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Abstract

This paper proposes a novel approach for temperature estimation in buildings using wireless federated
learning (FL) while considering latency constraint. The proposed model utilizes a hierarchical federated
learning architecture within a wireless network, incorporating one base stations (BS), multiple access points
(APs), and user equipment (UEs). In this sytem, each UE performs local learning and shares model updates
with APs, which aggregate them and forward them to the BS for final aggregation. We design the system
aiming to minimize both the latency and energy consumption while ensuring accurate temperature prediction.

Simulation results show the effectiveness of the proposed scheme in comparison to the conventional deep
reinforcement learning (DRL) and genetic algorithm (GA) approaches. Specifically, at the latency threshold of
10s, the proposed scheme achieves a prediction accuracy of approximately 0.60, while DRL reaches 0.50 and
GA stays around 0.48. These results highlight the superior performance of the proposed federated learning-
based method, especially in high-latency scenarios, and demonstrate its potential for real-time applications
in smart building environments under wireless communication constraints.
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1. Introduction data rates and provide seamless connectivity in dense
urban environments. Moreover, wireless sensor net-
works (WSNs), Internet of Things (IoT), and low-power
wide-area networks (LPWAN) are becoming integral to
smart cities, industrial automation, and remote health-
care, facilitating real-time data collection and decision-
making [7-9]. In addition, the advent of satellite-based
communication systems, including low Earth orbit
(LEO) satellite constellations, promises global internet
access even in the most remote regions. In further,
Terahertz communication has been investigated to sig-
nificantly increase the transmission data rate in the
future. As the demand for always-on connectivity con-
tinues to grow, the convergence of wireless technologies
with machine learning, artificial intelligence, and edge
computing leads to revolutionize how to interact with
digital systems, making them faster, more intelligent,
and adaptive to the evolving needs of users.

Information technology (IT) has experienced expo-
nential growth and transformation over the past few
decades, profoundly impacting nearly every aspect of
modern life, from communication to business opera-
tions, healthcare, education, and beyond [1-3]. Among
the most significant advancements in IT, wireless tech-
nologies have played a pivotal role in shaping the
future of connectivity. In this field, cutting-edge tech-
niques have been proposed to enhance data transmis-
sion, network efficiency, and coverage. Specifically, 5G
and beyond, along with advancements in Wi-Fi 6, can
help boost the speed, capacity, and reliability of wire-
less networks, enabling faster download speeds, low-
latency connections, and support for a large number
of devices simultaneously [4-6]. The integration of
technologies like millimeter-wave (mmWave), massive
multiple-input multiple-output (MIMO), and beam-

forming has made it possible to support ultra-high Mobile edge computing (MEC) has emerged as a
transformative paradigm in the realm of mobile net-

works, particularly in addressing the critical issue of
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systems [10, 11]. Specifically, MEC involves deploying
computational resources at the edge of the network,
closer to end-users, which reduces the dependency
on centralized cloud infrastructures and enables faster
data processing, real-time decision-making, and low-
latency services [12-14]. This is especially crucial for
applications such as augmented reality, autonomous
vehicles, and industrial automation, where milliseconds
of delay can significantly impact performance. It has
been shown that reducing latency is one of the pri-
mary advantages of MEC, as it minimizes the need
for long-distance data transmission to distant cloud
servers [15]. Various strategies have been proposed for
optimizing MEC networks to reduce the latency, such
as dynamic resource allocation, task offloading mech-
anisms, and efficient scheduling techniques [16]. On
the other hand, energy consumption is another critical
concern in MEC, especially in mobile devices and edge
nodes with limited battery life. Various methods have
been proposed to optimize the energy efficiency, such
as energy-efficient task offloading, load balancing, and
the use of green communication protocols [17]. Energy
efficiency is particularly important in MEC systems
as a large number of devices should be supported
in heterogeneous environments while minimizing the
environmental impact. Moreover, trade-offs between
latency and energy consumption are often explored,
where reducing one may increase the other. Techniques
such as joint optimization of latency and energy con-
sumption through machine learning-based approaches,
predictive analytics, and adaptive task offloading have
been proposed to strike a balance between performance
and energy savings.

Federated learning (FL) is an emerging machine
learning paradigm that enables decentralized model
training across multiple devices or edge nodes while
keeping data localized, addressing concerns related
to privacy and data security [18-20]. In FL, model
parameters are updated by aggregating local updates
from various devices, rather than centralizing raw data.
The impact of training latency on the convergence
rate of the global model of FL has been widely
investigated, where the training latency refers to the
time it takes for devices to complete local computations,
transmit updates to the central server, and aggregate
the results [21, 22]. It has been shown that higher
training latency, often caused by network delays, device
heterogeneity, and limited computational resources,
can significantly hinder the convergence speed of
the global model. Moreover, the convergence rate
in federated learning is highly dependent on the
synchronization of local updates and the frequency
of communication between devices and the central
server. As training latency increases, the model’s
ability to converge quickly diminishes, leading to
prolonged training times and reduced overall system

efficiency. Additionally, a high latency can result in
stale or outdated model updates, further exacerbating
the convergence problem and potentially leading to
suboptimal performance [23, 24]. Various techniques
have been proposed to mitigate the impact of
training latency, such as adaptive aggregation methods,
which prioritize recent updates, and decentralized
optimization algorithms, which allow for local model
updates to be more independent and less dependent
on global synchronization. Other strategies include
reducing the number of communication rounds,
optimizing the local update frequency, and employing
compression techniques to reduce the communication
load [25, 26]. Moreover, hybrid federated learning
models that combine centralized and decentralized
training strategies have been proposed to balance the
trade-off between the latency and convergence.

This paper introduces a novel approach for building
temperature estimation through wireless federated
learning, with a focus on addressing the latency
constraint. In this framework, a hierarchical federated
learning architecture is leveraged within a wireless
network, involving one base stations (BS), multiple
access points (APs), and user equipment (UEs). In this
system, each UE conducts local model training and
subsequently shares its updates with the associated
AP, which aggregates them and then transmits the
consolidated model to the BS for final aggregation.
We design the system through minimizing both the
latency and energy consumption, while ensuring the
accuracy of temperature predictions. Simulation results
demonstrate the effectiveness of the proposed method
in comparison to the competing approaches, such
as deep reinforcement learning (DRL) and genetic
algorithm (GA). Notably, at the latency threshold of 10s,
the proposed method achieves a prediction accuracy
of approximately 0.60, outperforming DRL (0.50) and
GA (0.48). These findings underscore the superior
performance of the federated learning-based model,
particularly in high-latency scenarios, highlighting its
potential for real-time applications in smart building
systems, where wireless communication constraints are
a significant consideration.

2. System Model

In this paper, we consider a hierarchical federated
learning (HFL) architecture for the building tempera-
ture estimation, implemented within a three-tier wire-
less network. The architecture consists of the key com-
ponents of one BS and multiple APs, where the base
stations are responsible for aggregating the local models
received from the access points, and AP indicates the
devices that act as intermediaries, responsible for col-
lecting local models from multiple UEs and forwarding
them to the BS. The UEs are the end-user devices
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that generate local datasets, perform local learning,
and upload their models to the APs for aggregation.
Each UE is linked to a designated AP, establishing
a dedicated connection through orthogonal frequency
division multiple access (OFDMA). Each AP is assigned
a set of UEs that it serves, denoted by K;, where i €
{1,...,I} represents the index of the AP, and the set
K ={1,...,K} represents all UEs in the network. The
set of APs is represented by Z = {1,..., I}, in which the
BS aggregates the local models forwarded by APs. Each
UE k € K; maintains a local dataset D; ; = {(X; kj, ¥ix,j) |
1 <j <|D;ixl}, where x; i ; denotes the feature vector and
Yik,j corresponds to the label of the j-th sample. The
aggregated dataset size across all network devices is

expressed as,
D= Z Z D s (1)

i€l kek;

During each learning round, the BS disseminates the
global model, which is generated by aggregating the
local models uploaded by the UEs. After completing
their local training, a selected group of UEs uploads
their updated models to the APs, which then combine
these updates and send the aggregated model to the
BS. The global model for round t is calculated by
incorporating the models from the previous round,

t t
b1 LieT kek; %k Digw;
- t
Yier Lkek, 3 xDik

, (2)

where w! represents the local model of UE k at AP i, and
al ik isa bmary indicator variable that denotes whether
UE k at AP i 1s selected to upload its model at round t.
Specifically, al’k = 1 signifies that UE k has been chosen
to upload its model, while af’k = 0 indicates that it has
not been selected.

In the communication and computation model, each
AP in this hierarchical system allocates a set of
N available resource blocks (RBs), indexed by N =
{1,...,N}, to support its associated UEs. These RBs
are shared using the OFDMA mode, with each UE k €
KC; occupying a dedicated RB when selected. In cases
of limited resources, the RBs are multiplexed across
multiple APs. The RB allocation is indicated by 0;, €
{0, 1}, where 6, , = 1 means RB # is assigned to UE k,
and 9; ;. , = 0 means it is not. The signal received by AP
i on RB n from UE k is,

t
Vikn = ik nhihis Kk nDi ko nXilon + Mifon
t
+ E E Oi k,nhihi, k, NP kX k2 - (3)

i'€T\i K'ek;

Here, p;x, denotes the transmit power of UE k
on resource block (RB) n, and h{,  represents the
channel coefficient between AP i and UE k over RB

n. Additionally, n;;, represents the additive white
Gaussian noise term at the AP, and p;y , refers to the
interference from other UEs.

We now proceed on the data rate and latency analysis.
The uplink data rate ri[’]k,n for UE k on RB # is calculated
using the following,

=BY Z’log2 (1 +

where BY is the bandwidth of an RB, and a larger BY
leads to an increased data rate rY k- Additionally, I i ,
denotes the interference from other UEs and Ny is the
noise power.

Additionally, the computation latency T(t:’ i for UE k
at AP i is given by,

1knp1kn|hzkn|

;4
zk nt BUNO

TCik = —of (5)

where «; j represents the number of CPU cycles needed
to process a single data sample, and St denotes the
CPU frequency of UE k during the ¢-th round

We now analyze the model upload latency and total
latency in the HFL system. Specifically, the model
upload latency for UE k € K; during the t-th round is
expressed as,

t
Tk = Z(Wi)' (6)

<
o=

where Z(w
uploaded, and rlrk denotes the uplink data rate of UE k
at AP 1.

The overall latency in the t-th round of HFL is
determined by the maximum of the latency among all
APs and UEs, considering both model upload latency
and computation latency. Therefore, the total latency
for HFL in round ¢ is:

) represents the data size of the model to be

t t U C
7' = max {aA T, + T }, 7
ieT kek; l'k( ik lrk) @)
where afk denotes the selection indicator for UE k. To

simplify the notation, the UE selection indicator af, is
formally as,

N
@iy = Zéi,k,nr VieZI kek; (8)
n=1

This indicator ensures that if a UE is not selected, a;k =
0, or not otherwise.

The energy consumption required for computation
by UE k at AP i is,

t 2
Ec ik = €ikkikS; kDij (9)
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where &; represents the capacitance coefficient, and
ik is the CPU cycles required to process one sample.
Additionally, the energy consumption for transmission
by UE k at AP i is given by,

N
U,t
Ei,k = [Zéi,k,npi,k,n

n=1

ri[’JkTi%. (10)

The total energy consumption for UE k at AP i during
the t-th round of HFL is,
t _ pUt t
E v =E}X +Ecik (11)
Thus, the total energy consumption E!, incorporates
both the transmission and computation energies.
For UE ke K;, the overall energy consumption
during the ¢-th round is the sum of transmission energy

and computation energy. The total energy consumption
of UE k at AP i in the t-th round is,

t _ pUt t
Ez’,k _Ez’,k +EC,i,k' (12)

This energy is pivotal for ensuring the efficient
operation of the system while balancing resource
consumption and model accuracy.

3. Convergence Analysis

We now perform the convergence analysis on the
considered system, where the following assumptions
are considered:

e Assumption 1 (Lipschitz continuous gradient):
The global loss function F(w) is Lipschitz
continuous, with a positive Lipschitz constant L.
Accordingly, for any two points w and v, the
gradient satisfies:

IVE(w) = VE@)I| < L||lw - v|. (13)

* Assumption 2 (u-strongly convex): The global loss
function F(w) is strongly convex, characterized by
a positive modulus y. Consequently, for any two
points w and v, the following inequality holds,

IVE(w) = VE@)I| 2 pllw - v|l. (14)

* Assumption 3 (Bounded gradient): The gradient
with respect to any given data sample is bounded
by,

IVEw;x;, y)l? < B1 + BallF(w)II?,  (15)

where f; and f, are constants that limit the
growth of the gradient.

Using the assumptions mentioned above, we can bound
the expected gap between the optimal solution and the

o
©
Q

—E— Proposed scheme
F |=»—DRL

——GA

o
©
a

Prediciton accuracy

o o
o > ° 3 o
?‘ ol ~ ol ©

o
14
a

o
o

4

°
IS
&

10 15 20 25 30 35 40 45 50
Latency threshold (s)

Figure 1. Prediction accuracy versus the training latency
threshold with K = 10 and Np = 10.

actual loss of HFL as,

2B B!
LD?’
(16)

E [F(wt“) - F(w*)] < A'E [F(w’) - P(w*)] +

in which Af and B? are,

At =1- % + AzﬁiBt, Bt = [Z Z (l —aik)Di,k

(17)

This result shows that selecting more UEs to participate
in the learning process leads to a faster convergence.
However, excessive selection of UEs could Ilead
to interference among UEs, which may degrade
performance due to the possibly arising inter-cell
interference in the OFDMA among multiple UEs. The
above analysis aims to balance model accuracy and
energy consumption while ensuring convergence and
minimizing interference.

4. Simulation Results and Discussions

In this part, we evaluate the proposed hierarchical
FL system in a three-tier wireless network (one BS,
multiple APs, and UEs) under OFDMA uplink access,
where each selected UE occupies a dedicated resource
block and the uplink rate, computation latency, upload
latency, and energy consumption. Specifically, the
latency threshold varies from 10s to 50s, and the
prediction accuracy is presented versus this threshold.
To examine scalability and data richness, we test
multiple operating points with the number of UEs K €
{10, 20} and a data-size parameter N € {10, 20}.

Fig. 1 and Table I show the relationship between the
training latency threshold and prediction accuracy with
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Table 1. Prediction accuracy of several schemes versus the latency threshold with K = 10 and Np = 10.

Latency Threshold (s) | Proposed Scheme | DRL | GA
10 0.60 0.50 | 0.48
20 0.72 0.62 | 0.52
30 0.78 0.68 | 0.55
40 0.83 0.72 | 0.62
50 0.90 0.81 | 0.68
0.95 0.9 T T
—6— Proposed scheme D —©— Proposed scheme
0.9 [ |—»—DRL 0.85 | |~ DRL D
—¥-cA VoA
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Figure 2. Prediction accuracy versus the training latency
threshold with K = 20 and Np = 10.

K =10 and Np =10 for three different schemes: the
proposed scheme, deep reinforcement learning (DRL),
and genetic algorithm (GA). The latency threshold
ranges from 10s to 50s, From this figure and table,
we can see that the three schemes all show a clear
trend where the prediction accuracy improves as the
latency threshold increases. Specifically, the proposed
scheme consistently outperforms both the DRL and
GA schemes in terms of prediction accuracy across
all latency thresholds. For example, at a latency
threshold of 10 seconds, the proposed scheme achieves
a prediction accuracy of about 0.6, while the DRL
scheme reaches approximately 0.55, and the GA scheme
is slightly lower at around 0.5. As the latency threshold
increases to 50 seconds, the proposed scheme’s accuracy
climbs to almost 0.85, whereas DRL reaches around
0.75, and GA stays significantly lower, around 0.65.
The results in this figure and table demonstrate the
effectiveness of the proposed scheme, particularly
as the latency threshold increases, showing that it
provides a higher prediction accuracy than both DRL
and GA, which shows more gradual improvement in
performance.

Fig. 2 and Table II display the relationship between
the training latency threshold and prediction accuracy
of three different schemes, where K = 10, Np = 20, and

Latency threshold (s)

Figure 3. Prediction accuracy versus the training latency
threshold with K = 10 and Np = 20.

the latency threshold varies from 10s to 50s. From
Fig. 2 and Table II, we can see that as the latency
threshold increases, the prediction accuracy improves
for all three schemes, where the proposed scheme
consistently achieves the highest accuracy compared to
DRL and GA across all latency thresholds. For instance,
at a latency threshold of 10 seconds, the proposed
scheme achieves the accuracy of about 0.6, DRL reaches
approximately 0.55, and GA is slightly lower at around
0.5. At higher latency thresholds, such as 50 seconds,
the proposed scheme achieves the prediction accuracy
of nearly 0.95, while DRL reaches about 0.85 and GA
stays at around 0.7. This comparison indicates that,
although all schemes benefit from increased latency,
the proposed scheme shows superior performance,
particularly as the latency threshold rises. It exhibits
the most significant improvement in the prediction
accuracy over the other two schemes, especially as the
latency threshold exceeds 30 seconds.

Fig. 3 and Table III illustrate the relationship between
the training latency threshold and prediction accuracy
for three schemes, where K =10, Np =20, and the
latency threshold ranges from 10 to 50 seconds.
From this figure and table, we can find that as the
latency threshold increases, all schemes demonstrate
an improvement in the prediction accuracy, but the
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Table 2. Prediction accuracy of several schemes versus the latency threshold with K = 20 and Np = 10.

Latency Threshold (s) | Proposed Scheme | DRL | GA
10 0.63 0.53 | 0.52
20 0.74 0.65 | 0.55
30 0.79 0.69 | 0.59
40 0.85 0.73 | 0.68
50 0.92 0.83 | 0.71

Table 3. Prediction accuracy of several schemes versus the latency threshold with K = 10 and Np = 20.

Latency Threshold (s) | Proposed Scheme | DRL GA
10 0.5796 0.4903 | 0.4810
20 0.6882 0.6052 | 0.5159
30 0.7308 0.6403 | 0.5475
40 0.7914 0.6723 | 0.6365
50 0.8602 0.7678 | 0.6653

proposed scheme outperforms both DRL and GA at
all latency thresholds. For example, at the latency
threshold of 10 seconds, the proposed scheme achieves
the prediction accuracy of around 0.6, DRL reaches
approximately 0.55, and GA is slightly lower at 0.5.
As the latency threshold increases to 50 seconds, the
proposed scheme achieves the prediction accuracy of
about 0.85, while DRL reaches around 0.75, and GA
remains lower at approximately 0.65. This indicates
that while increasing the latency threshold benefits
all three schemes, the proposed scheme demonstrates
the most significant improvement in the prediction
performance, providing superior accuracy across the
board. Notably, as the latency threshold rises, the
proposed scheme shows a sharper increase in accuracy
compared to DRL and GA, suggesting its higher
effectiveness at managing the training process under
longer latency conditions.

5. Conclusions

This paper presented an innovative solution for build-
ing temperature estimation using wireless federated
learning, addressing the critical issue of latency con-
straint. The proposed approach employed a hierarchical
federated learning architecture within a wireless net-
work, consisting of one BS, multiple APs and UEs. Each
UE performed local model training and transmitted its
updates to the AP, which aggregated the information
and forwarded it to the BS for global model consolida-
tion. The system was designed to minimize both latency
and energy consumption, ensuring an accurate tem-
perature prediction in a resource-efficient environment.
Simulation results validated the performance of the
proposed method, demonstrating its superiority over
the competing schemes, such as DRL and GA. Specif-
ically, at the latency threshold of 10s, the proposed

2 EA

scheme achieved a prediction accuracy of approxi-
mately 0.60, outperforming DRL (0.50) and GA (0.48).
These results highlighted the effectiveness of the feder-
ated learning-based approach, particularly in latency-
sensitive environments, and demonstrated its potential
for real-time applications in smart buildings, where
efficient wireless communication was paramount.
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