClassifier(To) 
3. TRe ← DecisionTreeClassifier(Te) 
4. for all ri ∈ R 
5.  Cua[ri] ← ExtractUserAttCond(TRu) 
6. end for 
7. for all pi ∈ P 
8.  Coa[pi] ← ExtractObjAttCond(TRo) 
9.  Cea[pi] ← ExtractEnvAttCond(TRe) 
10. end for 
11. return Cua[], Coa[], Cea[] 
12. end procedure 
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Algorithm 2: Constructing ABAC Rules 
 

 Input: Cua[], Coa[], Cea[], R, P 
 Output: RS 
 1. RS  ← Φ 
 2. ρk  ← Φ 
 3.  for all ri ∈ R 
 4.      for all pj ∈ ri 
 5.             ρk ← ρk ⋃ Cua[ri] ⋃ Coa[pj] ⋃ Cea[pj] 
 6.            RS  ← RS ⋃ ρk 
 7.                  end for 
 8.            end for 
 9.  return RS 
10. end procedure 
                                                                                                        

Algorithm 2 generates the rules at the primary level. 
Generated rules can then be pruned if necessary by the 
system administrator. Administrators can also eliminate 
unnecessary rules from the rule set. 

5. Results and Discussion 

To evaluate the effectiveness of our algorithm on discrete 
data attributes and to show how relation conditions with 
relational operators are extracted, we have used the 
synthesized data sets for UA, PA, and transaction log. 
Implementation of these data structures and the data fields 
in the transaction log record vary from application to 
application. We have used general formats to demonstrate 
the working of the approach. Table 7 represents the 
sample user attribute value data we have used for 
experimentation. Entries in the table are the sample tuples 
generated by equation (2) as stated in the previous 
section.  

Table 7. Sample Training Dataset of User Attribute 
Value Data 

UID DES APPT EXP ROLE 
1 AP R 5 EV 
2 AP R 4 EV 
3 AP A 2 ST 
4 P R 10 PS 
5 AP A 5 ST 
6 AP R 8 PE 
7 AP R 6 PE 
8 P R 11 PS 
9 AP R 5 EV 
10 AP R 3 ST 
11 AP R 2 ST 
12 AP R 4 EV 

 
Where UID = User ID, APPT = Appointment, DES = 
Designation, EXP = Experience, A = Adhoc (Contractual), 
R = Regular, AP = Assistant Professor, P = Professor, EV 

= Evaluator, ST = Subject Teacher, PE = Practical 
Examiner, PS = Paper Setter 
 

Rows in the table represent user information and the 
role assigned to him. A set of users with the same role 
forms a one-user class. For example; all the users to 
whom the role evaluator has been assigned belong to the 
evaluator class. The user information belonging to one 
user class forms a particular range(or set) of values for 
each data attribute. For example; user data values of the 
users belonging to the evaluator class will form one 
range(or set) of values for the data field experience while 
forming another range for other classes. It is difficult to 
extract such ranges from a large set of records manually. 
A decision tree helps to extract these data value ranges or 
conditions automatically. 

The decision tree shown in Fig. 1 is constructed after 
the application of the decision tree classifier on the above 
data set with “Role” as a class index attribute. 
 

 
Figure 1. Decision Tree Output 

 
The decision tree rules shown in the decision tree of 

the figure provide the attribute relation conditions exactly 
similar to the conditions required to construct ABAC 
rules. The output of the decision tree classifier shows how 
conditions with inequalities for continuous attribute 
“EXP” have been extracted. One of the decision tree rules 
for the user class PS is as follows.  
 
{DES = P} and {APP = R} and {EXP > 6} ⟶ {userClass 
= PS} 
 

From the above decision tree rule, the following user 
attribute relation conditions are extracted to construct the 
ABAC rule for all the permissions belonging to role PS. 
 

Cua[PS] = {{Des = P},{App = R}, {Exp > 6}} 
 

Thus our supervised learning-based approach can 
extract relation conditions for discrete data attributes. The 
use of user-to-role relation for extraction of the rules 
provides an accurate user-role relationship compared to 
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approaches that use system logs for rule extraction.  Due 
to supervised learning, the number of rules extracted 
would be more accurate compared to the unsupervised 
learning-based approach. Table 8 gives the comparison of 
our approach with the approaches discussed in the related 
work section. 

As the supervised learning algorithm works on data set 
containing class labels, the user classification done by it is 
more accurate compared to unsupervised learning.  
Accurate classification leads to generating accurate 
attribute conditions. The information contained in the 
system log may be incomplete leading to generating an 
inaccurate number of rules. Our approach is supervised 
learning based and uses user-to-role and permission-to-role 
relations along with system log data to generate a dataset 
for the learning process. Similarly, the use of a decision 
tree classifier makes our approach applicable for discrete 
data attributes.  

Table 8. Our ApproachesVs Other’s Approaches 

Approach Technique Training 
Data 

Handles 
Discrete 
Data 

Amani et 
al.[1] 

Association 
Mining 

System 
Log 

 

Zhongyuan 
and Scott 
[27] 

Association 
Mining 

Access 
Control 
List 

 

Carlos et 
al. [2] 

Association 
Mining 

Sparse 
Log 

 

Matthew W 
Sanders 
and Chuan 
Yue [17] 

Association 
Mining 

System 
Log 

 

Leila et al. 
[14] 

Unsupervised 
Learning 

System 
Log 

 

Ours Supervised 
Learning 

System 
Log, UA, 
and PA 
Relations 

 

 
6. Conclusion 

We have presented a supervised learning-based approach 
to extract attribute relation conditions from the existing 
RBAC system to construct ABAC rules at the primary 
level to transform them into an ABAC system. We have 
used user-to-role relation, permission-to-role relation, and 
system log to extract the conditions. The approach is 
effective and can extract attribute relation conditions for 
both categorical and discrete data attributes. However, our 
approach does not consider the multi-value attributes of 
the system, and it is mainly useful for transforming 
existing RBAC systems into ABAC systems. 
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