
EAI Endorsed Transactions
on Scalable Information Systems Research Article

1

Smart Data Prefetching Using KNN to Improve Hadoop
Performance
R. Ghazali,1,2*and Douglas G. Down 2

1 Department of Computer Engineering, North Tehran Branch, Islamic Azad University, Tehran, Iran
2 Department of Computing and Software, McMaster University, 1280 Main St W, Hamilton, ON, Canada

Abstract

Hadoop is an open-source framework that enables the parallel processing of large data sets across a cluster of machines. It
faces several challenges that can lead to poor performance, such as I/O operations, network data transmission, and high data
access time. In recent years, researchers have explored prefetching techniques to reduce the data access time as a potential
solution to these problems. Nevertheless, several issues must be considered to optimize the prefetching mechanism. These
include launching the prefetch at an appropriate time to avoid conflicts with other operations and minimize waiting time,
determining the amount of prefetched data to avoid overload and underload, and placing the prefetched data in locations that
can be accessed efficiently when required. In this paper, we propose a smart prefetch mechanism that consists of three phases
designed to address these issues. First, we enhance the task progress rate to calculate the optimal time for triggering prefetch
operations. Next, we utilize K-Nearest Neighbor clustering to identify which data blocks should be prefetched in each round,
employing the data locality feature to determine the placement of prefetched data. Our experimental results demonstrate that
our proposed smart prefetch mechanism improves job execution time by an average of 28.33% by increasing the rate of local
tasks.

Keywords: Hadoop performance, Smart prefetch technique, K-Nearest Neighbor clustering, MapReduce, Machine Learning, Cache
replacement

Received on 28 August 2024, accepted on 01 November 2024, published on 17 April 2025

Copyright © 2025 R. Ghazali et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA 4.0,
which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original
work is properly cited.

doi: 10.4108/eetsis.9110

1. Introduction

Hadoop [1] enables the storage and analysis of large datasets
by incorporating two main components. The first,
MapReduce [2], is a parallel programming model for
processing a large amount of data through a cluster of
machines in a distributed environment. The second
component is the Hadoop Distributed File System (HDFS)
[3] to holds a large volume of data. Although Hadoop can
bring significant benefits it suffers from problems such as
access latency in reading data from HDFS and increased input
data transmission time from a remote node to a processing
node. These issues can lead to prolonged runtimes.

*Corresponding author. Email: Ghazalir@mcmaster.ca

Prefetching has been proposed as an efficient way to
accelerate execution by mitigating these delays. We could
classify a prefetching strategy into two groups based on the
source of fetching: HDFS prefetching to improve data access
time from HDFS and node prefetching to reduce data
transmission time through the network. For this purpose, a
prefetching thread is created to fetch data into the cache
before they are requested. HDFS prefetch faces some
challenges. Due to the master/slave architecture of HDFS,
prefetching is a two-step process where the steps must be
made compatible: Metadata prefetching, and Data block
prefetching. Metadata prefetching from the NameNode
mitigates access latency for metadata and reduces NameNode
overhead. Data block prefetching from worker nodes reduces

EAI Endorsed Transactions
on Scalable Information Systems

| Volume 12 | Issue 3 | 2025 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:Ghazalir@mcmaster.ca

R.Ghazali, and D.G.Down

2

I/O overhead. In both steps, we identify some issues for
efficient prefetch:

• Prefetching time: At what point in time is it appropriate for
the prefetch process to be triggered? If data blocks are
cached too long before they are requested they will have
little chance of being accessed. Due to limited cache space,
there is a high probability that these data blocks will have
been evicted from the cache at the time that they are
needed. Therefore, we should determine a suitable
prefetch time in terms of system parameters such as node
processing capacity, task processing time, and on-demand
data access time.

• Prefetched data: Which data should be prefetched in each
round? We should be aware of requested data in each step
to prefetch on-demand data just before they are processed.
If we prefetch the wrong data, on-demand data will not be
accessed from the cache leading to high data access time.

• Location of prefetched data: Where is a suitable location
to store prefetched data? Data locality is an important
factor that has a significant impact on decreasing job
execution time by reducing data transmission time. In
other words, we should take into account the shortest
distance between the processing node and the location of
the prefetched data. Therefore, the cache of the processing
node is the ideal place. If the cache capacity of the
processing node is full, caches of neighboring nodes can
be considered.

• Prefetched data volume: How much data should be
prefetched in each step? By considering cache size, data
block size, and node processing capacity, we would like to
determine a suitable volume of data to prefetch. If these
data volumes are too large the cache not only contains data
items that have not been used recently but cache pollution
may also arise. On the other hand, the frequency of
prefetching will increase if prefetched data volumes are
too low. This leads to poor performance as a result of
increased overhead.

 There are different lines of research that consider each of
these issues individually in the prefetch mechanism, but we
are not aware of any work that considers all of them together.
In this paper, we present a smart prefetch strategy using KNN
(K Nearest Neighbors) clustering [4] to determine which data
(including volume) should be prefetched in each step.
Moreover, we determine a suitable time to launch the prefetch
mechanism by considering node processing capacity and task
processing time. Finally, data locality considerations
determine where prefetched data should be placed. Our
contributions in this paper are:
• We provide a brief overview of existing prefetch

mechanisms and discuss their advantages and
disadvantages.

• We propose a novel prefetch mechanism that calculates the
prefetch time and uses the KNN cluster algorithm to
determine which data should be prefetched and where it
should be placed.

• We carry out experiments to investigate the impact of our
proposed prefetch mechanism on Hadoop performance.

The rest of the paper is organized as follows: We discuss
existing prefetch strategies for Hadoop and compare their
advantages and disadvantages in Section 2. We then describe
the proposed framework and present our KNN-based prefetch
algorithm in Section 3. The performance of the proposed
prefetch method is evaluated via different experiments in
Section 4. Finally, Section 5 contains conclusions and
suggestions for future work.

2. Related work

There are various mechanisms to enhance Hadoop
performance in different aspects like improving data locality
rate, speculative execution, and fair resource distribution [5].
Considering data locality ensures data is stored close to where
it will be processed; avoiding data transmission has a positive
effect on data access time [6] [7]. In-memory caching
approaches enable frequently accessed data to be cached. One
important aspect of in-memory caching is the prefetching
mechanism, which is the main topic of this paper.
 Since BigData applications contain massive numbers of
data blocks, there is no guarantee that all tasks can obtain their
input data blocks from the cache. Due to the large amount of
data, data blocks may be evicted from the cache before they
are required. In [8] Just Enough Cache (JeCache) was
proposed as a solution for this problem using a just-in-time
data block prefetching mechanism. This mechanism monitors
data block access and calculates average data processing time
to determine the minimal number of data blocks that should
be kept in the cache. JeCache consists of two parts: 1)
Prefetch information generation uses job history logs to
determine which data blocks should be cached initially and a
sequence of data blocks that need to be prefetched when a job
is running. 2) The prefetch controller monitors data block
access in each worker node, evicting data blocks from the
cache when their processing is finished. This mechanism can
reduce cache resource demand and improve execution times.
However, it only considers read caching.
 Vinutha et al. [9] introduced a solution to decrease data
transmission time between a remote node and a processing
node in a heterogeneous cluster. For this purpose, a prefetch
thread is created to fetch requested input data in advance from
a remote node to the buffer of the processing node, which is
used as temporary storage. This results in a positive impact
on job execution time by overlapping data transmission with
data processing and increasing the data locality rate when
launching a task. Even with this prefetching strategy, a job
waits for the first data transmission. In [10] a streaming
technique was presented to address this problem. In this
method, data transfer and data processing are performed
simultaneously. The resulting smaller size of the streaming
data can reduce transmission waiting time. Kalia et al. [11]
proposed speculative prefetching that takes into account node
processing capacity to load input data into the processing
node. It groups intermediate data via the KNN clustering
algorithm using a Euclidean distance measure to improve the

EAI Endorsed Transactions
on Scalable Information Systems

| Volume 12 | Issue 3 | 2025 |

Smart Data Prefetch Using KNN to Improve Hadoop Performance

3

data locality rate for Reduce tasks, leading to enhanced
performance. However, it does not consider other features
like workload capabilities and worker node throughput. In
[12] a two-level correlation-based file prefetching
mechanism and dynamic replica selection were introduced to
reduce data access latency and avoid overloaded worker
nodes via load balancing. In this strategy, four placement
patterns are considered to store fetched data.
 Table 1 presents a comparison of these prefetching
strategies. Each of these strategies concentrates on only one
prefetching issue. For instance, JeCache focuses on choosing
an appropriate prefetching time and speculative prefetch
considers node processing capacity for load balancing. We
attempt cover a combination of these issues in our proposed
prefetch mechanism.

Table 1. Comparison of prefetching strategies
Technique Prefetch

type
Location to

store
prefetched

data

Advantages Disadvantages

JeCache [8] HDFS
prefetch

Worker
node cache

Uses cache
space

efficiently

Only considers
read cache

Prefetch
thread [9]

Node
prefetch

Processing
node buffer

Reduces
transmission

time

Waiting time
for first data
transmission

Streaming
technique

[10]

Node
prefetch

Processing
node buffer

Reduces
waiting time

Does not load
balance

Speculative
prefetch

[11]

Node
prefetch

Worker
node cache

Considers
node

processing
capacity

Does not take
into account

node
throughput

Two-level
correlation-
based file

prefetching
[12]

HDFS
prefetch

Considers
four

patterns
(ND-

pattern,
CD-pattern,
NC-pattern,

and CC-
pattern)

Dynamic
replica

selection

Does not
consider some

features

3. Methodology

In this section, we present the design of our proposed
prefetching mechanism by addressing the key issues
discussed in the introduction. Firstly, we determine when to
launch the prefetching mechanism based on the progress rate
of tasks. Secondly, based on the processing capacity of the
worker node and the available cache space, we calculate the
number of data blocks that can be prefetched in each round,
K, using the KNN algorithm. Finally, we determine the
location for prefetched data based on the data locality rate to
reduce execution time by minimizing data transmission time.
A sequence diagram is presented in Figure 1 to clarify the
workflow of our proposed prefetching mechanism.

3.1. prefetch time

In theory, the optimal timing for launching prefetching in
Hadoop is determined by when the prefetched data can be
fully utilized by Map or Reduce tasks, and when it can be

made available in the cache before it is needed. This approach
can help minimize the impact of data access latencies on
Hadoop job performance. One method of determining the
best timing is to use the progress rate of Map and Reduce
tasks to predict when they will require data. In this case, a
threshold value should be set for the progress rate of Map and
Reduce tasks. Once the progress rate exceeds the threshold,
the prefetching mechanism can be launched to begin fetching
data blocks that are likely to be needed soon. By launching
prefetching at this time, the data can be made available in the
cache before it is needed, reducing data access latencies. To
avoid interfering with other tasks or causing excessive
network traffic, it is advisable to trigger prefetching when the
system is relatively idle, such as during periods of low job
activity or off-peak hours. Ultimately, the optimal timing for
prefetching in Hadoop depends on various factors, including
the job's characteristics, worker node processing capacity,
and network resource availability. Monitoring system
performance and adjusting the prefetching strategy as needed
is critical to achieving favorable results.
 To determine the best time to launch prefetching, we
calculate the progress rate of tasks and determine a suitable
threshold value. To calculate this threshold, we first introduce
some notation: a job consists of T tasks (either Map tasks or
Reduce tasks), with each task processing N <key, value>
pairs, the number of processed pairs is M, and the task has
completed L stages (for Reduce tasks, there are three stages:
copy data phase, sort phase, and reduce phase). The progress
rate of the ith task, PSi, is estimated based on the percentage
of the task's <key, value> pairs that have been processed, as
shown in Eq. 1 [14]. The average progress rate of a job, PSavg,
is then calculated using Eq. 2. Furthermore, the progress rate
of a task T can be computed based on how many <key, value>
pairs are processed per second, given the task has run for Tr
seconds, as shown in Eq. 3 [15]. By setting a suitable
threshold value for the progress rate of Map and Reduce
tasks, the prefetch mechanism can be triggered when the
progress rate exceeds the threshold value, indicating that the
task will soon require data blocks that can be prefetched.

PSi = M/N for Map tasks

PSi =1/3(L+M/N) for Reduce tasks (1)

PSavg= (1/T) * ∑ PS𝑇𝑇
𝑖𝑖=1 I (2)

PRi=PSi/Tr (3)

 To determine the threshold value for launching the prefetch
mechanism, we need to consider the workload and system
characteristics. The choice of threshold should balance the
risk of triggering prefetching too early (leading to wasted
network bandwidth and cache space) and the risk of
triggering prefetching too late (resulting in longer processing
times due to data access latency).

EAI Endorsed Transactions
on Scalable Information Systems

| Volume 12 | Issue 3 | 2025 |

R.Ghazali, and D.G.Down

4

1. Send data block request

2. Send a request to check cached data blocks

3. Checks
whether
requested
data blocks
cached or not

4. Send a request to cache data blocks if missing
 cache occurred

5. Calculates prefetch time based on
the progress rate of the task and prefetched
data size based on processing capacity

6. Launches prefetch mechanism

8. Send fetched data

9. Calculates the location of prefetched
data blocks based on data locality

10. Send a request to cache prefetched data blocks

7. Prefetch K closest data blocks via the KNN algorithm

Figure 1. Sequence diagram

 In this paper, we obtain this threshold directly, as will be
seen in our experimental results (Section 4.3). Another
possibility would be to find a parameterized function to
determine the threshold. A potential formula is expressed
as Eq. 4, where α and β are scaling factors that can be
adjusted based on the characteristics of the workload and
cluster. To determine α and β, one could consider workload
features such as cache affinity and job type (I/O-bound and
CPU-bound), while the cluster specifications could include
available cache space and worker node processing
capacity. To calculate the standard deviation of the
progress rate of Map and Reduce tasks across the entire job,
we use Eq. 5, where T is the total number of progress rate
values. By taking into account these factors, we can
determine an appropriate threshold value for launching the
prefetch mechanism that minimizes the impact of data
access latencies on the performance of Hadoop jobs.

Threshold = α * (PSavg + β * PSstd) (4)
PSstd = sqrt [� (PS𝑇𝑇

𝑖𝑖=1 i- PSavg)² / (T - 1)] (5)

3.2. prefetched data size

The volume of data to prefetch is a crucial factor affecting
performance. Insufficient prefetched data can result in the
system having to retrieve demand data from the disk or
network, leading to increased data access time or an
increased frequency of prefetch operations. On the other
hand, excessive prefetched data can lead to excessive load
on a worker node and increased resource contention,
negatively affecting performance. The number of data
blocks that can be prefetched depends on various factors,
such as the processing capacity of the node, job running
time, and the degree of parallelism. In a Hadoop
heterogeneous environment, where the cluster consists of a

set of worker nodes with varying processing capacities and
cache sizes, the prefetched data size (number of data
blocks) can be calculated using a relation such as Eq. 6.
Here, W is the number of worker nodes, Pj denotes the
processing capacity of the jth worker node, and Cj
represents the available cache space on the jth worker node.
The equation takes into account the parallelism degree,
denoted by Nc (the number of tasks that can run
concurrently), the estimated average processing time of a
data block in the jth worker node (ETj), and the data block
size (BS). Moreover, we adjust the value of K for specific
workloads as some workloads may benefit from a smaller
K, while others may perform better with a larger K. For this
purpose, the cache affinity of applications (CA) [16] is
considered as a coefficient that determines how to utilize
the benefit of cached data in each application. For our
purposes, we assume that it can be classified into three
levels: high, medium, and low cache affinity with values of
0.75, 0.5, and 0.25 respectively.

K= � (P𝑊𝑊
𝑗𝑗=1 j * ETj * CA* Nc)/BS (6)

We should choose an appropriate value for K. If it is too
small, the result is under-prefetching which can lead to a
lower cache hit ratio and missed prefetch opportunities. On
the other hand, if K is too large, the result is over-
prefetching via increasing cache pollution. Therefore, the
choice of K should manage the trade-off between under-
prefetching and over-prefetching. This choice depends on
the Hadoop cluster characteristics and features of the
workload. We will further explore the choice of K in our
numerical experiments.

Worker node NameNode Cache metadata HDFS

EAI Endorsed Transactions
on Scalable Information Systems

| Volume 12 | Issue 3 | 2025 |

Smart Data Prefetch Using KNN to Improve Hadoop Performance

5

3.3. KNN clustering

The K Nearest Neighbor Classification (KNN clustering)
algorithm [17] is a non-parametric algorithm employed for
the identification of the nearest K training instances to a
given test data point. Once these K closest training
instances are ascertained, the KNN algorithm employs a
majority voting mechanism, where the class with the
highest frequency among the selected K instances is
specified as the classification for the test data. This
clustering algorithm contains two key phases:

• The Training Phase: During this stage, the algorithm
stores the training data point coordinates along with
their respective class labels, which serve as identifiers
for classifying data points in the subsequent testing
phase.

• The Testing Phase: This phase entails determining the
class labels for new data through a majority vote among
the K nearest neighbors of the testing data point, derived
from the training dataset using a defined distance metric.

The general procedure of the KNN clustering algorithm
can be summarized as follows:

1. Determine the value of K.
2. Preparation of the training dataset, which involves

storing data point coordinates and their associated class
labels.

3. Loading the data point from the testing dataset.
4. Execution of a majority vote among the K nearest

neighbors of the testing data point from the training
dataset, based on the prescribed distance metric.

5. Assignment of the class label from the majority vote
winner to the new data point in the testing dataset.

6. Repeat these steps until all data points in the testing
phase are accurately classified.

Algorithm1: Mapper function

Function Mapper()

1-tr =Load training dataset in the form of

<key, value> pairs

// key is the unique identifier for a data block and the value
includes the features and the class label
2- ts=Load test dataset

3- Class_tr = readClassId(value)

4- For i=1 to n // Iterate over each test instance
5- For j=1 to m// number of training instances
6-distance=distance+ (tsi-trj) ^2

7-distij =SQRT (distance) //Calculates Euclidean distance
8-Return(<i, object <trj , distij, class_tr>>)

9-End for

10-End for

Output: <key1, value1> where key1 is the unique identifier for a data
block and value1 encompasses information about the distance between

this data block and others, along with their associated classes, presented
as <DBi, <DBj, distij, class A>>.

Algorithm2: Reducer function

Input: <key1, <List value1’s> distances> where key1 is the data
block id
of the test instance, value1is an object which contains:
< DBi, <DBj, distij, class A >, distances: List of all distances, and
K value
Function Reducer(K)

1- Sort_ascending(distances)

2- new LinkedList K_distances

3- new LinkedList Classes

4- For i=1 to K

5- K_distances.add(distances.get(i))

6- End for

7- For all dist ∈ K_distances
8- If dist. getclass()∈ classes
9- classes.add(dist.get class())

10- End if

11- End for

12- For all class_id ∈ classes
13- If dist < min then

14- min = dist

15-decided_class_id = class_id

16-End if

17- End for

18- key2 = key1

19- value2 = decided_class_id

20-Reteun(key2,value2)

 In the context of our proposed approach, we utilize the
KNN MapReduce programming model [18] [19] to cluster
data blocks within the Hadoop Distributed File System
(HDFS), based on Euclidean distance. In addition to the
required data block, we also prefetch the K nearest data
blocks as they are more likely to be needed soon. In this
framework, the Mapper function is responsible for
computing distances between the testing instance to be
processed and the training instances contained within the
received training data split. Consequently, the output of the
Map task is structured as a <key, value> pair, where the
key designates a data block to be classified, and the value
encompasses information about the distance between this
data block and others, along with their associated classes,
presented as <DBm, <DBn, distmn, class A>>. The Mapper
function is presented in Algorithm 1. The Reducer function
plays a central role in the classification decision for the test
instances. Upon receiving inputs from the output of the
Map tasks, the Reducer function identifies the K nearest
neighbors from the entire set of training instances by
determining the K smallest distances within the list,
followed by majority voting. Algorithm 2 provides details
of the Reducer function.

EAI Endorsed Transactions
on Scalable Information Systems

| Volume 12 | Issue 3 | 2025 |

R.Ghazali, and D.G.Down

6

 In scenarios involving substantial data volumes and an
extensive feature set, some data points may exhibit similar
proximities to instances from different classes. In such
instances, the minimal distance from individual instances
may not definitively signify that the test instance belongs
to a particular class. For instance, suppose that K is set to
5, and the following values are provided to the reducer for
the test instance DB7:
<DB7, <DB2, 0.11, A>>
<DB7, <DB10, 0.12, B>>
<DB7, <DB9, 0.15, B>>
<DB7, <DB13, 0.13, C>>
<DB7, <DB16, 0.12, A>>
 In this scenario, the classical KNN algorithm, due to its
majority voting strategy, would suggest that the test
instance DB7 belongs to either class A or class B. However,
further examination reveals that class A contains an
instance with the closest proximity to the testing instance,
hence leading to the conclusion that DB7 is most
appropriately categorized within class A.

3.4. Prefetched data location

Considering data locality to determine the prefetched data
location can have a positive impact on decreasing job
execution time. Assume that for a set of worker nodes
where all replicas of data blocks are located, Dd is the
distance between worker node d and the processing node.
Additionally, Cd represents the processing capability of
node d (a combination of CPU and memory capacity),
while Ld represents the workload of worker node d. It is
important to choose an appropriate worker node with a low
load and distance to the processing node, to reduce data
transmission time, and ensure enough processing capacity
to balance the load in the cluster, thereby increasing
resource utilization. A high-level conceptual formula that
incorporates these parameters is given in Eq. 7, where f is
a function that takes into account the specific algorithms
and policies implemented in Hadoop to calculate a suitable
location for prefetching data. It is obvious that data locality
and node processing capacity have direct relationships, as
Hadoop prioritizes nodes with local copies of the required
data that are closer to the nodes where the task is scheduled.
Also, nodes with higher processing capacity are preferred
for executing tasks to ensure that the computational load
can be handled effectively. When a node is under heavy
load or already processing a significant amount of data, it
is logical to avoid placing additional prefetched data on that
node and to distribute the tasks among less loaded nodes,
ensuring a balanced workload distribution. In summary, the
selected node for the prefetched data, S, is given by:

 S=Arg Min{f ((Dd, Cd)/Ld)} (7)

 A similar formula is used in the dynamic replica
selection algorithm proposed in [9], where identical
parameters are taken into account to determine which data

blocks should be replicated, thereby mitigating the
occurrence of the hot worker node phenomenon. We do
emphasize that the function f is an abstract function used to
illustrate what should determine the location of prefetched
data. As we will see in our experiments, this notion can be
used in a more conceptual manner.

3.5. Proposed prefetch algorithm

Algorithm 3: KNN prefetch algorithm

Input: List of heterogenous worker nodes, Input data size (IDS),
List of tasks, Data block size (DBS)
1-TDB=IDS/DBS //Calculate the total number of data blocks
2-If task Ti is Map task // Calculate the progress rate
3-PSi = M/N

4-Else PSi =1/3*(L+M/N)

5-End if

6-PRi = PS i/ETi

7-TimetoEndi = (1 − PSi)/ PRi

8-PSavg= (1/T) * ∑ PS𝑇𝑇
𝑖𝑖=1 i

9- If TimetoEndi>= Threshold* PSi then launch

prefetch

10. K= � (P𝑊𝑊
𝑗𝑗=1 j * ETj * CA* Nc)/BS //Calculate K value

11-Call Mapper()

12-Call Reducer(K)

13-Look up block metadata to find the location

of these K data blocks //Data locality for prefetched data
14-If they are not located in the worker node

then

15- Worker nodes=Arg Min{f((Dd, Cd)/Ld)}

16- Send a request to the worker nodes to

cache data blocks

17-End If

This section outlines our proposed algorithm for smart
prefetching, which we present in detail. The input to our
KNN prefetch algorithm includes a list of worker nodes in
the cluster along with their processing capabilities, a list of
tasks to be performed, and the size of the input data. First,
we calculate the number of data blocks based on the
Hadoop Distributed File System's (HDFS) data block size.
Next, we estimate the time remaining for each task based
on its progress, which depends on the task type, using Eq.
2. We then check whether the estimated time remaining for
a task has reached the predefined threshold value or not. If
it meets the threshold value, the prefetching process is
initiated. The number of data blocks that can be prefetched,
denoted by K, is determined using Eq. 6. We use K Nearest
Neighbor (KNN) clustering to group the data blocks into
clusters, with each cluster containing the data blocks that
can be prefetched simultaneously during each prefetch
phase. We determine the K data blocks that are located in
the nearest neighborhood of the required data blocks based
on their Euclidean distance as has been described in

EAI Endorsed Transactions
on Scalable Information Systems

| Volume 12 | Issue 3 | 2025 |

Smart Data Prefetch Using KNN to Improve Hadoop Performance

7

Section 4.3. Finally, we place the prefetched data blocks
based on the data locality factor, as described by Eq. 7,
which reduces the data transmission time through the
network and positively impacts the job execution time.
In this algorithm, we assume that workload patterns do not
change over time. Otherwise, we need to monitor cache
performance continuously and predict the optimal K value
based on historical data of access patterns and workload
characteristics (using machine learning techniques, for
example). Also, it would likely be beneficial to establish a
feedback loop to regularly re-evaluate the chosen K value
as the system evolves and workload patterns change.
Incorporating this increased complexity is something that
we are considering for future work.

4. Results and Discussion

In this section, we describe the experimental environment
including software and hardware configurations and some
Hadoop configuration parameters settings. Our evaluation
is divided into two sections: investigating the appropriate
threshold value for choosing the best prefetch time and
evaluating the impact of smart prefetch on Hadoop
performance.

4.1. Experimental setup

 For our experiments, we use a cluster consisting of a single
NameNode and ten worker nodes located in two racks such
that odd-numbered nodes are in rack1 and even-numbered
nodes are in rack2.

• Hardware configuration: The nodes are connected via a
10 Gigabit Ethernet switch. The experimental
environment is a heterogeneous environment with
different memory sizes and processing capabilities.
Details are presented in Table 2.

• Software configuration: We use the Ubuntu14.04
operating system and JDK 1.8, Hadoop version 2.7, and
Intel HiBench [20] [21] version 7.1.

• Hadoop configuration parameters: The block size of
files in HDFS is 128 MB, and data replication is set to
3.

• MapReduce applications: We use Intel HiBench as a
Hadoop benchmark suite that contains the following
applications: 1) WordCount is a CPU-intensive
application that returns the number of occurrences of
each word in a text file. 2) Sort is a typical I/O-bound
application that sorts input data. 3) Grep is a mix of
CPU-bound and I/O-bound operations that searches for
a substring in a text file. In addition, the cache affinity
feature determines how to utilize the benefit of cached
data in each application such that it can be classified into
three categories based on this feature: low cache affinity
(Sort), medium cache affinity (WordCount), and high
cache affinity (Grep).

• Input data: For carrying out experiments, we have used
the default data sizes from the HiBench suite. Sort and
WordCount have 60 GB and Grep has 1 TB,
respectively, for their input data sizes. The input data are
generated by using the RandomTextWriter.

Table 2. Node characteristics
Node type Hardware configuration Node

processing
capability

Master
node

Intel Core i7-6700 processor, 2.4 GHz
CPU,64 GB memory, 10 data blocks
cache capacity, and 1 TB hard disk.

8 Map slots,
5 Reduce

slots
Odd worker

nodes
Intel core i5-4590 processor, 3.30 GHz
CPU, 32 GB memory, 8 data blocks

cache capacity, and 500 GB hard disk.

4 Map slots,
2 Reduce

slots
Even

worker
nodes

Intel core i5-4590 processor, 2.9 GHz
CPU, 16 GB memory, 6 data blocks

cache capacity, and 250 GB hard disk.

2 Map slots,
1 Reduce

slot

4.2. Metrics

In our experiments, we consider two key performance
metrics:

• Job execution time: This plays a vital role in Hadoop
performance improvement, and is related to data access
time. The data access time decreases significantly if we
can access data from the cache instead of the disk,
reducing the job execution time.

• Data locality rate: This is measured using the total
number of tasks run locally in the node where the
associated data resides.

4.3. Investigating the threshold value

As we mentioned in the previous section, selecting the
appropriate value (between 0 and 1) for the threshold
parameter is a crucial issue that depends on various factors.
For this purpose, we consider two workloads to investigate
the impact of different threshold values on job execution
time: WordCount as a CPU-oriented application with
medium cache affinity, and Sort as an I/O-oriented
application with low cache affinity.
 In Figure 2, we can observe that execution time
increases when the threshold value is less than 0.6 or more
than 0.8. The number of references to HDFS for fetching
data blocks rises when the threshold value is too small.
Prefetching large numbers of data blocks before requiring
them leads to overload. In this case, there is a high
probability that some data blocks are evicted from the
cache before they are required, leading to a negative impact
on job execution time. Also, if the threshold value is set too
large (greater than 0.8) a greater number of data blocks are
not accessible from the cache when required as a result of
needing to wait until the prefetch mechanism is completed.
The result is resource underutilization if prefetch is
performed too late The choice of threshold should take into
account the trade-off between these two issues. For our
experiments, a suitable value appears to be 0.7,

EAI Endorsed Transactions
on Scalable Information Systems

| Volume 12 | Issue 3 | 2025 |

R.Ghazali, and D.G.Down

 8

independent of the application. It would be of interest to
further explore if such insensitivity holds across other
applications and/or operational environments.

Figure 2. The impact of threshold value on job

execution time

4.4. Investigating the impact of K

In this experiment, we consider a cache size of 1024 MB,
data block size of 128 MB, and two applications: Grep
and Sort as high cache affinity and low cache affinity,
respectively. Next, execution time is evaluated based on
three values of K including small (2), medium (5), and
large (10). Figure 3 illustrates execution time as a
function of K for both applications.

Figure 3. The impact of K on job execution time

 The results indicate that both low and high K values
result in degraded prefetching behaviors, with low K values
causing under-prefetching and high K values causing over-
prefetching. Over-prefetching leads to cache pollution in
both low-cache and high-cache affinity scenarios,
negatively impacting execution time. This is due to the
presence of unneeded data blocks in the cache, which
reduces the cache hit ratio and increases unnecessary I/O
operations to retrieve the required data blocks. Conversely,
under-prefetching, associated with small K values, results
in frequent cache misses, necessitating data block retrieval
from slower storage and thereby increasing execution time.
In applications with low cache affinity, the impact of both
under-prefetching and over-prefetching on execution time

is minimal. However, in high-cache affinity applications,
the negative effects on execution time are significant.

4.5. Impact of smart prefetch on Hadoop
performance

In this section, we evaluate the performance of smart
prefetch based on two metrics: data locality rate and job
execution time. For this purpose, we run a combination of
the Micro benchmark in Intel HiBench (composed of both
I/O-bound jobs and CPU-bound jobs) to compare our
algorithm to the following strategies:

• Hadoop original: No caching is utilized.
• Simple prefetch: Data is prefetched into the cache before

the actual processing starts with the help of a prefetching
thread.

• Speculative prefetch [9]: A recently proposed algorithm
that utilizes KNN to cluster intermediate data and as
such has similarities to the smart prefetch mechanism.

Performance evaluation based on data locality
rate

Figure 4 presents the data locality rate for three
applications and compares our smart prefetch algorithm
with the three algorithms given above. Smart prefetch has
the best local task rate, demonstrating that it improves data
locality by locating prefetched data in an intelligent
manner. Also, by prefetching high-probability demand data
just in time, more tasks have a chance to use cached data.
Experimental results show that the locality rate of tasks has
improved by 14.2%, 7.8%, and 3.22% in WordCount, 15%,
9.52%, and 2.22% in Sort, 17.07%, 10.34%, and 4.34% in
Grep against Hadoop original, Hadoop with simple
prefetch, and Speculative prefetch respectively. In addition
to showing the possible performance improvement of our
algorithm, this also suggests that our method is more
suitable for high cache affinity applications and I/O-bound
jobs, as they benefit more from cached data.

Figure 4. Local tasks rate for different applications

Performance evaluation based on job execution
time

 In this experiment, we use average job execution time as a
performance measure to evaluate our proposed prefetching

EAI Endorsed Transactions
on Scalable Information Systems

| Volume 12 | Issue 3 | 2025 |

Smart Data Prefetch Using KNN to Improve Hadoop Performance

9

strategy. We use the Delay job scheduler that considers the
data locality rate in its scheduling policy. We also execute
each application 10 times to calculate the average
execution time. In Figure 5, we can observe that
WordCount, Sort, and Grep finish their jobs 17%, 9.4%,
and 16% faster than the default prefetch mechanism and
their execution time improves by 30%, 25%, and 30%
against Hadoop native and the speed increases by 8%, 3%,
and 7.5% compared with Speculative prefetch. Our novel
prefetch mechanism improves the data locality rate with a
resulting positive impact on execution time due to
decreased data transmission time. Also, the cache hit ratio
is increased via prefetching the appropriate volume of data,
resulting in more tasks having the chance to utilize cached
data, improving data access times with a resulting positive
impact on execution time.

Figure 5. Average job execution time for different
applications

5. Conclusion and future work

In this paper, we have presented a smart prefetch
mechanism comprised of three phases. Firstly, we
determine the optimal launch time for prefetching data
blocks from the Hadoop Distributed File System (HDFS)
by calculating the progress rate of tasks on worker nodes.
This phase's success is limited by the threshold parameter,
which must be set based on various environment and
workload characteristics. While this paper provides a proof
of concept of our prefetching algorithm, further work on
how to choose this threshold is required. This could consist
of additional guidelines, but ideally one would like to
choose/learn this parameter in an automated fashion. Next,
we utilize the K-Nearest Neighbor (KNN) clustering
algorithm to identify the number of data blocks with a high
demand priority that can be fetched in each round. Finally,
we evaluate data locality as a metric for placing the
prefetched data. Experimental results indicate an average
job execution time improvement of approximately 28.33%,
14.33%, and 6.16% when compared to Hadoop original,
the default prefetch mechanism, and speculative prefetch
respectively. This improvement is attributed to a 15.4%,
9.22%, and 3.25% increase in data locality rate,
respectively. In addition to determining the threshold to
launch the prefetch mechanism, there are additional

parameters that must be tuned. As a step in this direction,
we plan to assess the proposed prefetch mechanism's
scalability by testing it on a large cluster as well as
automatically determining the K value for dynamic
workload by utilizing machine learning methods.

References
[1] Apache Hadoop, http://Hadoop. Apache. org/, last accessed

2021/02/15
[2] Khezr, S. N. & Navimipour, N. J. MapReduce and Its

Applications, Challenges, and Architecture: a
Comprehensive Review and Directions for Future Research.
Journal of Grid Computing 15, 295–321 (2017).

[3] Merceedi, K. J. & Sabry, N. A. A Comprehensive Survey
for Hadoop Distributed File System. Asian Journal of
Research in Computer Science 46–57 (2021).

[4] T. M. Cover and P. E. Hart, Nearest neighbor pattern
classification, IEEE Transactions on Information Theory,
vol. 13, no. 1, pp. 21–27,1967.

[5] Ghazali, R., Adabi, S., Down, D. G. & Movaghar, A. A
classification of hadoop job schedulers based on
performance optimization approaches. Cluster Computing
24, 3381–3403 (2021).

[6] Gandomi A, Reshadi M, Movaghar A, Khademzadeh A.
HybSMRP: a hybrid scheduling algorithm in Hadoop
MapReduce framework. J Big Data (2019).

[7] Ghazali, R., Adabi, S., Rezaee, A., Down, D. G. &
Movaghar, A. CLQLMRS: improving cache locality in
MapReduce job scheduling using Q-learning. Journal of
Cloud Computing 11, (2022).

[8] Luo, Y., Shi, J. & Zhou, S. JeCache: Just-Enough Data
Caching with Just-in-Time Prefetching for Big Data
Applications. Proceedings - International Conference on
Distributed Computing Systems 2405–2410 (2017).

[9] Vinutha, D. C. & Raju, G. T. Data Prefetching for
Heterogeneous Hadoop Cluster. 2019 5th International
Conference on Advanced Computing and Communication
Systems, ICACCS 2019 554–558 (2019).

[10] Lee, J., Kim, K. T. & Youn-Chen, T. MapReduce
Performance Scaling Using Data Prefetching, 9, 26–31
(2022).

[11] Kalia, K. et al. Improving MapReduce heterogeneous
performance using KNN fair share scheduling. Robotics and
Autonomous Systems 157, 104228 (2022).

[12] Dong, B. et al. Correlation-based file prefetching approach
for Hadoop. Proceedings - 2nd IEEE International
Conference on Cloud Computing Technology and Science,
CloudCom 2010 41–48 (2010).

[13] Singh, G., Chandra, P. & Tahir, R. A Dynamic Caching
Mechanism for Hadoop using Memcached (2012)

[14] Chen, Q., Zhang, D., Guo, M., Deng, Q. & Guo, S.: SAMR:
a self-adaptive MapReduce scheduling algorithm in a
heterogeneous environment. In: Proceedings—10th IEEE
International Conference on Computer and Information
Technology, CIT-2010, 7th IEEE International Conference
on Embedded Software and Systems, ICESS-2010,
ScalCom-2010. pp. 2736–2743 (2010).

[15] Naik, N.S., Negi, A., Sastry, V.N.: Performance
improvement of MapReduce framework in heterogeneous
context using reinforcement learning. Procedia Comput.
Sci. 50, 169–175 (2015)

EAI Endorsed Transactions
on Scalable Information Systems

| Volume 12 | Issue 3 | 2025 |

R.Ghazali, and D.G.Down

10

[16] Kwak, J., Hwang, E., Yoo, T., Nam, B. & Choi, Y. In-
memory Caching Orchestration for Hadoop. (2016).

[17] H. Li, H. Jiang, D. Wang, B. Han, An improved KNN
algorithm for text classification, Eighth International
Conference on Instrumentation & Measurement, Computer,
Communication and Control IMCCC, 2018, pp. 1081–1085.
(2018)

[18] TULGAR, T., HAYDAR, A. & ERŞAN, İ. A Distributed K
Nearest Neighbor Classifier for Big Data. Balkan Journal of
Electrical and Computer Engineering 6, 105–111 (2018).

[19] Maillo, J., Triguero, I. & Herrera, F. A MapReduce-Based
k-Nearest Neighbor Approach for Big Data Classification.
Proceedings - 14th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications,
TrustCom 2015 2, 167–172 (2015).

[20] Huang S, Huang J, Dai J, Xie T, Huang B ,The HiBench
Benchmark Suite: Characterization of the MapReduce-
Based Data Analysis (2014).

[21] Hibench, http://GitHub. com/ Intel- bigdata/ HiBench, last
accessed 2023/06/25

EAI Endorsed Transactions
on Scalable Information Systems

| Volume 12 | Issue 3 | 2025 |

