
1

Supervised Learning-Based Approach Mining ABAC

Rules from Existing RBAC Enabled Systems

Gurucharansingh Sahani1,*, Dr. Chirag S. Thaker2, and Dr. Sanjay M. Shah3

1Ph.D. Scholar Computer/IT, Gujarat Technological University, Gandhinagar, India
2Professor, LD College of Engineering, Ahmedabad, India
3Professor, Government College of Engineering, Rajkot, India

Abstract

Attribute-Based Access Control (ABAC) is an emerging access control model. It is the more flexible, scalable, and most
suitable access control model for today’s large-scale, distributed, and open application environments. It has become an
emerging research area nowadays. However, Role-Based Access Control (RBAC) has been the most widely used and
general access control model so far. It is simple in administration and policy definition. But user-to-role assignment
process of RBAC makes it non-scalable for large-scale organizations with a large number of users. To scale up the
growing organization, RBAC needs to be transformed into ABAC. Transforming existing RBAC systems into ABAC is
complicated and time-consuming. In this paper, we present a supervised machine learning-based approach to extract
attribute-based conditions from the existing RBAC system to construct ABAC rules at the primary level and simplify the
process of the transforming RBAC system to ABAC.

Keywords: Attribute-based Access Control (ABAC), Role-Based Access Control (RBAC), Mining ABAC Rule, Supervised Machine
Learning

Received on 22 June 2022, accepted on 04 September 2022, published on 07 September 2022

Copyright © 2022 Gurucharansingh Sahani et al., licensed to EAI. This is an open access article distributed under the terms of the CC
BY-NC-SA 4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long
as the original work is properly cited.

doi: 10.4108/eetsis.v5i16.1560

*Corresponding author. Email: gurcharan_sahani@yahoo.com

1. Introduction

The access control model defines how the access of
system resources to users is controlled and how
information about who is authorized for what is
maintained. An access control policy is how the system
knows who is authorized for what operations on system
resources. Traditional access control models
Discretionary Access Control (DAC) [1, 2, 3, 4],
Mandatory Access Control Model (MAC) [4, 5, 6] and
RBAC [2, 7, 8, 9] are applicable in several application
scenarios. However, they have their limitations and
disadvantages in the current large, dynamic, and
distributed application domains [10, 11, 12]. They do not
satisfy the need of growing organizations that span over
large geographical areas.

ABAC being flexible and context-sensitive satisfies
today’s application environments [13, 14, 15, 16]. It is
based on the concept of the user, object, and
environmental attributes of the system. Access to the
system resources is controlled by the access rules defined
over these attributes. These rules are the set of conditional
expressions over the user, object and environmental
attributes joined with “and” connectives. For example
designation, age, experience, etc. can be the user
attributes, department of an object can be object attribute
while time and location of the user can be the
environmental attributes. The user, object, and
environment attribute values at the time of request need to
satisfy the conditions defined in the rule to acquire
particular permission. For example, a policy rule can be
stated as: "A permission to evaluate the grade-sheet of the
student is granted to the user if and only if his
Designation is Assistant Professor, Age >= 25 years,

EAI Endorsed Transactions
on Scalable Information Systems Research Article

EAI Endorsed Transactions on
Scalable Information Systems

10 2022 - 01 2023 | Volume 10 | Issue 1 | e9

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:gurcharan_sahani@yahoo.com

Gurucharansingh Sahani, Dr. Chirag S. Thaker, and Dr. Sanjay M. Shah

2

Experience >=3 years, his Department = CS and the time
of the request is in between 10 am to 5 pm". Defining
ABAC policy is a complex and time-consuming process.
Constructing ABAC policy for newly designed
applications is worthy. However, it is better if we can
reduce the effort of constructing them for an existing
application that has implemented RBAC as an access
control model.

An earlier number of approaches [17, 18, 19, 20, 21,
22] on role mining have been proposed. However, they do
not address the problem of ABAC policy mining.
Recently there has been little research carried out on the
automatic mining of ABAC policies. These approaches
utilize access control logs and the Access Control List
(ACL) of the system to mine the ABAC rules. Techniques
they have used are either association mining or
unsupervised machine learning. Association mining can
extract the patterns of the attribute values from the log
entries and provide association among them. They do not
extract conditional expressions with inequalities as shown
in the above example. The unsupervised machine learning
approach has issues related to clustering algorithms. It
also results in mining a large number of roles. All of these
approaches work better for categorical data. But, do
applicable for discrete data.

In this paper, we propose a supervised machine
learning approach mainly for the applications that need to
transform the access control model from RBAC to
ABAC.

The paper is organized as follows. Section 2 describes
related work. Section 3 gives background knowledge and
preliminaries for the RBAC and ABAC models. Section 4
explains our approach. Section 5 contains results and
discussion. Section 6 concludes the paper.

2. Related Work

Recently little bit of research has been carried out on
mining ABAC rules [19, 23, 24, 25, 26, 27]. Amani et al
[28] have proposed an automatic approach to extract
ABAC rules from event logs of business processes. They
have used association rule mining to find associations of
the subject, object, and environmental attributes.
Association mining is applied on the event log to identify
attribute relations using frequent and in-frequent item
sets. ABAC rules are then constructed by using attribute
relations.

Zhongyuan and Scott [27] have presented an ABAC
policy mining algorithm using Access Control Lists
(ACLs) and attribute data. The access control list is a set
of user-permission relations as tuple < u, o, op >
containing user, object, and operation. The algorithm
defined by the authors iterates over such tuples selects
some tuples as seeds to construct candidate ABAC rules
and attempts to generalize the candidate rules by
considering additional tuples in the ACL. The generated
rules are merged, and simplified and highly-quality rules
are finally considered for constructing the ABAC policy.

Carlos et al propose [29] the model to extract ABAC
rules from sparse logs. This model is also based on
association rule mining. The authors have highlighted the
fact that most of the logs in practice contain less amount
of information. The model invalidates overly permissive
rules and reduces the excessive rules generated by the
mining process. Overly permissive rules are the rules such
assign permission to users that are undesirable according
to security perspectives. Standard association mining
algorithms fail to identify these rules. For this purpose, a
new quality measure has been defined to guide the mining
process.

An automated ABAC rule mining proposed by
Matthew W Sanders and Chuan Yue [24] addresses the
under-privilege and over-privileged issues related to
access control. Over-privilege increases the risk of
security in the system while under-privilege restricts users
from performing their duties. The rule mining algorithm
they have presented minimized the privilege errors of
ABAC policies. They have presented the new algorithms,
evaluation metrics, and optimization methods to optimize
the large privilege space of ABAC policy.

Karimi et al. [23] proposed a methodology for
extracting ABAC policy rules. They have used an
unsupervised learning approach for mining policy rules
from the system log. Transaction records of the system
log are grouped into clusters. Each cluster corresponds to
one access control rule. Features of the cluster are used to
construct policy rules. As the approach is using a
clustering algorithm, it has all the issues related to the
clustering algorithm. Similarly, the approach fails to
extract attribute conditions for non-categorical attributes.

Most of the approaches are based on association rule
mining leading to the large number of rule extraction
needing pruning methods to eliminate irrelevant rules. An
unsupervised learning-based approach also results in
inaccurate access rules due to the issues related to
clustering algorithms. All of these approaches do not able
to extract attribute conditional relations for discrete data
attributes. For example, they can extract the conditions
like {dept = CS} for categorical attributes. But, they fail
to extract the conditions like {experience > 5} for discrete
data attributes. The supervised learning approach we
present can extract such conditions and works for both
categorical and non-categorical attributes.

In the next section, we give some necessary
background and definitions required to explain our
approach.

3. Background and Preliminaries

In this section, we briefly give an overview of the
concepts and definitions of the components of the RBAC
and ABAC models.

RBAC works on the concept of role. The role is
analogous to the user's job profile in an organization. For
example cashiers, accountants, etc. A role is the set of

EAI Endorsed Transactions on
Scalable Information Systems

10 2022 - 01 2023 | Volume 10 | Issue 1 | e9

Supervised Learning-Based Approach Mining ABAC Rules from Existing RBAC Enabled Systems

3

permissions needed to carry out the software activities to
perform the job. Permission is the element comprising of
(o, op). For example; a user with permission (evaluate,
grade-sheet) can evaluate the grade sheet of the student.
The set of such permissions is assigned to a role and the
set of roles is assigned to users. RBAC system maintains
the information about permission assignment and role
assignment in the permission-to-role assignment relation
and the user-to-role assignment relation respectively.
ABAC works on the concept of user, object, and
environment attributes as described in the previous
section. Table 1 gives the difference between RBAC and
ABAC concerning the access control mechanism.

Table 1. RBAC Vs ABAC

Sr.
No

RBAC ABAC

1 Access to system
resources is
controlled by roles.

Access to system
resources is controlled
by attribute-based
policies

2 Access is granted
in terms of the
group of
permissions. (i.e.
role)

Access is granted single
permission-wise.

3 To assign
permission to the
user, a role
containing that
permission is
assigned to the
user manually.

Permission is granted to
the user at the time of
request based on the
values of the user,
object, and
environmental
attributes.

4 Permissions are
granted in advance
to the request to
access the
permission is
made.

Permission is granted at
run-time.

5 Access control
information is
maintained in
terms of user-to-
role assignment
and role-to-
permission
assignment
relations

Access control
information is
maintained in terms of
attribute-based access
control policies per
permission.

Table 2 gives the symbols and their meanings used to
describe the concepts of RBAC and ABAC models and
the model we are presenting.

Table 2. Symbols to Describe the Concepts of RBAC
and ABAC

Name Symbol Description
Object O Set of system objects like

file, database record, loan
account information, etc.

Operation OP Set of operations like read,
write, approve the loan, etc.

Permission p (o, op) an element
representing an operation,
op is allowed on the object,
o.

Permission
Set

P The set of all possible
permissions in the system.
i.e. P = {p1, p2, …, pn}

Role r Set of permissions required
to perform a particular task.
i.e. r = {p1, p2, …, pk} where
k<=n

Role Set R Set of all possible roles in
the system. i.e. R={r1, r2, …,
rm}

Attribute a User, object, or environment
attribute

Conditional
Value

v The conditional value of the
attribute that needs to
satisfy. It may be numeric,
character, or string

Relation
Condition

c a ⊙ v

Conditional
Operator

⊙ ≺ | ≼| = | ≻ |≽

ABAC Rule ρ c1 ˄ c 2, …, ˄ c p
Rule Set RS Set of ABAC Rules

Definition 1: (User-to-Role Assignment Relation). A
user-to-role assignment relation is defined as a set of
tuples UA = {< u, r > | u ∈ U and r ∈ R}. A tuple < u, r >
is that the role r is assigned to the user u.

Definition 2: (Permission-to-Role Assignment

Relation). A permission-to-role assignment relation is
defined as a set of tuples PA = {< p, r > | p ∈ P and r ∈
R}. A tuple < p, r > is that the permission p is assigned to
the role r.

Definition 3: (RBAC Transaction Log). A transaction
log of the RBAC system is a set of tuples L = < u, r, p, t, d
>. Where t is a timestamp or any contextual information
about the transaction like the location of the user
performing transaction and d is the decision for the
transaction (permit /deny).

Example 1: < John, Evaluator, (evaluate, grade-sheet),
t1, permitted > indicates the user John with the role
Evaluator had acquired the permission (evaluate, grade-
sheet) at timestamp t1

EAI Endorsed Transactions on
Scalable Information Systems

10 2022 - 01 2023 | Volume 10 | Issue 1 | e9

 Gurucharansingh Sahani, Dr. Chirag S. Thaker, and Dr. Sanjay M. Shah

4

Definition 4: (ABAC Rule). An ABAC rule is a set of
conditions φ = {ci| ci = ai ⊙ vi }, where ai ∈ {Au ⋃ Ao ⋃
Ae} and ci is the relation condition for corresponding user,
object and environmental attributes. It is interpreted as a
conjunction c1 ˄ c2 ˄, …, ˄ cn. A rule gets satisfied if it
evaluates to true.

fu and fo are the user and object attribute value
functions that return values for the user attributes, Au, and
object attributes, Ao respectively. Vua and Voa are the set of
attribute values such that Vua = { v | ∀ai ∈ Au , v = fu(ai,
u) } and Voa = { v | ∀ai ∈ Ao , v = fo(ai, o) }

Example 2: Suppose Au = {designation, appointment,
experience}, fu(designation, John) = Assistant Professor,
fu(appointment, John) = Regular and fu(experience, John)
= 5 Then VJohna = { Assistant Professor, Regular, 5}.

Definition 5: (User Attribute Conditions). User
attribute conditions is a set of conditions, Cua = {ck | ck =
ak ⊙ vk, ∀ak ∈ Au}

Example 3: Cua = {{designation ∈ [Assistant Professor,
Professor]}, {appointment ∈ [Adhoc, Regular]},
{experience > 3}} indicates that the value of the user
attribute designation can be either Assistant Professor or
Professor, an appointment can be either Contractual or
Regular and experience can be greater than 3 years.

Definition 6: (Object Attribute Conditions). Object
attribute conditions is a set of conditions, Coa = {cm | cm =
am ⊙ vm, ∀am ∈ Ao}

Definition 7: (Environment Attribute Conditions).
Environment attribute conditions is a set of conditions,
Cea = {cq | cq = aq ⊙ vq, ∀aq ∈ Ae}

With the above definitions and RBAC and ABAC
concepts discussed, the next section describes our
supervised machine learning approach for constructing
ABAC rules.

4. The Proposed Supervised Machine
Learning Approach

We present the mechanism to extract the attribute-based
conditions from the existing RBAC system that are used
to construct ABAC rules. It reduces the efforts of a
system administrator while transforming the RBAC
system into ABAC. Our approach uses the permission-to-
role assignment relation, user-to-role assignment relation,
and transaction log for this purpose. Tables 3 and 4 show
the sample representation of user-to-role assignment
relation and role-to-permission assignment relation
respectively.

Table 3. Sample User-to-Role Assignment Relation

User Roles
U1 R1, R3, R7
U2 R1, R2, R5, R8
U3 R3, R4, R6
U4 R3, R5, R7
U5 R1, R3, R8
U6 R2, R4, R6
U7 R2, R5,R7,R8
U8 R5,R7,R8
U9 R1, R2, R5, R7, R8
U10 R3, R4, R6, R7

Table 4. Sample Permission-to-Role Assignment
Relation

Role Permissions
R1 P1, P2, P3, P5
R2 P1, P2, P6, P7, P8
R3 P2, P5, P7, P8
R4 P2, P3, P4, P8
R5 P1, P3, P6, P7
R6 P3, P4, P7, P8
R7 P1, P4, P5, P6, P7,

P8
R8 P3, P4, P5, P6

The roles of the RBAC system classify the users into

various security classes. In ABAC, attribute-based rules
classify the users into one of the security classes.
Attribute conditions defined in the ABAC rule help to
classify the users and decide whether the given
permission can be granted to them or not. We have used
the J48 decision tree machine algorithm to extract user,
object, and environment attribute relation conditions
required to construct the ABAC rule. Three separate
decision trees are constructed to extract user, object, and
environment attribute relation conditions respectively.

4.1. ABAC Rule Extraction Problem

The ABAC Rule extraction problem can be stated as:
Given user-to-role assignment relation (UA),

permission-to-role assignment relation (PA), and
transaction log (L); extract attribute condition set Cua, Coa,
and Cea and construct ABAC rules using them.

Data sets required for constructing decision trees are
generated by using relations UA, PA, and system log
entries. The next section depicts how these data sets are
generated.

EAI Endorsed Transactions on
Scalable Information Systems

10 2022 - 01 2023 | Volume 10 | Issue 1 | e9

 Supervised Learning-Based Approach Mining ABAC Rules from Existing RBAC Enabled Systems

5

4.2. Generating Data Set for Machine
Learning Process

Given the relation UA, a set of users to whom the role r is
assigned is constructed. This set is constructed as follows:

Ur = {u | ∀u ∈ U, ∀(u1 , r) ∈ UA , u = u1 } (1)

Table 5 shows the sample of Ur concerning the

sample UA as shown in Table 3.
Given Ur, user attribute value data of all users, u ∈ Ur,

is extracted by using function fu, and the data set with
tuples as below is generated.

Tu = { (Vua , r) | (u, r) ∈ Ur} (2)

Table 5. Sample Ur Relation

Role Users
R1 U1, U2, U5, U9
R2 U2, U6, U7, U9
R3 U1, U3, U4, U5, U10
R4 U3, U6, U10
R5 U2, U4, U7, U9
R6 U3, U6, U10
R7 U1, U4, U7, U8, U9, U10
R8 U2, U5, U7, U8, U9

Example 4: Suppose (John, Evaluator) ∈ Ur, then the

corresponding tuple in Tu will be < Assistant Professor,
Regular, 5, Evaluator >

Assume Au = {a1, a2, a3, a4} are the overall user
attributes in the system. Table 6 represents the set of
tuples in Tu for the users to whom role R1 is assigned
(Table 5).

Table 6. Sample Tu Dataset

User a1 a2 a3 a4 Role
U1 v a11 v a12 v a13 v a14 R1
U2 v a21 v a22 v a23 v a24 R1
U5 v a51 v a52 v a53 v a54 R1
U9 v a91 v a92 v a93 v a94 R1

Similarly, given the relation PA, object attribute value

data for the objects o in p ∈ P is extracted using fo, and the
data set with the tuples as below is generated.

To = {(Voa , p) | o is in p ∈ P } (3)

Given the transaction log L, environment attribute
value data is extracted from log entry, and data set with
the tuples as below is generated.

 Te= {(t, p) | (t, p) is in l ∈ L} (4)

Once the datasets are ready, decision trees are
constructed to extract the attribute relation conditions for
generating ABAC rules. The decision tree construction
process is explained in the next section.

4.3. Extraction of Relation Conditions

The decision tree classifier is applied to the above-
generated data sets and the three separate decision trees
for the user, object, and environmental attributes are
constructed. The role is considered a categorical attribute
for building the user classifier while permission is
considered a categorical attribute for building the object
and environment classifiers. Relation conditions are then
extracted from decision rules provided by decision trees.
The steps of the process for extracting relation conditions
are summarized in algorithm1.

In Lines 1, 2, and 3 of the algorithm, decision trees are
constructed by applying a decision tree classifier on the
training datasets Tu, To and Te respectively. Loop in lines
4 to 6 extracts user attribute conditions from decision tree
TRu while loop in lines 7 to 10 extracts object and
environment attribute conditions from decision trees TRo
and TRe respectively.

Extracted attribute conditions can now be useful to
construct ABAC rules. The next section explains the rule
generation process.

4.4. Generating ABAC Rules

Given user, object, and environment attribute relation
conditions, the ABAC rules are constructed as per the
steps summarized in algorithm 2.

Algorithm 1: Extracting Attribute Relation Conditions

Input: Tu, To, Te, P, R
Output: Cua[], Coa[], Cea[]

1. TRu ← DecisionTreeClassifier(Tu)
2. TRo ← DecisionTreeClassifier(To)
3. TRe ← DecisionTreeClassifier(Te)
4. for all ri ∈ R
5. Cua[ri] ← ExtractUserAttCond(TRu)
6. end for
7. for all pi ∈ P
8. Coa[pi] ← ExtractObjAttCond(TRo)
9. Cea[pi] ← ExtractEnvAttCond(TRe)
10. end for
11. return Cua[], Coa[], Cea[]
12. end procedure

EAI Endorsed Transactions on
Scalable Information Systems

10 2022 - 01 2023 | Volume 10 | Issue 1 | e9

 Gurucharansingh Sahani, Dr. Chirag S. Thaker, and Dr. Sanjay M. Shah

6

Algorithm 2: Constructing ABAC Rules

 Input: Cua[], Coa[], Cea[], R, P
 Output: RS
 1. RS ← Φ
 2. ρk ← Φ
 3. for all ri ∈ R
 4. for all pj ∈ ri
 5. ρk ← ρk ⋃ Cua[ri] ⋃ Coa[pj] ⋃ Cea[pj]
 6. RS ← RS ⋃ ρk
 7. end for
 8. end for
 9. return RS
10. end procedure

Algorithm 2 generates the rules at the primary level.
Generated rules can then be pruned if necessary by the
system administrator. Administrators can also eliminate
unnecessary rules from the rule set.

5. Results and Discussion

To evaluate the effectiveness of our algorithm on discrete
data attributes and to show how relation conditions with
relational operators are extracted, we have used the
synthesized data sets for UA, PA, and transaction log.
Implementation of these data structures and the data fields
in the transaction log record vary from application to
application. We have used general formats to demonstrate
the working of the approach. Table 7 represents the
sample user attribute value data we have used for
experimentation. Entries in the table are the sample tuples
generated by equation (2) as stated in the previous
section.

Table 7. Sample Training Dataset of User Attribute
Value Data

UID DES APPT EXP ROLE
1 AP R 5 EV
2 AP R 4 EV
3 AP A 2 ST
4 P R 10 PS
5 AP A 5 ST
6 AP R 8 PE
7 AP R 6 PE
8 P R 11 PS
9 AP R 5 EV
10 AP R 3 ST
11 AP R 2 ST
12 AP R 4 EV

Where UID = User ID, APPT = Appointment, DES =
Designation, EXP = Experience, A = Adhoc (Contractual),
R = Regular, AP = Assistant Professor, P = Professor, EV

= Evaluator, ST = Subject Teacher, PE = Practical
Examiner, PS = Paper Setter

Rows in the table represent user information and the
role assigned to him. A set of users with the same role
forms a one-user class. For example; all the users to
whom the role evaluator has been assigned belong to the
evaluator class. The user information belonging to one
user class forms a particular range(or set) of values for
each data attribute. For example; user data values of the
users belonging to the evaluator class will form one
range(or set) of values for the data field experience while
forming another range for other classes. It is difficult to
extract such ranges from a large set of records manually.
A decision tree helps to extract these data value ranges or
conditions automatically.

The decision tree shown in Fig. 1 is constructed after
the application of the decision tree classifier on the above
data set with “Role” as a class index attribute.

Figure 1. Decision Tree Output

The decision tree rules shown in the decision tree of

the figure provide the attribute relation conditions exactly
similar to the conditions required to construct ABAC
rules. The output of the decision tree classifier shows how
conditions with inequalities for continuous attribute
“EXP” have been extracted. One of the decision tree rules
for the user class PS is as follows.

{DES = P} and {APP = R} and {EXP > 6} ⟶ {userClass
= PS}

From the above decision tree rule, the following user
attribute relation conditions are extracted to construct the
ABAC rule for all the permissions belonging to role PS.

Cua[PS] = {{Des = P},{App = R}, {Exp > 6}}

Thus our supervised learning-based approach can
extract relation conditions for discrete data attributes. The
use of user-to-role relation for extraction of the rules
provides an accurate user-role relationship compared to

EAI Endorsed Transactions on
Scalable Information Systems

10 2022 - 01 2023 | Volume 10 | Issue 1 | e9

 Supervised Learning-Based Approach Mining ABAC Rules from Existing RBAC Enabled Systems

7

approaches that use system logs for rule extraction. Due
to supervised learning, the number of rules extracted
would be more accurate compared to the unsupervised
learning-based approach. Table 8 gives the comparison of
our approach with the approaches discussed in the related
work section.

As the supervised learning algorithm works on data set
containing class labels, the user classification done by it is
more accurate compared to unsupervised learning.
Accurate classification leads to generating accurate
attribute conditions. The information contained in the
system log may be incomplete leading to generating an
inaccurate number of rules. Our approach is supervised
learning based and uses user-to-role and permission-to-role
relations along with system log data to generate a dataset
for the learning process. Similarly, the use of a decision
tree classifier makes our approach applicable for discrete
data attributes.

Table 8. Our ApproachesVs Other’s Approaches

Approach Technique Training
Data

Handles
Discrete
Data

Amani et
al.[1]

Association
Mining

System
Log



Zhongyuan
and Scott
[27]

Association
Mining

Access
Control
List



Carlos et
al. [2]

Association
Mining

Sparse
Log



Matthew W
Sanders
and Chuan
Yue [17]

Association
Mining

System
Log



Leila et al.
[14]

Unsupervised
Learning

System
Log



Ours Supervised
Learning

System
Log, UA,
and PA
Relations



6. Conclusion

We have presented a supervised learning-based approach
to extract attribute relation conditions from the existing
RBAC system to construct ABAC rules at the primary
level to transform them into an ABAC system. We have
used user-to-role relation, permission-to-role relation, and
system log to extract the conditions. The approach is
effective and can extract attribute relation conditions for
both categorical and discrete data attributes. However, our
approach does not consider the multi-value attributes of
the system, and it is mainly useful for transforming
existing RBAC systems into ABAC systems.

References
[1] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. Protection

in operating systems. Communications of the ACM. 1976;
9(8):461–471.

[2] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role based access control models. Compute.
1996; 29(2):38–47.

[3] R. S. Sandhu and P. Samarati. Access control: principle
and practice. IEEE communications magazine. 1994; 32(9)
:40– 48.

[4] R. S. Sandhu. Lattice-based access control models.
Computer. 1993; 26(11): 9–19.

[5] D. E. Bell and L. J. LaPadula. Secure computer systems:
Mathematical foundations. Technical report, MITRE
CORP BEDFORD MA(MAC). 1993.

[6] M. Beckerle and L. A. Martucci. Formal definitions for
usable access control rule sets from goals to metrics.
Proceedings of the Ninth Symposium on Usable Privacy
and Security; 24 July; New York, NY, United States:
ACM; 2013. p. 1-11.

[7] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D.
Richard Kuhn, and Ramaswamy Chandramouli. Proposed
NIST standard for role-based access control. ACM
Transactions on Information and System Security. 2001;
4(3): 224-274.

[8] David F. Ferraiolo, D. Richard Kuhn and Ramaswamy
Chandramouli. Role Based Access Control. Second
Edition. Artech House Inc, Norwood. 2007.

[9] Erkan et al. Application of Attribute Based Access Control
Model for Industrial Control Systems. International Journal
of Computer Network and Information Security. 2017;
9(2):12-21

[10] Depavath Harinath and P. Satyanarayana. A Review on
Security Issues and Attacks in Distributed Systems.
Journal of Advances in Information Technology. 2017;
8(1):1-8.

[11] Hyun-Jin Kim and Im-Yeong Lee. A study on a secure
single sign-on for user authentication information privacy
in Distributed computing environment. Journal of
Communication Networks and Distributed Systems. 2017;
19(1):28-45.

[12] S. Hachana, N. Cuppens-Boulahia, and F. Cuppens. Role
mining to assist authorization governance: How far have
we gone? International Journal of Secure Software
Engineering (IJSSE). 2112; 3(4):45–64.

[13] Coyne Ed. and Timothy R. Weil. ABAC and RBAC:
Scalable, flexible, and auditable access management. IT
Professional, IEEE Computer Society. 2013; 15(3):14-16.

[14] Dipmala Salunke, Anilkumar Upadhyay, Amol Sarwade,
Vaibhav Marde and Sachin Kandekar. A survey paper on
Role Based Access Control. International Journal of
Advanced Research in Computer and Communication
Engineering. 2013; 2(3):1340-1342.

[15] V. C. Hu, D. Ferraiolo, R. Kuhn, A. R. Friedman, A. J.
Lang, M. M. Cogdell, A. Schnitzer, K. Sandlin, R. Miller,
K. Scarfone, et al. Guide to Attribute Based Access
Control (ABAAAC) definition and considerations (draft).
NIST special publication. 2014; 800(162).

[16] X. Jin, R. Krishnan, and R. S. Sandhu. A unified attribute-
based access control model covering DAC, MAC and
RBAC. 26th Conference on Data and Applications
Security and Privacy(DBSec); July; Paris, France; 2012;
p. 41–55.

EAI Endorsed Transactions on
Scalable Information Systems

10 2022 - 01 2023 | Volume 10 | Issue 1 | e9

 Gurucharansingh Sahani, Dr. Chirag S. Thaker, and Dr. Sanjay M. Shah

8

[17] H. Takabi and J. B. Joshi. Stateminer: an efficient
similarity-based approach for optimal mining of role
hierarchy. Proceedings of the 15th ACM symposium on
Access control models and technologies; June 9-11;
Pittsburgh, Pennsylvania, USA: ACM; 2010; p. 55–64.

[18] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S.
Calo, and J. Lobo. Mining roles with semantic meanings.
Proceedings of the 13th ACM symposium on Access
control models and technologies; June 11-13; Estes Park
CO USA:ACM; 2008; p. 21–30.

[19] I. Molloy, H. Chen, T. Li, Q. Wang, N. Li, E. Bertino, S.
Calo, and J. Lobo. Mining roles with multiple objectives.
ACM Transactions on Information and System Security
(TISSEC). 2010; 13(4):1-35.

[20] J. Vaidya, V. Atluri, and J. Warner. Role miner: mining
roles using subset enumeration. Proceedings of the 13th
ACM conference on Computer and communications
security; Oct 30-Nov 03; Alexandria Virginia USA:ACM;
2006; p. 144–153.

[21] Q. Ni, J. Lobo, S. Calo, P. Rohatgi, and E. Bertino.
Automating role-based provisioning by learning from
examples. Proceedings of the 14th ACM symposium on
Access control models and technologies; June 3-5; Stresa
Italy:ACM; 2009; p. 75–84..

[22] Z. Xu and S. D. Stoller. Algorithms for mining meaningful
roles. Proceedings of the 17th ACM symposium on Access
Control Models and Technologies; June 20-22; Newark
New Jersey USA:ACM; 2012; p. 57–66.

[23] L. Karimi, M. Aldairi, J. Joshi and M. Abdelhakim. An
Automatic Attribute Based Access Control Policy
Extraction from Access Logs. IEEE Transactions on
Dependable and Secure Computing. 2022; 19: 2304-2317.

[24] Matthew W Sanders and Chuan. Mining Least Privilege
Attribute Based Access Control Policies. ACSAC '19:
Proceedings of the 35th Annual Computer Security
Applications Conference; December 9-13; San Juan Puerto
Rico USA:ACM; 2019; p. 404–416.

[25] Z. Xu and S. D. Stoller. Mining attribute-based access
control policies from rbac policies. Emerging Technologies
for a Smarter World (CEWIT), 2013 10th International
Conference and Expo; Oct 21-22; Melville, NY:IEEE;
2013; p. 1–6.

[26] Z. Xu and S. D. Stoller. Mining attribute-based access
control policies from logs. IFIP Annual Conference on
Data and Applications Security and Privacy; July 14-16;
Vienna, Austria:Springer; 2014;. p. 276–291.

[27] Z. Xu and S. D. Stoller. Mining attribute-based access
control policies. IEEE Transactions on Dependable and
Secure Computing. 2015; 12(5):533–545.

[28] Amani Abou Rida, Nour Assy, Walid Gaaloul. Extracting
Attribute-Based Access Control Rules From Business
Process Event Logs. Proceedings of the 2nd International
Conference on Big Data and Cyber-Security Intelligence;
December 16-17; Versailles, France; 2019; p. 38-45.

[29] Carlos Cotrini, Thilo Weghorn, David Basin. Mining
ABAC Rules from Sparse Logs. IEEE European
Symposium on Security and Privacy (EuroS&P); April 24-
26; London, UK:IEEE; 2018; p. 31-46.

EAI Endorsed Transactions on
Scalable Information Systems

10 2022 - 01 2023 | Volume 10 | Issue 1 | e9

https://researchr.org/publication/bdcsintell-2019
https://researchr.org/publication/bdcsintell-2019
https://researchr.org/publication/bdcsintell-2019

