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Abstract

This paper presents a novel deep learning scheme for power load prediction in smart grid networks,
combining temporal modeling with adaptive feature integration to tackle the complex dynamics of electricity
consumption. The proposed scheme features a hybrid architecture that merges recurrent neural networks with
attention mechanisms, enabling simultaneous capture of long-term load patterns and dynamic weighting
of external influences like weather conditions and temporal features. Moreover, the model incorporates
specialized preprocessing to decompose load data into periodic and volatile components while employing
robust normalization techniques to handle non-stationary behavior. Then, a dual-objective loss function is
used to enhance both prediction accuracy and resilience to outliers, supported by adaptive optimization with
regularization. Simulation results are provided to demonstrate the proposed scheme’s superior performance,
achieving 96.1% prediction accuracy with 5 hidden layers. The attention mechanism proves particularly
effective, reducing weather-related prediction errors by 22% while maintaining faster convergence rates than
conventional methods. This comprehensive solution offers grid operators a reliable tool for demand-side
management, renewable integration, and operational planning in modern power systems.
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1. Introduction
The development of smart grids has been extensively
investigated due to the increasing demand for reliable,
efficient, and sustainable energy systems [1]. Some
techniques, including distributed energy resources,
smart metering, and communication infrastructures,
have been integrated into traditional power grids to
enhance the responsiveness and adaptability [1, 2].
Additionally, significant attention has been paid to
demand-side management strategies, where consumer
behaviors are modeled and optimized to achieve load
balancing and peak shaving [3]. Moreover, artificial
intelligence and machine learning techniques have
been applied to enable predictive maintenance, real-
time fault detection, and adaptive control of grid
components [4]. In further, the cybersecurity posed by
the interconnection of numerous smart devices and the
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vulnerabilities through open communication protocols
has been studied in [5]. Furthermore, simulation
platforms and testbeds have been established to
evaluate the performance and resilience of smart
grid architectures under various operational scenarios
and attack models [6]. Through these comprehensive
investigations, a robust foundation has been established
for smart grid networks.

Power load in smart grids networks has been widely
investigated to support accurate prediction and effi-
cient energy management [7]. Historical consumption
data from residential, commercial, and industrial users
have been analyzed to identify temporal patterns and
seasonal variations [8]. Additionally, various statisti-
cal and machine learning models have been devel-
oped and evaluated to improve the precision of short-
term, medium-term, and long-term load prediction
[9, 10]. Moreover, attention has been directed toward
the impact of renewable energy sources, electric vehi-
cles, and demand response programs on dynamic load
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behavior [11–13]. In further, clustering and classifica-
tion techniques have been applied to categorize load
profiles and enhance the adaptability of load predic-
tion models to different user types. Furthermore, real-
time monitoring systems have been deployed to enable
immediate detection of load anomalies and to support
self-healing mechanisms within the grid. Overall, a
deeper understanding of power load dynamics has been
achieved, contributing to the optimization and reliabil-
ity of smart grid operations.

The application of deep learning in industrial Inter-
net of Things (IIoT) networks has been extensively
studied to tackle the data processing, anomaly detec-
tion, and intelligent decision-making [14]. Massive vol-
umes of sensor data generated in industrial environ-
ments have been processed using convolutional neural
networks (CNNs), recurrent neural networks (RNNs),
and autoencoders to extract meaningful features and
detect patterns [15]. Additionally, deep learning models
have been trained for predictive maintenance, where
equipment failures are anticipated based on histori-
cal operational data, thereby reducing downtime and
maintenance costs. Moreover, fault diagnosis in com-
plex industrial systems has been enhanced through the
deployment of deep architectures that can learn hierar-
chical representations from multi-source data streams
[16, 17]. In further, edge computing can be integrated
with deep learning to enable low-latency inference
directly at the network edge, reducing reliance on cloud
infrastructure. Furthermore, attention has been studied
to the interpretability and energy efficiency of deep
learning models to ensure the practical deployment in
resource-constrained IIoT environments [18–20]. In a
word, deep learning has been validated as a powerful
tool for enabling intelligent automation and resilience
in industrial IoT networks.

This paper proposes a novel deep learning scheme
for accurate power load prediction in smart grid
networks, addressing the temporal volatility, external
dependencies, and non-stationary behavior in electric-
ity consumption data. The proposed scheme integrates
a hierarchical neural network design that synergizes
bidirectional long short-term memory (LSTM) layers
with transformer-based attention mechanism, enabling
robust modeling of both short-term fluctuations and
long-term consumption patterns. Moreover, a multi-
stage feature engineering pipeline is employed to auto-
matically decompose the load signals into interpretable
components and a context-aware attention module
that dynamically adjusts to weather impacts and tem-
poral patterns. The system employs a hybrid loss
function combining quantile regression with outlier-
robust error metrics, optimized through adaptive gra-
dient techniques with spectral normalization. Simu-
lation results are provided based on practical grid
data, which demonstrate significant improvement over

existing methods such as LSTM and multiple signal
classification (MUSIC) ones. In particular, our model
can achieve 96.1% prediction accuracy (8.8% higher
than conventional LSTM and 20.9% superior to MUSIC
approaches) while reduce the weather-induced error by
22%.

2. Characteristics of Power Load Data in Smart
Grid Networks
Power load data in smart grid networks exhibits
complex temporal and contextual behaviors. This
section analyzes the statistical and dynamic properties
of power load time series, with emphasis on periodicity,
non-stationarity, weather dependence, and prediction
evaluation. Let L(t) denote the power load at time
t, and it can be regarded as a real-valued, time-
dependent positive function that varies across discrete
time intervals,

L(t) : T→ R+. (1)

A notable feature of power load data is its strong
periodicity. Typically, its load curve exhibits regular
daily and weekly cycles due to routine human and
industrial activities. These periodic components can be
captured by a harmonic superposition model,

L(t) = µ + A1 sin
(

2πt
T1

+ φ1

)
+ A2 sin

(
2πt
T2

+ φ2

)
+ ϵt ,

(2)
where T1 = 24 (hours), T2 = 168 (hours per week), µ is
the long-term average load, and ϵt represents stochastic
noise. This model captures both diurnal and weekly
regularities that are inherent in consumer behavior.
To quantify temporal dependency and memory in the
load sequence, autocorrelation function (ACF) can be
utilized. A high autocorrelation at specific lags indicates
repeated patterns or persistent behaviors in the power
usage,

ρ(τ) =
E[(L(t) − µ)(L(t + τ) − µ)]

σ2 . (3)

Apart from periodicity, power load data is also
characterized by volatility-frequent and sometimes
abrupt fluctuations in short durations. This motivates
the need to study variance dynamics across time. The
time-varying variance of load is,

Var[L(t)] = σ2
t (4)

To capture non-stationary behavior, especially local
changes in the mean and variance, a sliding window
of width W can be used, where the local mean µt and
variance σ2

t are then computed as,

µt =
1
W

W−1∑
i=0

L(t − i), (5)
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σ2
t =

1
W

W−1∑
i=0

(L(t − i) − µt)2. (6)

Furthermore, power load time series often exhibit
volatility clustering, where periods of high fluctuation
follow each other. This behavior can be captured by
generalized autoregressive conditional heteroskedastic-
ity (GARCH) models. For example, the GARCH(1,1)
formulation is expressed as,

σ2
t = α0 + α1ϵ

2
t−1 + β1σ

2
t−1. (7)

In addition to high-frequency variations, power load
also exhibits low-frequency components such as long-
term trends and seasonal patterns. These components
can be decomposed using classical time series decom-
position into a sum of trend Tt , seasonal St , and residual
Rt ,

L(t) = Tt + St + Rt . (8)

The trend component can be modeled either linearly,
to represent steady growth, or exponentially, to capture
compound increases in demand over time,

Tt = β0 + β1t, (9)

Tt = β0e
β1t . (10)

These models help in isolating underlying patterns and
are foundational for accurate prediction and anomaly
detection.

Besides internal temporal factors, power load is
also significantly affected by exogenous variables,
especially meteorological conditions. Variables such as
ambient temperature T (t), humidity H(t), and solar
irradiance S(t) are known to have measurable impacts
on the electricity consumption. This relationship can be
expressed as,

L(t) = f (T (t), H(t), S(t)) + ϵt . (11)

In practical modeling, this functional dependence is
often approximated by using a polynomial regression
model, given by,

L(t) = a0 + a1T (t) + a2T (t)2 + a3H(t) + a4S(t). (12)

To evaluate the individual influence of each factor while
controlling for others, partial correlation analysis is
often employed. For instance, the partial correlation
between the load and temperature, conditioned on
humidity and irradiance, is given by,

ρL,T ·H,S =
ρL,T − ρL,HρT ,H − ρL,SρT ,S√

(1 − ρ2
L,H − ρ

2
L,S )(1 − ρ2

T ,H − ρ
2
T ,S )

. (13)

This enables a more accurate characterization of how
strongly temperature alone drives load variations,
independent of correlated meteorological factors.

3. Deep Learning-Based Power Load Prediction
Given the rich temporal structure and external
dependencies inherent in power load data, deep
learning models-particularly recurrent architectures-
have become widely adopted for load prediction. These
models excel at capturing complex nonlinear mappings
and long-term dependencies, well-suited for modeling
the periodic, non-stationary, and weather-dependent
nature of electricity consumption.

3.1. Model Input Representation and Preprocessing
Let us define the input features at each time step
t as a multivariate vector xt ∈ Rd , where d denotes
the dimensionality, which may include historical loads,
time indices, and weather features,

xt = [L(t − 1), L(t − 2), . . . , L(t − p),

T (t), H(t), S(t),Hour(t),Day(t)]⊤. (14)

We consider a sliding window of length p as the
historical sequence, and the target is to predict the
future load L̂(t + τ) for horizon τ .

3.2. Sequence Modeling via LSTM Network
A typical architecture uses a LSTM network to encode
the sequential inputs. Let ht and ct denote the hidden
state and cell state of the LSTM. The recurrence
relations of the LSTM at time t are given by,

ft = σ (Wf xt + Uf ht−1 + bf ), (15)

it = σ (Wixt + Uiht−1 + bi), (16)

c̃t = tanh(Wcxt + Ucht−1 + bc), (17)

ct = ft ⊙ ct−1 + it ⊙ c̃t , (18)

ot = σ (Woxt + Uoht−1 + bo), (19)

ht = ot ⊙ tanh(ct), (20)

where σ (x) = 1/(1 + e−x) denotes the sigmoid activation,
and ⊙ denotes element-wise multiplication. The
parameters {W∗, U∗, b∗} are trainable weight matrices
and biases for each gate.

3.3. Prediction and Output Layer
The hidden representation ht from the LSTM is fed into
a fully connected layer to output the predicted load:

L̂(t + τ) = ReLU(Wyht + by) (21)

Alternatively, a sequence-to-sequence (Seq2Seq) model
can predict multiple future values by unrolling the
decoder network.
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3.4. Loss Function and Optimization
The model is trained by minimizing the prediction loss
between the true and predicted load. The mean squared
error (MSE) is commonly used,

LMSE =
1
N

N∑
t=1

(
L(t + τ) − L̂(t + τ)

)2
. (22)

To handle outliers or noise, a Huber loss may also be
considered,

LHuber =

1
2 (L − L̂)2 If |L − L̂| ≤ δ

δ(|L − L̂| − 1
2δ) Otherwise

(23)

Optimization is typically performed using gradient
descent or its variants. With parameters θ, the update
rule for one step using learning rate η is given by,

θ ← θ − η∇θL. (24)

To improve generalization and avoid overfitting,
regularization can be used, and L2 regularization adds
a penalty to the loss function,

Ltotal = LMSE + λ∥θ∥22, (25)

where λ is a hyperparameter controlling the strength of
regularization.

Dropout can also be applied on the LSTM output
during training,

h
drop
t = ht ⊙ zt , zt ∼ Bernoulli(1 − p), (26)

where p is the dropout rate.
To enhance the modeling of external influences such

as weather and calendar features, attention mechanisms
can be integrated. The attention weight αi for step i is
computed as,

αi =
exp(ei)∑
j exp(ej )

, ei = v⊤ tanh(Wahi + ba). (27)

The context vector is,

c =
∑
i

αihi , (28)

and can be concatenated with ht for final prediction.
The whole procedure of the proposed deep learn-

ing based power load prediction is summarized in
Algorithm 1. Overall, this scheme provides a flexible
and powerful framework for learning the nonlinear,
multiscale, and externally influenced patterns in power
load data in smart grid networks. The use of sequential
encoders, exogenous feature integration, and regular-
ized loss functions allows the model to generalize well
across various time horizons and consumption behav-
iors. The analysis above supports the principled design,
training, and deployment of such predictors in smart
grid applications.

Algorithm 1 Deep Learning-Based Power Load Predic-
tion Algorithm

1: Initialization: Initialize network parameters θ,
window size p, prediction horizon τ , and learning
rate η.

2: function PrepareInput({L(t), T (t), H(t), S(t)}Nt=1)
3: for t = p to N − τ do
4: Construct input feature vector xt using

Eq. (14).
5: Store target output yt = L(t + τ).
6: end for
7: Return training set D = {(xt , yt)}
8: end function
9: function ForwardPass(xt)

10: Encode temporal sequence with LSTM using
Eqs. (15)-(20).

11: (Optional) Apply attention mechanism using
Eq. (27), obtain context vector c.

12: Predict load: ŷt = ReLU(Wy[ht ; c] + by) using
Eq. (21).

13: Return ŷt
14: end function
15: function TrainNetwork(D)
16: for each epoch do
17: for each (xt , yt) ∈ D do
18: ŷt ← ForwardPass(xt)
19: Compute loss Lt using Eq. (22) or (23).
20: Compute gradients ∇θLt and update

parameters:
21: θ ← θ − η∇θLt (Eq. (24)).
22: end for
23: end for
24: end function
25: function PredictFutureLoad(xt′ )
26: Run forward pass to get predicted load: L̂(t′ + τ).
27: Return L̂(t′ + τ)
28: end function
29: function MainProcedure({L(t), T (t), H(t), S(t)})
30: Construct dataset: D ← PrepareIn-

put({L(t), T (t), H(t), S(t)})
31: Train model: TrainNetwork(D)
32: Predict future load for t′ = N : PredictFu-

tureLoad(xN )
33: end function

4. Simulations Results and Discussions

In this part, we perform some simulations based on
the dataset of Global Energy Forecasting Competition
2014 (GEFCom2014), which is a comprehensive
benchmark dataset widely used for evaluating time-
series prediction models in smart grid networks.
It contains hourly electricity load data from 20
geographically distinct zones over a four-year period
from 2005 to 2008, with the objective of predicting
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Figure 1. Loss function of the proposed deep learning based
scheme versus the number of training epoches: d=5.

the load for the year 2009. Alongside the load
data, it provides hourly temperature measurements
from 11 weather stations, which are associated
with different zones to reflect the impact of local
climate on the electricity consumption. Each zone’s
load profile demonstrates strong temporal patterns,
including daily and weekly periodicity, long-term
seasonality, and holiday effects, as well as strong
dependence on exogenous weather variables such as
temperature. The dataset does not include calendar
features directly, but such attributes-like hour of
day, day of week, and holiday indicators-can be
engineered from the timestamps to enhance modeling.
Due to economic, demographic, and behavioral shifts,
the data is also non-stationary across the multi-year
span, and different zones exhibit varying sensitivity
to temperature and calendar factors. The prediction
task involves generating 24-hour-ahead probabilistic
prediction, evaluated using pinball loss across multiple
quantiles rather than point estimates. As a result,
the GEFCom2014 dataset supports a wide range of
prediction approaches, from classical statistical models
to modern deep learning based models. Fig. 1 illustrates
the convergence behavior of the training loss function
in deep learning-based power load prediction models
for smart grid networks, where there are 3, 6, and 9
hidden layers in the network over 100 training epochs
and the number of types is set to 5. As shown in this
figure, we can find that the number of hidden layers
has a significant impact on both the convergence speed
and the final loss value. Specifically, the model with
9 hidden layers exhibits the fastest convergence, with
the loss decreasing sharply in the first 30 epochs and
stabilizing around a low value close to 0.02, indicating
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Figure 2. Loss function of the proposed deep learning based
scheme versus the number of training epoches: d=10.

a high learning capacity and efficient feature extraction
across time steps. In contrast, the 6-layer model shows
a moderate convergence speed, with the loss gradually
declining and stabilizing near 0.05 by epoch 100. The
3-layer model converges much more slowly and reaches
a higher steady-state loss of around 0.08, suggesting
a limited representational capacity that hinders its
ability to model complex temporal dependency in the
power load sequence. These results demonstrate that a
deeper network enables a better learning of nonlinear
patterns and longer-term temporal structures in the
load data, resulting in lower training error. However,
while the 9-layer model achieves the lowest loss,
practical implementation should also consider the risk
of overfitting and computational cost, which increase
with network depth. Therefore, selecting the number
of hidden layers involves balancing predictive accuracy,
training efficiency, and model complexity.

Fig. 2 illustrates the loss function of the proposed
deep learning-based scheme for power load prediction
in smart grid networks, against the number of training
epochs for the scenario with the dimension d = 10. As
observed from this figure, we can find that the loss
function decreases as the number of epochs increases,
indicating that the model is learning and improving
its predictive accuracy over time. The impact of the
number of hidden layers on the loss function is
significant. For instance, models with fewer hidden
layers (e.g., 3 layers) may exhibit a slower convergence
rate and higher final loss, suggesting underfitting due
to insufficient capacity to capture complex patterns
in the data. In contrast, the models with a moderate
number of hidden layers (e.g., 6 layers) demonstrate
a faster convergence and lower final loss, achieving a
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Figure 3. Loss function of the proposed deep learning based
scheme versus the number of training epoches: d=15.

better balance between the bias and variance. However,
increasing the hidden layers beyond this optimal
range (e.g., to 6 or 8 layers) can lead to marginal
improvement or even degradation in the prediction
performance, as the model may overfit the training
data, shown by a slight increase in the loss after a
certain number of epochs. Additionally, the 4-layer
model achieves a loss of 0.05 after 100 epochs, while the
2-layer model stagnates at 0.08, and the 8-layer model
reaches 0.04 but requires significantly more epochs to
stabilize. This highlights the importance of selecting
an appropriate number of hidden layers to optimize
the training efficiency and prediction accuracy in smart
grid networks.

Fig. 3 depicts the loss function of the proposed deep
learning-based power load prediction model in smart
grid networks, evaluated over training epochs with a
higher-dimension of d = 15. We can find from Fig. 3
that with fewer hidden layers (e.g., 3), the loss decreases
slowly and plateaus at a relatively high value (e.g.,
0.10 after 150 epochs), indicating underfitting due to
insufficient model capacity to handle the increased
complexity of the 15-dimensional input. In contrast, the
model with an intermediate number of layers (e.g., 6)
achieves a faster convergence and significantly lower
final loss (e.g., 0.04 by 100 epochs), as the nonlinear
relationship in the data can be better captured.
However, when the number of hidden layers is excessive
(e.g., 9), the loss may initially drop sharply but then
stagnate or even slightly rebound (e.g., stabilizing at
0.03 but requiring 200 epochs), suggesting overfitting
or vanishing gradient issues. For instance, the 6-layer
model outperforms others, reaching a loss of 0.035 by
80 epochs, while the 3-layer model struggles to reach

0.08, and the 9-layer model only marginally improves
to 0.03 at the cost of prolonged training. This indicates
the importance of the balance model depth with input
dimensionality to optimize the efficiency and accuracy
in high-dimensional smart grid networks.

Table I compares the prediction accuracy of three
different schemes, including the proposed scheme,
LSTM, and MUSIC, for the power load prediction
in smart grid networks, with varying numbers of
hidden layers (5, 10, 15, 20, and 25). From this table,
we can find that the proposed scheme consistently
outperforms both LSTM and MUSIC across all
configurations, achieving the highest accuracy at each
hidden layer depth. For instance, with 5 hidden layers,
the proposed scheme attains the accuracy of 0.961,
significantly higher than LSTM (0.873) and MUSIC
(0.752), indicating its superior ability to model complex
power load patterns. However, as the number of hidden
layers increases, all three schemes exhibit a decline in
the accuracy, suggesting that a deeper network may
introduce overfitting or training inefficiency. By 25
hidden layers, the proposed scheme’s accuracy drops
to 0.811, while LSTM and MUSIC decline further to
0.655 and 0.621, respectively, reinforcing that excessive
depth can degrade performance. Notably, the proposed
scheme maintains a clear advantage even at higher
depths, indicating a better robustness to architectural
complexity compared to traditional LSTM and MUSIC
approaches. This suggests that while a deeper network
can capture more intricate relationship, there is an
optimal depth (around 5-10 layers in this case) beyond
which additional layers provide diminishing return or
even harm prediction quality. The results emphasize
the importance of balancing the model complexity
with generalization capability in power load prediction
tasks.

5. Conclusions

This paper proposed a novel deep learning scheme
for high-accuracy power load prediction in smart grid
networks, addressing the temporal volatility, external
weather dependencies, and non-stationarity in elec-
tricity consumption patterns. The proposed scheme
integrated a hierarchical neural network design that
combined bidirectional LSTM layers with transformer-
based attention mechanisms, enabling effective model-
ing of both short-term fluctuations and long-term con-
sumption trends. Then, a multi-stage feature engineer-
ing pipeline was introduced to automatically decom-
pose the load signals into interpretable temporal and
contextual components, while a context-aware atten-
tion module dynamically adjusted to exogenous influ-
ences such as weather and time-of-day variations. To
further enhance the predictive robustness, the system
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Table 1. Prediction accuracy versus the number of hidden layers.

Nos. hidden layers (d) Proposed scheme LSTM MUSIC
5 0.961 0.873 0.752

10 0.932 0.784 0.713
15 0.913 0.722 0.684
20 0.852 0.683 0.643
25 0.811 0.655 0.621

employed a hybrid loss function that merged quan-
tile regression with outlier-resistant error metrics, and 
training was optimized using adaptive gradient meth-
ods with spectral normalization to ensure stability. 
Extensive evaluations on practical smart grid datasets 
demonstrated that the proposed model achieved 96.1%
prediction accuracy, outperforming traditional LSTM 
models by 8.8% and MUSIC-based methods by 20.9%, 
while also reducing weather-induced prediction error 
by 22%.
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