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Abstract 

Hadoop is an open-source framework that enables the parallel processing of large data sets across a cluster of machines. It 
faces several challenges that can lead to poor performance, such as I/O operations, network data transmission, and high data 
access time. In recent years, researchers have explored prefetching techniques to reduce the data access time as a potential 
solution to these problems. Nevertheless, several issues must be considered to optimize the prefetching mechanism. These 
include launching the prefetch at an appropriate time to avoid conflicts with other operations and minimize waiting time, 
determining the amount of prefetched data to avoid overload and underload, and placing the prefetched data in locations that 
can be accessed efficiently when required. In this paper, we propose a smart prefetch mechanism that consists of three phases 
designed to address these issues. First, we enhance the task progress rate to calculate the optimal time for triggering prefetch 
operations. Next, we utilize K-Nearest Neighbor clustering to identify which data blocks should be prefetched in each round, 
employing the data locality feature to determine the placement of prefetched data. Our experimental results demonstrate that 
our proposed smart prefetch mechanism improves job execution time by an average of 28.33% by increasing the rate of local 
tasks. 
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1. Introduction

Hadoop [1] enables the storage and analysis of large datasets 
by incorporating two main components. The first, 
MapReduce [2], is a parallel programming model for 
processing a large amount of data through a cluster of 
machines in a distributed environment. The second 
component is the Hadoop Distributed File System (HDFS) 
[3] to holds a large volume of data. Although Hadoop can
bring significant benefits it suffers from problems such as
access latency in reading data from HDFS and increased input 
data transmission time from a remote node to a processing
node. These issues can lead to prolonged runtimes.

*Corresponding author. Email: Ghazalir@mcmaster.ca 

Prefetching has been proposed as an efficient way to 
accelerate execution by mitigating these delays. We could 
classify a prefetching strategy into two groups based on the 
source of fetching: HDFS prefetching to improve data access 
time from HDFS and node prefetching to reduce data 
transmission time through the network. For this purpose, a 
prefetching thread is created to fetch data into the cache 
before they are requested. HDFS prefetch faces some 
challenges. Due to the master/slave architecture of HDFS, 
prefetching is a two-step process where the steps must be 
made compatible: Metadata prefetching, and Data block 
prefetching. Metadata prefetching from the NameNode 
mitigates access latency for metadata and reduces NameNode 
overhead. Data block prefetching from worker nodes reduces 
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I/O overhead. In both steps, we identify some issues for 
efficient prefetch: 

• Prefetching time: At what point in time is it appropriate for
the prefetch process to be triggered? If data blocks are
cached too long before they are requested they will have
little chance of being accessed. Due to limited cache space, 
there is a high probability that these data blocks will have
been evicted from the cache at the time that they are
needed. Therefore, we should determine a suitable
prefetch time in terms of system parameters such as node
processing capacity, task processing time, and on-demand
data access time.

• Prefetched data: Which data should be prefetched in each
round? We should be aware of requested data in each step
to prefetch on-demand data just before they are processed.
If we prefetch the wrong data, on-demand data will not be
accessed from the cache leading to high data access time.

• Location of prefetched data: Where is a suitable location
to store prefetched data? Data locality is an important
factor that has a significant impact on decreasing job
execution time by reducing data transmission time. In
other words, we should take into account the shortest
distance between the processing node and the location of
the prefetched data. Therefore, the cache of the processing
node is the ideal place. If the cache capacity of the
processing node is full, caches of neighboring nodes can
be considered.

• Prefetched data volume: How much data should be
prefetched in each step? By considering cache size, data
block size, and node processing capacity, we would like to
determine a suitable volume of data to prefetch. If these
data volumes are too large the cache not only contains data
items that have not been used recently but cache pollution
may also arise. On the other hand, the frequency of
prefetching will increase if prefetched data volumes are
too low. This leads to poor performance as a result of
increased overhead.

 There are different lines of research that consider each of 
these issues individually in the prefetch mechanism, but we 
are not aware of any work that considers all of them together. 
In this paper, we present a smart prefetch strategy using KNN 
(K Nearest Neighbors) clustering [4] to determine which data 
(including volume) should be prefetched in each step. 
Moreover, we determine a suitable time to launch the prefetch 
mechanism by considering node processing capacity and task 
processing time. Finally, data locality considerations 
determine where prefetched data should be placed. Our 
contributions in this paper are: 
• We provide a brief overview of existing prefetch

mechanisms and discuss their advantages and
disadvantages.

• We propose a novel prefetch mechanism that calculates the 
prefetch time and uses the KNN cluster algorithm to
determine which data should be prefetched and where it
should be placed.

• We carry out experiments to investigate the impact of our
proposed prefetch mechanism on Hadoop performance.

The rest of the paper is organized as follows: We discuss 
existing prefetch strategies for Hadoop and compare their 
advantages and disadvantages in Section 2. We then describe 
the proposed framework and present our KNN-based prefetch 
algorithm in Section 3. The performance of the proposed 
prefetch method is evaluated via different experiments in 
Section 4. Finally, Section 5 contains conclusions and 
suggestions for future work. 

2. Related work

There are various mechanisms to enhance Hadoop 
performance in different aspects like improving data locality 
rate, speculative execution, and fair resource distribution [5]. 
Considering data locality ensures data is stored close to where 
it will be processed; avoiding data transmission has a positive 
effect on data access time [6] [7]. In-memory caching 
approaches enable frequently accessed data to be cached. One 
important aspect of in-memory caching is the prefetching 
mechanism, which is the main topic of this paper. 
    Since BigData applications contain massive numbers of 
data blocks, there is no guarantee that all tasks can obtain their 
input data blocks from the cache. Due to the large amount of 
data, data blocks may be evicted from the cache before they 
are required. In [8] Just Enough Cache (JeCache) was 
proposed as a solution for this problem using a just-in-time 
data block prefetching mechanism. This mechanism monitors 
data block access and calculates average data processing time 
to determine the minimal number of data blocks that should 
be kept in the cache. JeCache consists of two parts: 1) 
Prefetch information generation uses job history logs to 
determine which data blocks should be cached initially and a 
sequence of data blocks that need to be prefetched when a job 
is running. 2) The prefetch controller monitors data block 
access in each worker node, evicting data blocks from the 
cache when their processing is finished. This mechanism can 
reduce cache resource demand and improve execution times. 
However, it only considers read caching.  
   Vinutha et al. [9] introduced a solution to decrease data 
transmission time between a remote node and a processing 
node in a heterogeneous cluster. For this purpose, a prefetch 
thread is created to fetch requested input data in advance from 
a remote node to the buffer of the processing node, which is 
used as temporary storage. This results in a positive impact 
on job execution time by overlapping data transmission with 
data processing and increasing the data locality rate when 
launching a task. Even with this prefetching strategy, a job 
waits for the first data transmission.  In [10] a streaming 
technique was presented to address this problem. In this 
method, data transfer and data processing are performed 
simultaneously. The resulting smaller size of the streaming 
data can reduce transmission waiting time. Kalia et al. [11] 
proposed speculative prefetching that takes into account node 
processing capacity to load input data into the processing 
node. It groups intermediate data via the KNN clustering 
algorithm using a Euclidean distance measure to improve the 
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data locality rate for Reduce tasks, leading to enhanced 
performance. However, it does not consider other features 
like workload capabilities and worker node throughput. In 
[12] a two-level correlation-based file prefetching
mechanism and dynamic replica selection were introduced to
reduce data access latency and avoid overloaded worker
nodes via load balancing.  In this strategy, four placement
patterns are considered to store fetched data.
   Table 1 presents a comparison of these prefetching 
strategies. Each of these strategies concentrates on only one 
prefetching issue. For instance, JeCache focuses on choosing 
an appropriate prefetching time and speculative prefetch 
considers node processing capacity for load balancing. We 
attempt cover a combination of these issues in our proposed 
prefetch mechanism. 

Table 1. Comparison of prefetching strategies 
Technique Prefetch 

type 
Location to 

store 
prefetched 

data 

Advantages Disadvantages 

JeCache [8] HDFS 
prefetch 

Worker 
node cache 

Uses cache 
space 

efficiently 

Only considers 
read cache 

Prefetch 
thread [9] 

Node 
prefetch 

Processing 
node buffer 

Reduces 
transmission 

time 

Waiting time 
for first data 
transmission 

Streaming 
technique 

[10] 

Node 
prefetch 

Processing 
node buffer 

Reduces 
waiting time 

Does not load 
balance 

Speculative 
prefetch 

[11] 

Node 
prefetch 

Worker 
node cache 

Considers 
node 

processing 
capacity 

Does not take 
into account 

node 
throughput 

Two-level 
correlation-
based file 

prefetching 
[12] 

HDFS 
prefetch 

Considers 
four 

patterns 
(ND-

pattern, 
CD-pattern, 
NC-pattern, 

and CC-
pattern) 

Dynamic 
replica 

selection 

Does not 
consider some 

features 

3. Methodology

In this section, we present the design of our proposed 
prefetching mechanism by addressing the key issues 
discussed in the introduction. Firstly, we determine when to 
launch the prefetching mechanism based on the progress rate 
of tasks. Secondly, based on the processing capacity of the 
worker node and the available cache space, we calculate the 
number of data blocks that can be prefetched in each round, 
K, using the KNN algorithm. Finally, we determine the 
location for prefetched data based on the data locality rate to 
reduce execution time by minimizing data transmission time. 
A sequence diagram is presented in Figure 1 to clarify the 
workflow of our proposed prefetching mechanism. 

3.1. prefetch time 

In theory, the optimal timing for launching prefetching in 
Hadoop is determined by when the prefetched data can be 
fully utilized by Map or Reduce tasks, and when it can be 

made available in the cache before it is needed. This approach 
can help minimize the impact of data access latencies on 
Hadoop job performance. One method of determining the 
best timing is to use the progress rate of Map and Reduce 
tasks to predict when they will require data. In this case, a 
threshold value should be set for the progress rate of Map and 
Reduce tasks. Once the progress rate exceeds the threshold, 
the prefetching mechanism can be launched to begin fetching 
data blocks that are likely to be needed soon. By launching 
prefetching at this time, the data can be made available in the 
cache before it is needed, reducing data access latencies. To 
avoid interfering with other tasks or causing excessive 
network traffic, it is advisable to trigger prefetching when the 
system is relatively idle, such as during periods of low job 
activity or off-peak hours. Ultimately, the optimal timing for 
prefetching in Hadoop depends on various factors, including 
the job's characteristics, worker node processing capacity, 
and network resource availability. Monitoring system 
performance and adjusting the prefetching strategy as needed 
is critical to achieving favorable results. 
   To determine the best time to launch prefetching, we 
calculate the progress rate of tasks and determine a suitable 
threshold value. To calculate this threshold, we first introduce 
some notation: a job consists of T tasks (either Map tasks or 
Reduce tasks), with each task processing N <key, value> 
pairs, the number of processed pairs is M, and the task has 
completed L stages (for Reduce tasks, there are three stages: 
copy data phase, sort phase, and reduce phase). The progress 
rate of the ith task, PSi, is estimated based on the percentage 
of the task's <key, value> pairs that have been processed, as 
shown in Eq. 1 [14]. The average progress rate of a job, PSavg, 
is then calculated using Eq. 2. Furthermore, the progress rate 
of a task T can be computed based on how many <key, value> 
pairs are processed per second,  given the task has run for Tr 
seconds, as shown in Eq. 3 [15]. By setting a suitable 
threshold value for the progress rate of Map and Reduce 
tasks, the prefetch mechanism can be triggered when the 
progress rate exceeds the threshold value, indicating that the 
task will soon require data blocks that can be prefetched.  

PSi  =  M/N         for Map tasks  

PSi  =1/3(L+M/N)        for Reduce tasks    (1) 

PSavg= (1/T) * ∑ PS𝑇𝑇
𝑖𝑖=1 I  (2) 

PRi=PSi/Tr (3) 

    To determine the threshold value for launching the prefetch 
mechanism, we need to consider the workload and system 
characteristics. The choice of threshold should balance the 
risk of triggering prefetching too early (leading to wasted 
network bandwidth and cache space) and the risk of 
triggering prefetching too late (resulting in longer processing 
times due to data access latency). 
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1. Send data block request

2. Send a request to check cached data blocks

3. Checks 
whether 
requested 
data blocks 
cached or not

4. Send a request to cache data blocks if missing 
 cache occurred 

5. Calculates prefetch time based on 
the progress rate of the task and prefetched 
data size based on processing capacity 

6. Launches prefetch mechanism 

8. Send fetched data 

9. Calculates the location of prefetched 
data blocks based on data locality 

10. Send a request to cache prefetched data blocks 

7. Prefetch K closest data blocks via the KNN algorithm 

Figure 1. Sequence diagram 

    In this paper, we obtain this threshold directly, as will be 
seen in our experimental results (Section 4.3). Another 
possibility would be to find a parameterized function to 
determine the threshold. A potential formula is expressed 
as Eq. 4, where α and β are scaling factors that can be 
adjusted based on the characteristics of the workload and 
cluster. To determine α and β, one could consider workload 
features such as cache affinity and job type (I/O-bound and 
CPU-bound), while the cluster specifications could include 
available cache space and worker node processing 
capacity. To calculate the standard deviation of the 
progress rate of Map and Reduce tasks across the entire job, 
we use Eq. 5, where T is the total number of progress rate 
values. By taking into account these factors, we can 
determine an appropriate threshold value for launching the 
prefetch mechanism that minimizes the impact of data 
access latencies on the performance of Hadoop jobs.  

Threshold = α * (PSavg + β * PSstd)      (4) 
PSstd = sqrt [ � (PS𝑇𝑇

𝑖𝑖=1 i- PSavg)² / (T - 1) ]         (5) 

3.2. prefetched data size 

The volume of data to prefetch is a crucial factor affecting 
performance. Insufficient prefetched data can result in the 
system having to retrieve demand data from the disk or 
network, leading to increased data access time or an 
increased frequency of prefetch operations. On the other 
hand, excessive prefetched data can lead to excessive load 
on a worker node and increased resource contention, 
negatively affecting performance. The number of data 
blocks that can be prefetched depends on various factors, 
such as the processing capacity of the node, job running 
time, and the degree of parallelism. In a Hadoop 
heterogeneous environment, where the cluster consists of a 

set of worker nodes with varying processing capacities and 
cache sizes, the prefetched data size (number of data 
blocks) can be calculated using a relation such as Eq. 6. 
Here, W is the number of worker nodes, Pj denotes the 
processing capacity of the jth worker node, and Cj 
represents the available cache space on the jth worker node. 
The equation takes into account the parallelism degree, 
denoted by Nc (the number of tasks that can run 
concurrently), the estimated average processing time of a 
data block in the jth worker node (ETj), and the data block 
size (BS). Moreover, we adjust the value of K for specific 
workloads as some workloads may benefit from a smaller 
K, while others may perform better with a larger K. For this 
purpose, the cache affinity of applications (CA) [16] is 
considered as a coefficient that determines how to utilize 
the benefit of cached data in each application. For our 
purposes, we assume that it can be classified into three 
levels: high, medium, and low cache affinity with values of 
0.75, 0.5, and 0.25 respectively. 

K= � (P𝑊𝑊
𝑗𝑗=1 j * ETj * CA* Nc )/BS  (6) 

We should choose an appropriate value for K. If it is too 
small, the result is under-prefetching which can lead to a 
lower cache hit ratio and missed prefetch opportunities. On 
the other hand, if K is too large, the result is over-
prefetching via increasing cache pollution. Therefore, the 
choice of K should manage the trade-off between under-
prefetching and over-prefetching. This choice depends on 
the Hadoop cluster characteristics and features of the 
workload. We will further explore the choice of K in our 
numerical experiments. 

Worker node NameNode Cache metadata HDFS 
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3.3. KNN clustering 

The K Nearest Neighbor Classification (KNN clustering) 
algorithm [17] is a non-parametric algorithm employed for 
the identification of the nearest K training instances to a 
given test data point. Once these K closest training 
instances are ascertained, the KNN algorithm employs a 
majority voting mechanism, where the class with the 
highest frequency among the selected K instances is 
specified as the classification for the test data. This 
clustering algorithm contains two key phases: 

• The Training Phase: During this stage, the algorithm
stores the training data point coordinates along with
their respective class labels, which serve as identifiers
for classifying data points in the subsequent testing
phase.

• The Testing Phase: This phase entails determining the
class labels for new data through a majority vote among
the K nearest neighbors of the testing data point, derived
from the training dataset using a defined distance metric.

The general procedure of the KNN clustering algorithm 
can be summarized as follows: 

1. Determine the value of K.
2. Preparation of the training dataset, which involves

storing data point coordinates and their associated class
labels.

3. Loading the data point from the testing dataset.
4. Execution of a majority vote among the K nearest

neighbors of the testing data point from the training
dataset, based on the prescribed distance metric.

5. Assignment of the class label from the majority vote
winner to the new data point in the testing dataset.

6. Repeat these steps until all data points in the testing
phase are accurately classified.

Algorithm1: Mapper function 

Function Mapper() 

1-tr =Load training dataset in the form of

<key, value> pairs

// key is the unique identifier for a data block and the value  
includes the features and the class label 
2- ts=Load test dataset

3- Class_tr = readClassId(value)

4- For i=1 to n  // Iterate over each test instance
5- For j=1 to m// number of training instances
6-distance=distance+ (tsi-trj) ^2

7-distij =SQRT (distance) //Calculates Euclidean distance
8-Return(<i, object <trj , distij, class_tr>>)

9-End for

10-End for

Output: <key1, value1> where key1 is the unique identifier for a data 
block and value1 encompasses information about the distance between 

this data block and others, along with their associated classes, presented 
as <DBi, <DBj, distij, class A>>. 

Algorithm2: Reducer function 

Input: <key1, <List value1’s> distances> where key1 is the data 
block id  
of the test instance, value1is an object which contains:  
< DBi, <DBj, distij, class A >, distances: List of all distances, and 
K value 
Function Reducer(K) 

1- Sort_ascending(distances)

2- new LinkedList K_distances

3- new LinkedList Classes

4- For i=1 to K

5- K_distances.add(distances.get(i))

6- End for

7- For all dist ∈ K_distances
8- If dist. getclass()∈ classes
9- classes.add(dist.get class())

10- End if

11- End for

12- For all class_id ∈ classes
13- If dist < min then

14- min = dist

15-decided_class_id = class_id

16-End if

17- End for

18- key2 = key1

19- value2 = decided_class_id

20-Reteun(key2,value2)

     In the context of our proposed approach, we utilize the 
KNN MapReduce programming model [18] [19] to cluster 
data blocks within the Hadoop Distributed File System 
(HDFS), based on Euclidean distance. In addition to the 
required data block, we also prefetch the K nearest data 
blocks as they are more likely to be needed soon. In this 
framework, the Mapper function is responsible for 
computing distances between the testing instance to be 
processed and the training instances contained within the 
received training data split. Consequently, the output of the 
Map task is structured as a <key, value> pair, where the 
key designates a data block to be classified, and the value 
encompasses information about the distance between this 
data block and others, along with their associated classes, 
presented as <DBm, <DBn, distmn, class A>>. The Mapper 
function is presented in Algorithm 1. The Reducer function 
plays a central role in the classification decision for the test 
instances. Upon receiving inputs from the output of the 
Map tasks, the Reducer function identifies the K nearest 
neighbors from the entire set of training instances by 
determining the K smallest distances within the list, 
followed by majority voting. Algorithm 2 provides details 
of the Reducer function. 
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     In scenarios involving substantial data volumes and an 
extensive feature set, some data points may exhibit similar 
proximities to instances from different classes. In such 
instances, the minimal distance from individual instances 
may not definitively signify that the test instance belongs 
to a particular class. For instance, suppose that K is set to 
5, and the following values are provided to the reducer for 
the test instance DB7: 
<DB7, <DB2, 0.11, A>> 
<DB7, <DB10, 0.12, B>> 
<DB7, <DB9, 0.15, B>> 
<DB7, <DB13, 0.13, C>> 
<DB7, <DB16, 0.12, A>> 
 In this scenario, the classical KNN algorithm, due to its 
majority voting strategy, would suggest that the test 
instance DB7 belongs to either class A or class B. However, 
further examination reveals that class A contains an 
instance with the closest proximity to the testing instance, 
hence leading to the conclusion that DB7 is most 
appropriately categorized within class A. 

3.4. Prefetched data location 

Considering data locality to determine the prefetched data 
location can have a positive impact on decreasing job 
execution time. Assume that for a set of worker nodes 
where all replicas of data blocks are located, Dd is the 
distance between worker node d and the processing node. 
Additionally, Cd represents the processing capability of 
node d (a combination of CPU and memory capacity), 
while Ld represents the workload of worker node d. It is 
important to choose an appropriate worker node with a low 
load and distance to the processing node, to reduce data 
transmission time, and ensure enough processing capacity 
to balance the load in the cluster, thereby increasing 
resource utilization. A high-level conceptual formula that 
incorporates these parameters is given in Eq. 7, where f is 
a function that takes into account the specific algorithms 
and policies implemented in Hadoop to calculate a suitable 
location for prefetching data. It is obvious that data locality 
and node processing capacity have direct relationships, as 
Hadoop prioritizes nodes with local copies of the required 
data that are closer to the nodes where the task is scheduled. 
Also, nodes with higher processing capacity are preferred 
for executing tasks to ensure that the computational load 
can be handled effectively. When a node is under heavy  
load or already processing a significant amount of data, it 
is logical to avoid placing additional prefetched data on that 
node and to distribute the tasks among less loaded nodes, 
ensuring a balanced workload distribution. In summary, the 
selected node for the prefetched data, S, is given by: 

   S=Arg Min{f ((Dd, Cd)/Ld)}  (7) 

    A similar formula is used in the dynamic replica 
selection algorithm proposed in [9], where identical 
parameters are taken into account to determine which data 

blocks should be replicated, thereby mitigating the 
occurrence of the hot worker node phenomenon. We do 
emphasize that the function f is an abstract function used to 
illustrate what should determine the location of prefetched 
data. As we will see in our experiments, this notion can be 
used in a more conceptual manner. 

3.5. Proposed prefetch algorithm 

Algorithm 3: KNN prefetch algorithm 

Input: List of heterogenous worker nodes, Input data size (IDS), 
List of tasks, Data block size (DBS) 
1-TDB=IDS/DBS //Calculate the total number of data blocks
2-If task Ti is Map task // Calculate the progress rate 
3-PSi  =  M/N

4-Else PSi  =1/3*(L+M/N)

5-End if

6-PRi = PS i/ETi

7-TimetoEndi = (1 − PSi)/ PRi

8-PSavg= (1/T) * ∑ PS𝑇𝑇
𝑖𝑖=1 i

9- If   TimetoEndi>= Threshold* PSi  then launch

prefetch

10. K= � (P𝑊𝑊
𝑗𝑗=1 j * ETj * CA* Nc )/BS //Calculate K value

11-Call Mapper()

12-Call Reducer(K)

13-Look up block metadata to find the location

of these K data blocks //Data locality for prefetched data
14-If they are not located in the worker node

then

15- Worker nodes=Arg Min{f((Dd, Cd)/Ld)}

16- Send a request to the worker nodes to

cache data blocks

17-End If

This section outlines our proposed algorithm for smart 
prefetching, which we present in detail. The input to our 
KNN prefetch algorithm includes a list of worker nodes in 
the cluster along with their processing capabilities, a list of 
tasks to be performed, and the size of the input data. First, 
we calculate the number of data blocks based on the 
Hadoop Distributed File System's (HDFS) data block size. 
Next, we estimate the time remaining for each task based 
on its progress, which depends on the task type, using Eq. 
2. We then check whether the estimated time remaining for
a task has reached the predefined threshold value or not. If
it meets the threshold value, the prefetching process is
initiated. The number of data blocks that can be prefetched,
denoted by K, is determined using Eq. 6. We use K Nearest
Neighbor (KNN) clustering to group the data blocks into
clusters, with each cluster containing the data blocks that
can be prefetched simultaneously during each prefetch
phase. We determine the K data blocks that are located in
the nearest neighborhood of the required data blocks based
on their Euclidean distance as has been described in
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Section 4.3. Finally, we place the prefetched data blocks 
based on the data locality factor, as described by Eq. 7, 
which reduces the data transmission time through the 
network and positively impacts the job execution time. 
In this algorithm, we assume that workload patterns do not 
change over time. Otherwise, we need to monitor cache 
performance continuously and predict the optimal K value 
based on historical data of access patterns and workload 
characteristics (using machine learning techniques, for 
example). Also, it would likely be beneficial to establish a 
feedback loop to regularly re-evaluate the chosen K value 
as the system evolves and workload patterns change. 
Incorporating this increased complexity is something that 
we are considering for future work. 

4. Results and Discussion 

In this section, we describe the experimental environment 
including software and hardware configurations and some 
Hadoop configuration parameters settings. Our evaluation 
is divided into two sections: investigating the appropriate 
threshold value for choosing the best prefetch time and 
evaluating the impact of smart prefetch on Hadoop 
performance. 
 
4.1. Experimental setup 

 For our experiments, we use a cluster consisting of a single 
NameNode and ten worker nodes located in two racks such 
that odd-numbered nodes are in rack1 and even-numbered 
nodes are in rack2. 

• Hardware configuration: The nodes are connected via a 
10 Gigabit Ethernet switch. The experimental 
environment is a heterogeneous environment with 
different memory sizes and processing capabilities. 
Details are presented in Table 2. 

• Software configuration: We use the Ubuntu14.04 
operating system and JDK 1.8, Hadoop version 2.7, and 
Intel HiBench [20] [21] version 7.1. 

• Hadoop configuration parameters: The block size of 
files in HDFS is 128 MB, and data replication is set to 
3.  

• MapReduce applications: We use Intel HiBench as a 
Hadoop benchmark suite that contains the following 
applications: 1) WordCount is a CPU-intensive 
application that returns the number of occurrences of 
each word in a text file. 2) Sort is a typical I/O-bound 
application that sorts input data. 3) Grep is a mix of 
CPU-bound and I/O-bound operations that searches for 
a substring in a text file. In addition, the cache affinity 
feature determines how to utilize the benefit of cached 
data in each application such that it can be classified into 
three categories based on this feature: low cache affinity 
(Sort), medium cache affinity (WordCount), and high 
cache affinity (Grep). 

• Input data: For carrying out experiments, we have used 
the default data sizes from the HiBench suite. Sort and 
WordCount have 60 GB and Grep has 1 TB, 
respectively, for their input data sizes. The input data are 
generated by using the RandomTextWriter. 

Table 2.  Node characteristics 
Node type Hardware configuration Node 

processing 
capability 

Master 
node 

Intel Core i7-6700 processor, 2.4 GHz 
CPU,64 GB memory, 10 data blocks 
cache capacity, and 1 TB hard disk. 

8 Map slots, 
5 Reduce 

slots 
Odd worker 

nodes 
Intel core i5-4590 processor, 3.30 GHz 
CPU,  32 GB memory, 8 data blocks 

cache capacity, and 500 GB hard disk. 

4 Map slots, 
2 Reduce 

slots 
Even 

worker 
nodes 

Intel core i5-4590 processor, 2.9 GHz 
CPU, 16 GB memory, 6 data blocks 

cache capacity, and 250 GB hard disk. 

2 Map slots, 
1 Reduce 

slot 

4.2. Metrics 

In our experiments, we consider two key performance 
metrics: 

• Job execution time: This plays a vital role in Hadoop 
performance improvement, and is related to data access 
time. The data access time decreases significantly if we 
can access data from the cache instead of the disk, 
reducing the job execution time. 

• Data locality rate: This is measured using the total 
number of tasks run locally in the node where the 
associated data resides. 

4.3. Investigating the threshold value 

As we mentioned in the previous section, selecting the 
appropriate value (between 0 and 1) for the threshold 
parameter is a crucial issue that depends on various factors. 
For this purpose, we consider two workloads to investigate 
the impact of different threshold values on job execution 
time: WordCount as a CPU-oriented application with 
medium cache affinity, and Sort as an I/O-oriented 
application with low cache affinity.  
     In Figure 2, we can observe that execution time 
increases when the threshold value is less than 0.6 or more 
than 0.8. The number of references to HDFS for fetching 
data blocks rises when the threshold value is too small. 
Prefetching large numbers of data blocks before requiring 
them leads to overload. In this case, there is a high 
probability that some data blocks are evicted from the 
cache before they are required, leading to a negative impact 
on job execution time. Also, if the threshold value is set too 
large (greater than 0.8) a greater number of data blocks are 
not accessible from the cache when required as a result of 
needing to wait until the prefetch mechanism is completed. 
The result is resource underutilization if prefetch is 
performed too late The choice of threshold should take into 
account the trade-off between these two issues. For our 
experiments, a suitable value appears to be 0.7, 
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independent of the application. It would be of interest to 
further explore if such insensitivity holds across other 
applications and/or operational environments. 
 

 
Figure 2. The impact of threshold value on job 

execution time  

4.4. Investigating the impact of K 

In this experiment, we consider a cache size of 1024 MB, 
data block size of 128 MB, and two applications: Grep 
and Sort as high cache affinity and low cache affinity, 
respectively. Next, execution time is evaluated based on 
three values of K including small (2), medium (5), and 
large (10). Figure 3 illustrates execution time as a 
function of K for both applications. 

 

Figure 3. The impact of K on job execution time 

     The results indicate that both low and high K values 
result in degraded prefetching behaviors, with low K values 
causing under-prefetching and high K values causing over-
prefetching. Over-prefetching leads to cache pollution in 
both low-cache and high-cache affinity scenarios, 
negatively impacting execution time. This is due to the 
presence of unneeded data blocks in the cache, which 
reduces the cache hit ratio and increases unnecessary I/O 
operations to retrieve the required data blocks. Conversely, 
under-prefetching, associated with small K values, results 
in frequent cache misses, necessitating data block retrieval 
from slower storage and thereby increasing execution time. 
In applications with low cache affinity, the impact of both 
under-prefetching and over-prefetching on execution time 

is minimal. However, in high-cache affinity applications, 
the negative effects on execution time are significant.  

4.5. Impact of smart prefetch on Hadoop 
performance 

In this section, we evaluate the performance of smart 
prefetch based on two metrics: data locality rate and job 
execution time. For this purpose, we run a combination of 
the Micro benchmark in Intel HiBench (composed of both 
I/O-bound jobs and CPU-bound jobs) to compare our 
algorithm to the following strategies: 

• Hadoop original: No caching is utilized. 
• Simple prefetch: Data is prefetched into the cache before 

the actual processing starts with the help of a prefetching 
thread. 

• Speculative prefetch [9]: A recently proposed algorithm 
that utilizes KNN to cluster intermediate data and as 
such has similarities to the smart prefetch mechanism. 
 

Performance evaluation based on data locality 
rate 

Figure 4 presents the data locality rate for three 
applications and compares our smart prefetch algorithm 
with the three algorithms given above. Smart prefetch has 
the best local task rate, demonstrating that it improves data 
locality by locating prefetched data in an intelligent 
manner. Also, by prefetching high-probability demand data 
just in time, more tasks have a chance to use cached data. 
Experimental results show that the locality rate of tasks has 
improved by 14.2%, 7.8%, and 3.22% in WordCount, 15%, 
9.52%, and 2.22% in Sort, 17.07%, 10.34%, and 4.34% in 
Grep against Hadoop original, Hadoop with simple 
prefetch, and Speculative prefetch respectively. In addition 
to showing the possible performance improvement of our 
algorithm, this also suggests that our method is more 
suitable for high cache affinity applications and I/O-bound 
jobs, as they benefit more from cached data. 

 
Figure 4. Local tasks rate for different applications 

Performance evaluation based on job execution 
time 

 In this experiment, we use average job execution time as a 
performance measure to evaluate our proposed prefetching 
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strategy. We use the Delay job scheduler that considers the 
data locality rate in its scheduling policy. We also execute 
each application 10 times to calculate the average 
execution time. In Figure 5, we can observe that 
WordCount, Sort, and Grep finish their jobs 17%, 9.4%, 
and 16% faster than the default prefetch mechanism and 
their execution time improves by 30%, 25%, and 30% 
against Hadoop native and the speed increases by 8%, 3%, 
and 7.5% compared with Speculative prefetch. Our novel 
prefetch mechanism improves the data locality rate with a 
resulting positive impact on execution time due to 
decreased data transmission time. Also, the cache hit ratio 
is increased via prefetching the appropriate volume of data, 
resulting in more tasks having the chance to utilize cached 
data, improving data access times with a resulting positive 
impact on execution time. 

Figure 5. Average job execution time for different 
applications 

5. Conclusion and future work

In this paper, we have presented a smart prefetch 
mechanism comprised of three phases. Firstly, we 
determine the optimal launch time for prefetching data 
blocks from the Hadoop Distributed File System (HDFS) 
by calculating the progress rate of tasks on worker nodes. 
This phase's success is limited by the threshold parameter, 
which must be set based on various environment and 
workload characteristics. While this paper provides a proof 
of concept of our prefetching algorithm, further work on 
how to choose this threshold is required. This could consist 
of additional guidelines, but ideally one would like to 
choose/learn this parameter in an automated fashion. Next, 
we utilize the K-Nearest Neighbor (KNN) clustering 
algorithm to identify the number of data blocks with a high 
demand priority that can be fetched in each round. Finally, 
we evaluate data locality as a metric for placing the 
prefetched data. Experimental results indicate an average 
job execution time improvement of approximately 28.33%, 
14.33%, and 6.16% when compared to Hadoop original, 
the default prefetch mechanism, and speculative prefetch 
respectively. This improvement is attributed to a 15.4%, 
9.22%, and 3.25% increase in data locality rate, 
respectively. In addition to determining the threshold to 
launch the prefetch mechanism, there are additional 

parameters that must be tuned. As a step in this direction, 
we plan to assess the proposed prefetch mechanism's 
scalability by testing it on a large cluster as well as 
automatically determining the K value for dynamic 
workload by utilizing machine learning methods. 
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