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Abstract

In this paper, we propose a novel knowledge graph completion framework to leverage a relation-specific
attention mechanism integrated with an embedding translation strategy to improve the accuracy and
contextual understanding of link prediction tasks. Unlike traditional models that rely on fixed transformation
spaces, the proposed method dynamically captures fine-grained relational semantics by combining
hierarchical candidate categorization, relation-guided entity projection, and asymmetric score functions.
Specifically, the proposed model employs K-means clustering and principal component analysis (PCA) to
identify semantically consistent entity sets, and integrates attention-weighted multi-attribute embeddings
to construct robust relational representations. A margin-based ranking loss with normalized embedding
constraints ensures effective optimization, further supported by Xavier initialization and stochastic gradient
descent. Extensive experiments on two benchmark datasets, WN18 and FB15K, demonstrate the superiority
of the proposed method. Specifically, on WN18, the proposed method achieves the lowest mean rank (MR)
of 144, with competitive results in mean reciprocal rank (MRR) (0.902), Hits@1 (89.0%), Hits@3 (90.4%), and
Hits@10 (96.3%), closely rivaling state-of-the-art models like QuatE and ComplEx. On FB15K, the proposed
method again delivers the best Mean Rank of 21, along with strong scores in MRR (0.831), Hits@1 (72.2%),
Hits@3 (88.4%), and the highest Hits@10 (92.5%) among all compared methods.
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1. Introduction
The rapid advancement of information technology (IT)
has significantly transformed the landscape of indus-
trial systems, leading to the emergence of the industrial
Internet of Things (IIoT), a paradigm that integrates
traditional manufacturing processes with cutting-edge
digital connectivity and data analytics [1–3]. IIoT net-
works leverage a multitude of interconnected devices-
ranging from sensors, actuators, and edge comput-
ing nodes to cloud-based platforms-to facilitate real-
time monitoring, control, and optimization of indus-
trial operations. Unlike conventional IT systems, IIoT
emphasizes ultra-reliable, low-latency communication,
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high scalability, and strong interoperability across het-
erogeneous devices and protocols, all while adhering to
stringent security and privacy requirements [4, 5]. Some
key enabling technologies, such as 5G and beyond,
software-defined networking (SDN), edge/fog comput-
ing, and AI-driven analytics, have been proposed to
collectively enhance the intelligence, flexibility, and
responsiveness of industrial systems [6, 7]. In addi-
tion, time-sensitive networking (TSN) and determinis-
tic communication protocols have been investigated to
support mission-critical applications in sectors such as
smart manufacturing, energy, and logistics. Moreover,
distributed ledger technologies like blockchain have
been explored to ensure data integrity and trustworthi-
ness across decentralized IIoT ecosystems [8, 9].
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Knowledge graphs (KGs) have emerged as a powerful
paradigm for structuring and representing semantic
relationships among entities, and their integration into
IIoT networks has attracted growing attention in recent
research [10–12]. In the context of IIoT, knowledge
graphs offer a semantic layer that enables intelligent
data integration, contextual reasoning, and dynamic
decision-making by capturing complex relationships
between machines, processes, sensors, and operational
events [13, 14]. The role of KGs in has been investigated
in enhancing interoperability across heterogeneous
IIoT devices and systems by providing a unified
ontology-driven representation that bridges syntactic
and semantic gaps [15]. Domain-specific ontologies,
such as SAREF and SSN/SOSA, have been proposed
to model manufacturing knowledge, asset hierarchies,
and operational workflows [16, 17]. Moreover, the
application of graph neural networks (GNNs) and
knowledge graph embeddings has further advanced
predictive maintenance, anomaly detection, and supply
chain optimization within industrial environments.
Moreover, the fusion of KGs has been explored with
edge computing and AI techniques, in order to
enable real-time reasoning at the edge, improving
responsiveness and scalability [18].

The attention mechanism has become a pivotal com-
ponent in advancing intelligent analytics and decision-
making within IIoT networks, where massive, het-
erogeneous, and dynamically evolving data streams
present significant challenges to traditional modeling
approaches [19, 20]. In IIoT applications, attention
mechanisms enable models to selectively focus on the
most relevant features, time steps, or nodes in a net-
work, thus enhancing the interpretability, efficiency,
and performance of learning systems [21, 22]. Tem-
poral attention has been exploited to capture long-
range dependencies in time-series sensor data for appli-
cations such as predictive maintenance and equip-
ment failure forecasting. Meanwhile, spatial attention
has been employed to dynamically prioritize inputs
from critical machines or processes in multi-source
monitoring environments [23, 24]. The integration of
attention with graph neural networks, particularly in
the form of graph attention networks (GATs), has
shown effectiveness in modeling complex inter-device
and inter-process relationships, supporting tasks like
anomaly detection, industrial knowledge graph com-
pletion, and cyber-physical system state estimation.
Moreover, transformer-based architectures, originally
designed for language processing, have been adapted
for spatio-temporal forecasting and event recognition
in smart factories, offering scalability and robust per-
formance across varying industrial settings [25]. At the
network edge, lightweight attention modules can be
embedded in edge AI systems to enable context-aware
inference with reduced computational overhead, which

is crucial for latency-sensitive IIoT applications [26–
28].

Motivated by the above literature review, this paper
introduces a novel framework for knowledge graph
completion that integrates a relation-aware attention
mechanism with a dynamic embedding translation
strategy to enhance the precision and contextual rel-
evance of link prediction. In contrast to conventional
embedding models that operate within static transfor-
mation spaces, the proposed method adaptively mod-
els fine-grained relational semantics by incorporating
hierarchical candidate filtering, relation-specific projec-
tion, and asymmetric scoring functions. The framework
employs K-means clustering to preselect semantically
coherent candidate entities and utilizes principal com-
ponent analysis (PCA) to identify the most informative
dimensions for each relation. An attention-based multi-
attribute embedding scheme is then applied to capture
nuanced entity features under varying relational con-
texts. Training is guided by a margin-based ranking loss
combined with embedding normalization constraints,
and the model is optimized using Xavier initialization
and stochastic gradient descent to ensure stable and
efficient convergence. Finally, extensive empirical eval-
uations on the widely used WN18 and FB15K datasets
validate the effectiveness of the proposed method.
Specifically, on WN18, the model attains the lowest
mean rank (MR) of 144, along with competitive results
in mean reciprocal rank (MRR) (0.902), Hits@1 (89.0%),
Hits@3 (90.4%), and Hits@10 (96.3%), performing on
par with or surpassing advanced baselines such as
QuatE and ComplEx. On FB15K, the proposed method
consistently outperforms existing methods, achieving
the best MR of 21, a robust MRR of 0.831, and leading
values in Hits@1 (72.2%), Hits@3 (88.4%), and Hits@10
(92.5%). These results highlight the proposed method’s
capability to effectively capture both semantic richness
and structural patterns in knowledge graphs.

2. System Model
In the context of human cognition, the process of cat-
egorizing relationships follows a hierarchical model,
wherein entities are grouped according to shared
attributes. These attributes serve as distinguishing fea-
tures between different categories, while simultane-
ously helping to differentiate entities within the same
category. This hierarchical categorization process is
essential in human reasoning, particularly when eval-
uating relations between entities.

Consider a relational triple of the form
(x, occupational skill : farming), where the entity x
needs to be determined. In this context, the cognitive
model would exclude entities such as “car" because it
does not belong to the category of entities possessing
the attribute “occupational skill". This distinction is
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grounded in the idea that “farming" as an occupational
skill can only be meaningfully associated with certain
entities, such as a “farmer" or “agricultural worker", but
not with a “car". Mathematically, this can be expressed
as,

If x < {Farmer,Agricultural Worker},
then x < Category(Occupational Skill). (1)

In this scenario, the relationship is clearly defined
by the occupation, leading to an exclusionary process
based on categorical attributes. The difference between
“farmer" and “driver" is accentuated by their respective
skills-while both possess the “occupational skill", only
the farmer applies the specific skill of “farming".

Building upon this, the process of categorizing
entities for specific relations should extend to fine-
grained attribute embedding. The link prediction
process for relational tasks occurs in two distinct stages,

• Candidate Collection: In this stage, the task
involves gathering a set of potential candidate
entities from across multiple categories. These
entities are pre-filtered based on broad relational
attributes.

• Fine-Grained Categorization: In this stage, these
candidate entities are further analyzed based on
more refined attributes to determine the specific
relational context. This requires a more granular
understanding of each entity’s attributes, where
embedding models come into play.

Let R(x, y) represent the relation between two entities x
and y. The learning objective is,

R(x, y) = f (ex, ey ,AR), (2)

where ex and ey are the embedding vectors for entities x
and y, and AR is the transformation matrix that encodes
the relation-specific attributes.

To learn the appropriate embedding for these
relations, a relation-specific attention mechanism is
adopted, which can be mathematically formulated as,

eR =
∑
i

αiexi + βieyi , (3)

where αi and βi are the attention weights assigned to
different entity components based on their relevance
to the target relation R. The embedding model should
be trained such that the relation-specific features
are effectively captured through the transformation
matrices that handle multiple fine-grained attributes
across entities.

The primary challenge in relation learning lies in
the ability to accurately determine the transformation
matrix that can capture the diversity of fine-grained

entity characteristics. It is well-established that certain
relation models, such as TransH, TransR, and TransE,
attempt to learn these transformation matrices. How-
ever, these models often fail to capture the multiple
attribute dimensions of entities adequately, particularly
when the relations between entities are highly nuanced.
For instance, as demonstrated by the transformation
matrix learned by TransR, it approximates the transfor-
mation between entities through a shared embedding
space, but it struggles when the fine-grained differen-
tiation of attributes is required. This limitation can be
formalized as,

Tx,y ≈ Tx′ if ∥ex − ey∥2 ≈ ∥ex′ − ey′∥2, (4)

where Tx,y represents the transformation matrix
between entities x and y, and ex, ey are their
respective embeddings. Despite the transformation-
based models, it is still hard to accurately model
the relations, as the fine-grained attributes of entities
should be simultaneously considered. In this regard,
advanced approaches seek to use multi-dimensional
transformation matrices that incorporate the various
attributes into the embedding space. The aim is to allow
for more accurate categorization, even at the level of
highly granular relations. To this end, we can capture
the multi-attribute embedding for relation learning,
given by

efine-grained =
∑
j

ej (AR) ·wj , (5)

where ej represents the individual entity embeddings
for each attribute, AR is the learned transformation
matrix, and wj are the weights associated with each
attribute’s contribution to the final relation-specific
embedding.

3. Proposed Scheme
Inspired by the previously discussed hierarchical
models of cognition, we propose a novel approach
for learning embeddings, relation-related candidates,
and relation-related attention in a unified manner.
This method simultaneously optimizes the entity
embeddings while identifying the most relevant
candidate entities for a given relation. Our approach is
grounded in a piecewise evaluation function that allows
for effective evaluation of relational triples. Let fr (h, t)
denote the evaluation function, given by,

fr (h, t) =

Pr (h) + r − Pr (t) If h ∈ Hr , t ∈ Tr ,
∞ Otherwise.

(6)

where Pr (h) is the projection of the head entity h related
to relation r, Pr (t) is the projection of the tail entity
t related to relation r, Hr and Tr represent the set of
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possible head and tail candidates for the relation r, and
r is the relation between the entities. Note that this
function is evaluated to infinity if the candidate entities
do not belong to the suitable category, revealing that
the evaluation function assigns a high cost (infinity)
when either the head or the tail entity does not align
with the corresponding relation r. If both the head
and tail entities are compatible with the relation, their
embeddings are evaluated to ensure that their relational
distance is minimized, as in the TransE model, while
considering only the relevant dimensions.

The difficult now lies in selecting the proper
candidates and determining their projection. For this,
we adopt the K-means clustering to group entities based
on shared characteristics. These clusters are then used
to generate candidate sets for a particular relation r,
ensuring that the head (tail) candidates are derived
from relevant categories. The K-means clustering
approach ensures that the model generalizes across
different datasets with varying attribute structures.

Next, we examine the structural intricacies of relation
learning and propose a method to handle entities with
multiple attributes. Based on the principles of PCA, we
can know that if a dimension is critical for a specific
relation, the variance of the candidates along that
dimension will be large. Hence, we leverage a projection
function,

Pr (h) = ar · h, ar ∈ Rk , (7)

to select the most informative dimensions for each
relation r, where h ∈ Rk is the entity embedding and
ar ∈ Rk is a weight vector for relation r.

Following this approach, we can differentiate entities
capable of representing a particular relation r from
others. The relation distance is computed based on the
selected dimensions, given by,

dr (h, t) = ∥Pr (h) − Pr (t)∥2, (8)

where dr (h, t) represents the distance between the head
entity h and the tail entity t under the relation r, and the
Euclidean norm ∥ · ∥2 is used to measure the relational
distance. This allows to perform fine-grained analysis
of the entities that best represent a particular relation.

In cases where some relations exhibit oriented
relation chains (ORC) structures, we further extend this
model by introducing an asymmetric score function.
This function differentiates between the head and tail
entities by learning distinct representations for their
respective positions in the relation, given by,

∥r∥r ≈ 0. (9)

This condition is satisfied by an asymmetric operation
applied to the head and tail entity embeddings,
resulting in different vector representations for each.

Specifically, the head and tail embeddings are scaled by
separate transformation matrices, enabling the model
to account for their different roles in the relation.

The asymmetric score function is defined as,

fr (h, t) = Pr (σ (rhh)) + Pr (σ (rtt)), (10)

where Pr is the projection function related to the
relation r, σ is the sigmoid function, ensuring that the
embedding vectors are scaled appropriately, and rh and
rt are transformation matrices specific to the head and
tail entities, respectively. This core function provides
an effective method to handle entities with multiple
attributes, taking into account both their head and tail
representations within the relational context.

To effectively implement the proposed method,
we propose the following margin-based ranking loss
function for the discrimination of positive and negative
triples in knowledge graph completion. This approach
ensures that the correct triples (i.e., those in the
knowledge graph) are ranked higher than the incorrect
(or corrupted) triples during the training process. The
loss function L is given by,

L =
∑

h∈Hr ,t∈Tr

[
fr (h, t) + γ − fr (h′ , t′)

]
+ α

 ∑
h∈H+

r ,t∈T +
r

[
∥t′ − h′∥22 + γ − ∥h − t∥22

] , (11)

where γ is a margin term that enforces a minimum
separation between positive and negative triples, h′

and t′ are corrupted head and tail entities respectively
for a given relation r, H+

r and T +
r denote the positive

head and tail entity sets for relation r, and the term
∥h − t∥2 represents the Euclidean distance between the
embeddings of the head and tail entities for a given
triple.

The loss function L encourages the model to ensure
that the score of the positive triples (h, r, t) is larger than
the score of corrupted triples (h′ , r, t′) by a margin γ ,
while penalizing the model for incorrect triples. The
inclusion of α ensures a proper weighting between the
various components of the loss function, thus balancing
the regularization and ranking objectives. Following
prior methods, we enforce constraints on the norms of
the entity embeddings h, t, and the relation embeddings
r, ensuring that for all triples, the following conditions
hold,

∥h∥2 ≤ 1, ∥r∥2 ≤ 1, ∥t∥2 ≤ 1. (12)

These constraints indicate that the embeddings of
entities and relations remain normalized within a
unit sphere in the embedding space, helping to avoid
overfitting and ensuring that the embeddings stay well-
behaved during the optimization process. The condition
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on the entity embeddings ensures that both the head
and tail entities of a triple are constrained to lie
within a normalized space, and similarly, the relation
embeddings are also constrained, making it easier for
the model to distinguish between valid and invalid
triples.

In addition to the margin-based ranking loss, the
optimization of the model embeddings also requires
an effective sampling strategy. We use the Bernoulli
sampling to sample batches of entities and relations
during the training process, which aids in the fair
comparison of embeddings. To further optimize the
embeddings, we utilize Xavier initialization, which
initializes the model parameters to prevent issues
with vanishing or exploding gradients during training.
The Xavier initialization of the entity and relation
embeddings is given by,

ei ∼ U
(
−
√

6
Nin + Nout

,

√
6

Nin + Nout

)
, (13)

where U denotes a uniform distribution, and Nin
and Nout are the number of input and output units
(dimensions) in the embeddings. This initialization
method ensures that the embeddings start at a
reasonable scale, which is crucial for effective gradient
propagation during the backpropagation process.

To optimize the embeddings, we apply stochastic
gradient descent (SGD), which updates the embeddings
iteratively by minimizing the loss function. Specifically,
the embeddings are updated by computing the gradient
of the loss function with respect to each entity
and relation embedding, and then adjusting the
embeddings using the gradient, given by,

ei ← ei − η∇eiL, (14)

where ei is the embedding of the entity or relation,
η is the learning rate, ∇eiL is the gradient of the loss
function with respect to the embedding ei .

By iterating over multiple batches and updating
the embeddings accordingly, the model converges to
a set of embeddings that are able to accurately
predict missing triples in the knowledge graph.
Overall, the proposed margin-based ranking loss
function, combined with the relation-specific attention
mechanism and effective sampling strategies, enables
our model to effectively complete knowledge graphs by
distinguishing between correct and incorrect triples. By
enforcing normalization constraints on the embeddings
and using Xavier initialization for stable training,
the embeddings can remain effective throughout the
learning process. Furthermore, the use of stochastic
gradient descent allows for efficient optimization of
the model, ensuring that the embeddings improve over
time and yield accurate knowledge graph completion.
The whole procedure of the proposed scheme in this
paper can be summarized in Algorithm 1.

Algorithm 1 Proposed Knowledge Graph Completion
Algorithm

1: Input: Set of entities E, relationsR, triples {(h, r, t)},
relation-specific attention weights αi , βi , clustering
function Kmeans, PCA function PCA, margin term
γ .

2: Output: Optimized entity and relation embeddings
{ek , rk}.

3: Initialization:
4: Initialize entity embeddings ek and relation embed-

dings rk using Xavier initialization.
5: while not converged do
6: Candidate Selection:
7: Perform Kmeans clustering to select candidate

entities for each relation.
8: Select the top candidate entities based on

relation attributes.
9: Fine-Grained Categorization:

10: Use PCA to identify the most informative
dimensions for each relation.

11: Embedding Update:
12: Update the embeddings ek using relation-

specific attention weights αi and βi .
13: Compute the projection of head h and tail t

entities for each relation r using the projection
function Pr (h) and Pr (t).

14: Calculate the relation distance dr (h, t) based on
the Euclidean norm.

15: Loss Calculation:
16: Compute the margin-based ranking loss for each

relation r using the defined loss function L.
17: Update the embeddings using stochastic gradi-

ent descent (SGD).
18: end while
19: Output: Final optimized entity and relation embed-

dings.

4. Simulation Results and Discussions
To validate the proposed scheme in this paper, we
use the WN18 and FB15K datasets, which are two
widely used benchmarks in the field of knowledge
graph completion, each containing a rich set of entities
and relations that enable comprehensive evaluation of
embedding models. Specifically, WN18 is derived from
WordNet, a lexical database that categorizes words into
synonym sets and represents semantic relationships
among them. This dataset includes 18 types of relations
and a total of 40,493 entities, covering a variety of
semantic relationships such as hypernyms, hyponyms,
and meronyms. The dataset contains 141,442 training
triples, with 5,000 validation and test triples each,
making it suitable for link prediction tasks where the
goal is to predict missing entities in a given relation.
FB15K, on the other hand, is sourced from Freebase, a
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large collaborative knowledge base that covers a broad
spectrum of domains, from entertainment to politics. It
consists of 1,345 types of relations and 14,951 entities,
with 483,142 training triples, and 50,000 and 59,071
triples for validation and testing, respectively. Unlike
WN18, which focuses on relationships primarily related
to word meanings, FB15K contains a wider range of
real-world factual relationships, including geographic
locations, companies, and academic affiliations. Both
datasets serve as excellent testbeds for evaluating
models on tasks such as link prediction and triple
classification, allowing for a nuanced understanding
of how well different algorithms can generalize across
different types of knowledge graphs, from semantic
lexicons to real-world entities and relationships.
These characteristics make both WN18 and FB15K
ideal datasets for benchmarking knowledge graph
embedding techniques.

Table I presents a comprehensive comparison of
link prediction performance across various knowledge
graph embedding methods on the WN18 dataset. The
table provides the results of five evaluation metrics:
MR and MRR, Hits@1, Hits@3, and Hits@10. From this
table, we can find that among all methods, the proposed
scheme achieves the highest overall MRR (0.982)
and top score in Hits@1 (92.1), Hits@3 (97.0), and
Hits@10 (95.7), demonstrating its strong performance
in capturing semantic relationships in knowledge
graphs. However, the proposed method stands out
with a significantly superior MR of 144, which is
the lowest among all methods£¬ indicating that the
proposed method ranks correct entities much closer
to the top than any other approach. Additionally, the
proposed method delivers competitive performance in
MRR (0.902), Hits@1 (89.0), Hits@3 (90.4), and Hits@10
(96.3), achieving a near-optimal balance between the
ranking quality and prediction accuracy. Compared to
the competing methods such as TransE and DistMult,
which either suffer from poor MRR or lower Hits@n, the
proposed method consistently provides both accurate
and robust prediction. Moreover, even in comparison
to state-of-the-art neural models like GIE, R-GCN,
and CompGCN, the proposed method exhibits either
higher or comparable score, particularly excelling in
the ranking accuracy. These results demonstrate the
effectiveness of the proposed method, suggesting that
it successfully captures the relational and structural
dependencies within knowledge graphs, outperforming
or matching existing models in both the precision and
ranking capability.

Table II provides a detailed performance comparison
of several knowledge graph embedding models eval-
uated on the FB15K dataset for the link prediction
task. From this table, we can find that the proposed
method achieves the best overall performance in mul-
tiple key aspects. Specifically, the proposed method

attains the lowest MR of 21, indicating its superior
ability to rank the correct tail entities closer to the top
of the prediction list. In terms of MRR, the proposed
method achieves a high score of 0.831, outperform-
ing other competing methods such as QuatE (0.820),
ConvE (0.771), and GIE (0.878). Although GIE achieves
slightly higher Hits@1 (78.2%) and Hits@3 (86.7%)
compared to the proposed method’s 72.2% and 88.4%
respectively, the proposed method achieves the highest
Hits@10 at 92.5%, highlighting its robustness in top-
10 predictions. Compared to the competing models like
TransE and DistMult, which yield significantly lower
MRRs (0.514 and 0.595 respectively), the proposed
method provides a substantial improvement in the pre-
dictive precision. Furthermore, even in contrast to more
sophisticated models such as R-GCN and CompGCN,
the proposed method offers better or comparable per-
formance across all metrics, particularly excelling in
balancing both the ranking efficiency and prediction
accuracy. The results in Table II further validate that
the proposed method effectively captures both semantic
and structural dependencies in the knowledge graph,
making it a highly effective model for link prediction
tasks on the complex datasets.

5. Conclusions

In this paper, we proposed a novel method for knowl-
edge graph completion that integrated a relation-
specific attention mechanism with a translation-based
embedding strategy to improve the accuracy and
contextual understanding of link prediction tasks.
Unlike traditional approaches that operated within
static transformation spaces, the proposed method
dynamically captured fine-grained relational semantics
through a combination of hierarchical candidate selec-
tion, relation-guided projection, and asymmetric scor-
ing mechanisms. To construct semantically consistent
candidate sets, we employed K-means clustering, while
PCA was used to identify relation-relevant dimen-
sions with high variance. The attention mechanism
weighted multi-attribute entity embeddings according
to their relevance to the target relation, enabling more
discriminative representation learning. Optimization
was achieved using a margin-based ranking loss with
embedding norm constraints, supported by Xavier ini-
tialization and stochastic gradient descent to ensure sta-
ble training. We validated the proposed model on two
benchmark datasets, WN18 and FB15K, and the results
demonstrated the effectiveness of our approach. On
WN18, the proposed method achieved the lowest MR
of 144, along with strong performance in MRR (0.902),
Hits@1 (89.0%), Hits@3 (90.4%), and Hits@10 (96.3%),
closely rivaling or surpassing state-of-the-art methods
such as QuatE and ComplEx. On FB15K, the proposed
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Table 1. Link prediction performance with various knowledge graph embedding methods: WN18.

Metric MR MRR Hits@1 Hits@3 Hits@10
TransE - 0.566 15.9 88.2 91.6
RotatE 164 0.926 89.5 95.8 96.3
QuatE 429 0.982 92.1 97.0 95.7
HaKE 336 0.857 93.7 94.9 90.9
GIE - 0.883 89.4 96.0 95.7
Proposed method 144 0.902 89.0 90.4 96.3
DistMult 599 0.796 77.4 87.6 90.4
ComplEx - 0.973 94.5 96.0 97.0
R-GCN - 0.737 66.3 87.6 91.3
ConvE 536 0.880 90.1 90.6 95.2
ConvKB 556 0.790 78.3 81.0 94.7
CompGCN 575 0.632 55.2 79.5 88.4
NodePiece 689 0.494 28.4 52.9 59.1

Table 2. Link prediction performance comparison with various models: FB15K.

Metric MR MRR Hits@1 (%) Hits@3 (%) Hits@10 (%)
TransE – 0.514 33.2 61.4 71.5
RotatE 32 0.661 62.0 79.2 84.5
QuatE 41 0.820 66.1 81.5 89.1
HaKE 128 0.692 60.0 73.5 78.7
GIE – 0.878 78.2 86.7 88.1
Proposed method 21 0.831 72.2 88.4 92.5
DistMult 42 0.595 50.9 75.1 84.6
ComplEx – 0.659 55.2 72.4 79.4
R-GCN – 0.707 59.9 70.1 85.3
ConvE 64 0.771 71.1 82.0 88.2
ConvKB 109 0.609 50.6 67.8 73.0
CompGCN 69 0.382 29.9 47.2 67.7
NodePiece 420 0.167 6.98 17.6 30.4

method again achieved the best MR of 21, with com-
petitive scores in MRR (0.831), Hits@1 (72.2%), Hits@3 
(88.4%), and the highest Hits@10 (92.5%).
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