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Abstract

In this paper, a successive low-rank matrix approximation algorithm is presented for the matrix completion
(MC) based on hard thresholding method, which approximate the optimal low-rank matrix from rank-one
matrix step by step. The algorithm enables the distance between the matrix with the observed elements and
the projection on low-rank manifold to be minimum. The optimal low-rank matrix with observed elements
is obtained when the distance is zero. In theory, convergence and convergent error of the new algorithm are
analyzed in detail. Furthermore, some numerical experiments show that the algorithm is more effective in
CPU time and precision than the orthogonal rank-one matrix pursuit(OR1MP) algorithm and the augmented
Lagrange multiplier (ALM) method when the sampling rate is low.
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1. Introduction
The study of recovering an unknown low-rank or
approximately low-rank matrix from incomplete sam-
ples of its entries has aroused great interest in machine
learning([1], [2], [3]), imaging inpainting([4],[5], [6]),
computer vision([7]), control([8],[9]), and so on. This
problem is well known as the MC problem, mathemati-
cally,

min rank(X),
s.t. Xij = Dij , (i, j) ∈ Ω,

(1)

where rank(X) denotes the rank of matrix X. where
X,D ∈ Rm×n, PΩ(D) is the observed matrix, Ω is the set
of all index pairs (i, j) of observed entries, PΩ is the
orthogonal projector onto Ω.

Since the problem (1) is discontinuous and generally
NP-hard, continuous optimization models instead of (1)
were presented such as the convex optimization models
(see [10–15]) and non-convex optimization model (see
[16–19]).

For the problem (1), wang presented the orthogonal
rank-one matrix pursuit algorithm, which only the top
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singular vector pair is calculated in each iteration and
can obtain an ϵ-feasible solution in only O(log(1/ϵ))
iterations with less computation (see [20]). But the
algorithm is not satisfied in its precision. This
motivates that the new algorithm is designed to
improve the precision. In this paper, we present a
simple and efficient algorithms to solve the low-
rank matrix completion problem (1). Repeat iteration
to decrease the error between the matrix with the
known elements and its corresponding elements of
the projection matrix on {r}-dimensional manifold
generated by hard thresholding method. If the error is
not reduced and not less than the given precision, more
better approximation on {r+1}-dimensional manifold is
completed. Thus, repeat the operation till convergence.

The rest of the paper is organized as follows. The
successive low-rank matrix approximation algorithms
is presented in Section 2. Convergence and convergent
error are discussed in Section 3. Section 4 shows the
performance of the algorithm compared to the OR1MP
and ALM algorithms and a conclusion remark.
Notation. Let X = (x1, ..., xn) ∈ Rm×n be an m × n real

matrix, where xi ∈ Rm×1. Xij denotes the (i, j)th entry
of X. The nuclear norm of a matrix X is denoted
by ∥X∥∗, the Frobenius norm by ∥X∥F . r(X) denotes
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the rank of a matrix X. Ω ⊂ {1, ..., m} × {1, ..., n} is the
indices of the observed entries of a matrix X, Ω̄ is the
complementary set of Ω. PΩ is the projection operator
onto Ω. [U,Σ,V] = lansvd(Y, r, L) denotes computing
the top-r singular pairs of the matrix Y by using the
Lanczos method.

2. Successive Low-rank Matrix Approximation
Algorithm
In first, the distance is introduced between the matrix
with the observed elements and its projection onto the
r-dimensional manifold as following,

d(Y, r) = min
dim(X)=r

∥Y − X∥2F , s.t. PΩ(Y) = PΩ(D) (2)

d(Y∗, r) = min
Y

d(Y, r), s.t. PΩ(Y) = PΩ(D) (3)

Obviously, if d(Y∗, r) = 0, Y ∗ is the optimal solution of
(1).
Y ∗ is researched by repeated iterations in the matrix

set with the observed elements until d(Y, r) to be
minimum. Thus, d(Y∗, r) = 0 can be obtained as rank
r raises. The key steps of the algorithm are given in
Algorithm 1 in the following.

Algorithm 1 (Successive low-rank matrix approximation
(SLRMA) algorithm)

Initialize: Set an initial matrix PΩ(D), a tolerance
parameter ϵ, 0 < c < 1, Y0 = PΩ(D), X−1 = 0, r := 1, k :=
0;
repeat [Step 1:]

1. [Uk ,Σk ,Vk] = lansvd(Yk , r, L);

2. Set Xk = UkΣkVT
k ;

3. If ∥PΩ(D) − PΩ(Xk)∥F ≤ c ∥PΩ(D) − PΩ(Xk−1)∥F ,
r := r; otherwise r := r + 1;

4. Set Yk+1 = PΩ(D) + PΩ̄(Xk), k := k + 1;

until ∥PΩ(D) − PΩ(Xk)∥F / ∥PΩ(D)∥F ≤ ϵ
Output: Xk

3. Convergence Analysis
In this section, the iteration error and convergence of
the new algorithm are discussed.

Lemma 1 Let X,Y ∈ Rn×n, r(X) = r, r(Y) ≥ r . T hen

min
r(X)=r

∥Y − X∥ =
∥∥∥Y − σ1u1v

T
1 − · · · − σrurv

T
r

∥∥∥ (4)

where ∥·∥ is ∥·∥F or ∥·∥2, Y = UΣVT = σ1u1vT1 + · · · +
σrurvTr + · · · + σnunvTn . Let

R(Y, r) = Y −
r∑

i=1

σiuiv
T
i , (5)

obviously,

d(Y, r) = ∥R(Y, r)∥2F = (σ2
r+1 + · · · + σ2

n ).

Lemma 2 Let Y∗ be the optimal solution of (3). Then
PΩ̄(R(Y∗, r)) = 0.
Proof. Because of

∂d(Y, r)
∂Y

= 2(
n∑

i=r+1

σiuiv
T
i ) = 2(R(Y, r)).

According to KKT condition, if Y ∗ is the optimal
solution, ∂d(Y∗,r)

∂Y = PΩ(U ∗), where U ∗ is the Lagrange
multiplier. This implies PΩ̄(R(Y∗, r)) = 0.

Lemma 3 The d(Y, r) obeys d(Y, r) ≤ (1 − 1
n−r+1 )d(Y, r −

1).
Proof. d(Y, r − 1) = σ2

r · · · + σ2
r(Y) = d(Y, r) + σ2

r . Since
σr ≥ σr+1 ≥ · · · ≥ σr(Y),

d(Y, r) = d(Y, r − 1) − σ2
r

≤ d(Y, r − 1) − 1
r(Y) − r + 1

d(Y, r − 1)

= (1 − 1
r(Y) − r + 1

)d(Y, r − 1)

≤ (1 − 1
n − r + 1

)d(Y, r − 1).

The lemma has been proved.
Theorem 1 Let {Yk} be the matrix sequence generated by

Algorithm 1. Then

∥Yk+1 − Xk+1∥2F ≤ ∥Yk − Xk∥2F − ∥Yk − Yk+1∥2F . (6)

Proof. By direct computing, it is

∥Yk+1 − Xk+1∥2F ≤ ∥Yk+1 − Xk∥2F
= ∥PΩ(Yk+1 − Xk)∥2F
= ∥PΩ(Yk − Xk)∥2F
= ∥Yk − Xk∥2F −

∥∥∥PΩ̄(Yk − Xk)
∥∥∥2
F

= ∥Yk − Xk∥2F − ∥Yk − Yk+1∥2F .

Thus, (6) holds true.
Theorem 2 If {Yk} satisfies PΩ̄(R(Yk , rk)) , 0, then there is

a positive constant 0 < ck < 1 such that

∥PΩ(D) − PΩ(Xk)∥F ≤ ck ∥PΩ(D) − PΩ(Xk−1)∥F . (7)

Proof. Suppose that Yk is generated by Algorithm ??,

∥PΩ(D − Xk)∥2F = ∥PΩ(Yk+1 − Xk)∥2F
= ∥Yk+1 − Xk∥2F −

∥∥∥PΩ̄(Yk − Xk)
∥∥∥2
F

≤ ∥Yk − Xk−1∥2F −
∥∥∥PΩ̄(Yk − Xk)

∥∥∥2
F

= ∥PΩ(Yk − Xk−1)∥2F −
∥∥∥PΩ̄(R(Yk , rk))

∥∥∥2
F

= ∥PΩ(D − Xk−1)∥2F −
∥∥∥PΩ̄(R(Yk , rk))

∥∥∥2
F
,
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If PΩ̄(R(Yk , rk)) , 0, let ϵk > 0 and
∥∥∥PΩ̄(R(Yk , rk))

∥∥∥2
F
≥

ϵk ∥PΩ(D − Xk−1)∥2F . Then ∥PΩ(D − Xk)∥2F ≤ (1 −
ϵk) ∥PΩ(D − Xk−1)∥2F . Let ck =

√
1 − ϵk . Then (7) is

true.
Theorem 3 Let Yk be the matrix sequence generated

by Algorithm 1 and 0 < c = max
k

ck < 1. Then the following
inequality holds

∥PΩ(R(Yk , r))∥2F ≤
r∏

i=1

(1 − 1
n − i + 1

)(c2)mi ∥PΩ(Y0)∥2F ,

(8)
where

∑r
i=1 mi = k − r.

Proof. Suppose that (8) is true for k −mk and r − 1.
From Algorithm 1 it is

∥PΩ(R(Yk , r))∥2F = (c2)mk
∥∥∥PΩ(R(Yk−mk

, r))
∥∥∥2
F
.

On the other hand, from Lemma 3 it has∥∥∥PΩ(R(Yk−mk
, r))

∥∥∥2
F
≤ (1 − 1

n − r + 1
)
∥∥∥PΩ(R(Yk−mk−1, r − 1))

∥∥∥2
F
.

Thus, (8) holds true for k and r.
Remark: The proof of theorem 3 is divided to two

parts, one is the distance shrinks (c2)mi by repeatedly
iteration on the {i − 1}- dimensional manifold, another
is the distance which shrinks (1 − 1

n−i+1 ) on the {i}-
dimensional manifold.

4. Experiments
In this section, the new algorithm with the OR1MP
algorithm (see [20]) and the ALM algorithm (see [14])
is compared. This is because the rank is not known for
the model (1) and convex model in [[10–15]], while the
rank is usually known in the non-convex model [[16–
19]]. All the experiments are conducted on the same
workstation.

In the experiments, "iteration" denotes the number
of iterations, "rank" denotes the rank of the recovered
solution, sr denotes the sampling ratio and sr =
p/n2, where p is the number of observed entries.
Let sr = 0.1, 0.3, 0.5, respectively. The relative error is
rel.err = ∥Yk−D∥F

∥D∥F
. For each (n, r), repeat the following

procedure 5 times, and the reported results are for
a mean. The rank-r matrix is generated by D = LRT ,
where L ∈ Rn×r ,R ∈ Rn×r are independent matrices with
independent identically distributed (i.i.d.) Gaussian
entries. For Algorithms 1, the empirical parameter
set c = 0.95. For Table 1, the algorithms stops once
the termination criterion ϵ = ∥PΩ(X)−PΩ(D)∥F

∥PΩ(D)∥F
is less than

10−4. Since the OR1MP algorithm does not perform
well, the maximum number of iterations of OR1MP
algorithm is set to 100 (this is because the rank of the
matrix generated by OR1MP method is up to 100).

A brief comparison of the algorithms is presented in
Table 1. We can see that the SLRMA algorithm achieve
better than the OR1MP in the accuracy. The CPU time
of the SLRMA algorithm is less than other algorithms.
Although ALM method has the least iterations, it is
not dominant in the CPU time. As the sampling rate
declines, the SLRMA algorithm appears to converge
well especially for large-scale matrix completion with
less CPU time. Furthermore, except for the OR1MP
algorithm, all the other algorithms can recover the rank
exactly.

For further comparison, two experiments on a 1000 ×
1000 matrix are tested the efficiency of the SLRMA
algorithm (see Figure 1). It is shown from the figures
that when the rank is fixed, the smaller the sampling
ratio is, the less effectiveness the SLRMA algorithm
runs; and when the sampling ratio is fixed, the higher
the rank is, the less effectiveness the SLRMA algorithm
runs.

For the paining image, the SLRMA algorithm has the
same effect as the ALM algorithm (see Figure 2), but
the SLRMA algorithm costs less time than the ALM
algorithm.
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Figure 1. convergence behavior of the relative error in SLRMA
runs.
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Table 1. Numerical results on random matrix completion problem

problem SLRMA ALM OR1MP
n r iteration rank time(s) rel.err iteration rank time(s) rel.err iteration rank time(s) rel.err

sr=0.1
1000 10 280 10 11.54 1.95e-4 114 10 58.68 1.46e-4 100 100 17.08 2.58e-1
2000 20 265 20 57.32 1.72e-4 118 20 586.87 1.02e-4 100 100 61.22 1.59e-1
3000 30 265 30 176.05 1.71e-4 123 30 2608.08 8.27e-5 100 100 140.13 1.57e-1
4000 40 268 40 357.01 1.70e-4 118 40 7311.72 1.01e-4 100 100 263.28 9.43e-1

sr=0.3
1000 10 56 10 3.45 1.15e-4 43 10 9.07 8.10e-5 100 100 20.02 1.62e-2
2000 20 63 20 21.25 1.11e-4 43 20 52.87 7.93e-5 100 100 83.95 2.08e-2
3000 30 71 30 62.86 1.10e-4 42 30 122.33 9.75e-5 100 100 190.64 3.32e-2
4000 40 79 40 137.03 1.04e-4 42 40 242.51 9.92e-5 100 100 353.47 8.37e-1

sr=0.5
1000 10 34 10 2.35 7.94e-5 24 10 6.52 5.85e-5 100 100 24.56 3.61e-2
2000 20 44 20 18.41 6.25e-5 24 20 29.66 6.48e-5 100 100 106.24 7.36e-2
3000 30 52 30 52.81 7.70e-5 24 30 76.22 6.02e-5 100 100 237.27 1.41e-2
4000 40 62 40 126.47 6.23e-5 24 40 147.79 5.91e-5 100 100 438.50 7.07e-1

4

5. Conclusion

In this paper, we first propose an low-rank matrix 
approximation algorithm. In the algorithm, by intro-
ducing the distance between the feasible matrix and 
its projection onto the r-dimensional manifold (where 
r is less than or equal to the rank of the completion 
matrix), the optimal low-rank matrix can be found by 
multi-step iterations until the minimum distance equal 
to zero. Meanwhile, Numerical experiments show that 
the new algorithms achieve much better performance 
in precision than the OR1MP algorithm and faster than 
the ALM algorithm, especially for large-scale matrix 
completion problem. As the observation ratio decreas-
ing, the SLRMA algorithm consumes the least CPU 
time than the other algorithms. Besides, the SLRMA 
algorithm can recover the rank of the matrix being 
recovered exactly.

a. original image

b. 50% mask image

c. SLRMA(time 45.45s)

d. ALM(time 77.28s)

Figure 2. Image Inpainting
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