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Abstract 

Despite the widespread adoption of 1000-node Hadoop clusters by the end of 2022, Hadoop implementation still encoun-
ters various challenges. As a vital software paradigm for managing big data, Hadoop relies on the Hadoop Distributed File 
System (HDFS), a distributed file system designed to handle data replication for fault tolerance. This technique involves 
duplicating data across multiple DataNodes (DN) to ensure data reliability and availability. While data replication is effec-
tive, it suffers from inefficiencies due to its reliance on a single-pipelined paradigm, leading to time wastage. To tackle this 
limitation and optimize HDFS performance, a novel approach is proposed, utilizing multiple pipelines for data block trans-
fers instead of a single pipeline. Additionally, the proposed approach incorporates dynamic reliability evaluation, wherein 
each DN updates its reliability value after each round and sends this information to the NameNode (NN). The NN then 
sorts the DN based on their reliability values. When a client requests to upload a data block, the NN responds with a list of 
high-reliability DN, ensuring high-performance data transfer. This proposed approach has been fully implemented and test-
ed through rigorous experiments. The results reveal significant improvements in HDFS write operations, providing a prom-
ising solution to overcome the challenges associated with traditional HDFS implementations. By leveraging multiple pipe-
lines and dynamic reliability assessment, this approach enhances the overall performance and responsiveness of Hadoop's 
distributed file system. 
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1. Introduction

In the digital age, the proliferation of data has reached un-
precedented levels, creating an information landscape of 
colossal proportions known as “Big Data.” The explosion  

of data generated from various sources, presents both tre-
mendous opportunities and significant challenges. Effec-
tively harnessing and extracting valuable insights from 
these massive datasets have become a pivotal focus for 
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researchers, industry professionals, and policymakers alike. 
In recent years, Hadoop has emerged as a dominant soft-
ware paradigm for handling big data in large-scale distrib-
uted environments. With the ever-increasing volume of 
data, companies have been adopting 1000-node Hadoop 
clusters to tackle the challenges of data management and 
analysis. The foundation of Hadoop lies in its distributed 
file system, known as the Hadoop Distributed File System 
(HDFS), which ensures fault tolerance through data repli-
cation across multiple DNs, thus achieving reliability and 
availability. DFS is a client/server architecture that enables 
clients to access data stored on servers. In this architecture, 
DFS software is deployed on both the servers and clients, 
facilitating the connection of files located on various file 
servers into a unified Namespace. The primary goal of 
DFS is to enhance data availability by providing a seam-
less and transparent experience for clients.  

In the rapidly evolving landscape of data management, 
Distributed File Systems (DFSs) have emerged as critical 
paradigms that enable efficient and seamless access to data 
across distributed environments. These innovative systems 
bridge the gap between clients and servers, providing a 
unified Namespace and enhancing data availability for 
users. In this context, Table 1 presents a comprehensive 
overview of various types of DFSs, each designed to ad-
dress specific challenges and requirements in the field of 
data distribution and access. One of these notable DFSs is 
the Network File System (NFS) [1]. The NFS protocol 
became publicly available for use by other vendors. An-
other significant DFS is the Andrew File System (AFS), as 
presented by Howard [2]. Inspired by Carnegie Mellon 
University, AFS was specifically designed to cater to dis-
tributed workstation environments, providing seamless 
data access and management. The Google File System 
(GFS) takes inspiration from Ghemawat et al.'s work [3]. 
Comprising a single master and multiple segment servers, 
GFS efficiently handles requests from multiple clients. 
With the rise of object-oriented computing environments, 
Martini et al. developed XtreemFS, a file system specifi-
cally tailored for Grid environments [4]. XtreemFS offers 
enhanced capabilities for managing data in complex and 
distributed Grid settings. Each of these DFSs brings unique 
features and advantages to the table, catering to diverse 
data management needs in today's complex computing 
landscape. 

Table 1: Different types of Distributed File System 

Features NFS AFS GPS XFS HDFS 
Reliability -- H H H H 
Flexibility -- L H H H 

Scalability L H H H H 
Transparency -- L H H H 
Security H H L L L 

H= High, L= Low 

Despite the widespread implementation of Hadoop and 
HDFS, several challenges persist in their utilization, in-
cluding concerns related to security, fault tolerance, and 
flexibility. One prominent issue is the time-consuming 
nature of the data replication technique due to its reliance 
on a single-pipelined paradigm. This limitation can hinder 
the overall performance and responsiveness of HDFS write 
operations. 

To address these challenges and optimize HDFS per-
formance, this paper proposes a novel approach employing 
multiple pipelines for data block transfers, rather than a 
single pipeline. Additionally, the proposed approach intro-
duces dynamic reliability evaluation, where each DN up-
dates its reliability value after each round and communi-
cates this information to the NN. The NN then sorts the 
DNs based on their reliability values, allowing for efficient 
data management. 

1.1. Motivation and Research Problems 

With the exponential growth of big data, organizations 
increasingly rely on the Hadoop Distributed File System 
(HDFS) to manage large-scale distributed storage efficient-
ly. However, despite its widespread adoption, HDFS still 
faces performance bottlenecks during data replication and 
write operations due to its traditional single-pipeline mech-
anism. This sequential data transfer model leads to in-
creased latency, reduced throughput, and inefficient utili-
zation of available network bandwidth. Additionally, the 
random selection of DataNodes (DNs) during replication 
often overlooks their varying reliability and performance, 
resulting in potential data transfer failures and uneven load 
distribution. Therefore, there is a strong motivation to en-
hance the efficiency and reliability of HDFS by introduc-
ing a multi-pipeline architecture and a dynamic reliability 
evaluation mechanism. The key research problems ad-
dressed in this study include optimizing the data replica-
tion process to minimize execution time, improving 
throughput without compromising fault tolerance, and de-
veloping an adaptive reliability model that ensures con-
sistent performance in heterogeneous Hadoop environ-
ments. 

2. Background
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This section provide a detail background on big data, 
HDFS, read operation in HDFS and write operation in 
HDFS 

2.1.  Big Data 

Big data is a term that refers to the massive volume of 
structured and unstructured data generated by various 
sources, which cannot be effectively managed and pro-
cessed using traditional data processing techniques [5] It 
has become a driving force behind modern-day technologi-
cal advancements and decision-making processes across 
various domains. The concept of big data encompasses the 
three V's: volume, velocity, and variety [6] Volume refers 
to the sheer amount of data generated daily, velocity de-
notes the speed at which data is produced and must be pro-
cessed, and variety represents the diverse formats and 
types of data. Big data has opened up new avenues for re-
search, particularly in data-driven fields like artificial intel-
ligence, machine learning, and predictive analytics [7]. 
The ability to harness vast amounts of data has led to sig-
nificant breakthroughs in areas such as natural language 
processing, computer vision, and personalized medicine. In 
addition to its applications in research and technology, big 
data has also transformed industries such as healthcare, 
finance, and marketing. By analyzing large datasets, organ-
izations can gain valuable insights into customer behavior, 
market trends, and investment opportunities [8].  However, 
with the potential benefits of big data come significant 
challenges, including data privacy, security, and scalability 
[9]. Researchers and practitioners must address these is-
sues to ensure the responsible and ethical use of big data. 
In conclusion, big data continues to reshape the world by 
providing opportunities for innovative research and driving 
transformative changes in various sectors. Its potential 
remains vast, and ongoing research efforts aim to address 
the challenges associated with its implementation and us-
age. 

2.2. HDFS 

HDFS is a crucial component of the Apache Hadoop eco-
system, designed to store and manage large-scale distribut-
ed data across a cluster of commodity hardware. It is de-
signed for handling big data efficiently, providing fault 
tolerance, scalability, and high throughput for data-
intensive applications [10]. HDFS operates on a mas-
ter/slave architecture, consisting of a single NN that acts as 
the central metadata repository and multiple DNs that store 
the actual data. The data is divided into blocks, typically 
128 MB or 256 MB in size, which are replicated across 

different DNs to ensure fault tolerance. One of the primary 
goals of HDFS is to facilitate data locality, wherein data 
processing tasks are executed on the nodes where the data 
is stored. This approach minimizes data movement across 
the network, leading to improved performance and reduced 
latency [11]. HDFS is widely adopted in various industries 
for its ability to handle vast amounts of data efficiently. It 
has been utilized in large-scale data-intensive applications, 
including web search engines, social media platforms, and 
log processing systems [12]. The fault tolerance mecha-
nism of HDFS is achieved through data replication, where 
each block is replicated across multiple DNs. If a DN fails, 
the NN automatically instructs other DNs to replicate the 
lost data, ensuring data integrity and continuous availabil-
ity [13]. Although HDFS offers several benefits, it also 
faces certain challenges, such as handling small files and 
supporting real-time data processing. Efforts have been 
made to address these limitations through optimizations 
and the integration of complementary technologies. 

Table 2: Abbreviation used 

Abbrevi
ation 

Full 
Form 

Abbrev
iation 

Full 
Form 

reli reliability adpt Adapt 
mxreli maxReliabili

ty 
mnre

li 
minReliabili
ty 

DNS DataNodeSt
atus 

RDN
S 

Repair 
DataNodeSt
atus 

2.3. Read operation in HDFS 

HDFS read operation involves retrieving data from the 
distributed storage system. The process of reading data 
from HDFS involves communication between the client 
and the NN to determine the DNs containing the required 
data. As mentioned in [14], to ensure security and authen-
tication, the NN issues a token to the client, which allows 
the client to access and read data from the DNs. The pro-
cess of reading data from HDFS, as described in the given 
steps and in Figure 1, involves the client's interaction with 
the NN and the DN. The steps can be summarized as fol-
lows: 

1. Client Request: The client communicates with
the NN by using the API, requesting the location
of the required data block.

2. Privilege Check: The NN checks the client's
privilege to access the requested data, verifying if
the client is an authorized user.
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3. Authorization Response: If the client is author-
ized, the NN responds by providing the data loca-
tion and a security token for authentication pur-
poses. If the client is not authorized, the NN re-
jects the request.

4. DN Permission: After receiving the data location
and security token, the client communicates di-
rectly with the DN where the required block is
stored. The DN checks the security token to en-
sure the client's authentication and provides the
client with permission to read the required data
block.

5. Data Reading: With the necessary permissions
granted, the client opens an input stream and
starts reading the data directly from the DN.

6. DN Failure Handling: In the event of a DN fail-
ure (e.g., due to a hardware issue), the client re-
turns

to the NN to obtain an alternative location for the 
same data block. The NN provides the client with 
a new location, allowing the client to resume 
reading the data from another available DN. 

Figure 1. Read operation in HDFS 

Overall, this process ensures secure and authorized ac-
cess to the data stored in HDFS while providing fault tol-
erance in case of DN failures, resulting in a robust and 
reliable data retrieval mechanism. 

2.4. Write operation in HDFS 

The writing operation in Hadoop HDFS involves the cli-
ent's interaction with the NN and the DNs. As shown in 

Figure 2 and based on the steps described in the provided 
text, the writing operation can be summarized as follows: 

1. Client Request: The client contacts the NN
through the API to obtain the location of the DN
where it should start writing the data.

2. Data Writing: The client initiates the data writ-
ing process to the designated DN by utilizing the
File FS data output stream.

3. Replication: Once the client finishes writing the
first data block, the first DN replicates the same
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block to other DNs to ensure data redundancy and 
fault tolerance. This replication process creates 
multiple copies of the block across different DNs 
in the HDFS cluster. 

4. DN-to-DN Copying: After the replication is
completed, the DN that possesses the replicated
block starts copying the block to the next DN in
the sequence. This process continues until all the
necessary DNs have a copy of the data block.

The writing operation in HDFS is designed to achieve 
data reliability and fault tolerance through data replication. 

By creating multiple copies of the data blocks across dif-
ferent DNs, HDFS can tolerate the failure of individual 
nodes and ensure the availability of data even in the pres-
ence of hardware failures. 

Figure 2. Write operation in HDFS 
1. 
1. 3. Related Works

C.L. Abad et al. [15] introduce a DARE (dynamic data
replication) approach for efficient cluster scheduling. It
uses adaptive data replication based on demand patterns to
reduce data access latency. DARE improves cluster sched-
uling efficiency by replicating data close to the nodes
where it is frequently accessed. This reduces data transfer
time and enhances overall cluster performance. DARE
optimizes data replication dynamically, leading to better
resource utilization and improved data availability in the
cluster. B. Fan et. al. [16] proposes the use of RAID tech-
niques for data-intensive scalable computing. Which com-
bines multiple disks into a single logical unit to improve
data reliability and performance. By implementing RAID,
DiskReduce achieves better fault tolerance and data avail-
ability in data-intensive computing environments. DiskRe-
duce's RAID implementation enhances data resilience and
scalability, which is crucial for large-scale computing tasks.
Z. Cheng et al. [17] introduces an elastic replication man-
agement system for the Hadoop Distributed File System
(HDFS). It dynamically adjusts the replication factor of
data blocks based on workload characteristics. ERMS ef-
fectively balances data replication and resource utilization
in HDFS, leading to improved data access performance

and reduced storage overhead. ERMS optimizes the repli-
cation process in HDFS, resulting in better data availability 
and more efficient use of storage resources. Q. Feng et. al. 
[18] proposes a storage architecture for cloud computing
that emphasizes high reliability and low redundancy.
Magicube achieves high data reliability with minimal re-
dundancy, reducing storage costs and enhancing data in-
tegrity. Magicube's design ensures data safety and integrity
in cloud computing environments without incurring exces-
sive storage overhead. M. Patel Neha et al. [19] focuses on
optimizing the write performance of Hadoop Distributed
File System (HDFS) by strategically placing data replicas.
By improving replica placement, the write performance in
HDFS is enhanced, reducing write latency and improving
overall data write throughput. Faster write performance
leads to better data ingestion rates and overall HDFS effi-
ciency. M. Patel Neha et al. [20] proposed a model on effi-
cient replica placement, with a focus on data transfer rates
and throughput in HDFS. By optimizing replica placement,
data transfer rates and overall throughput in HDFS are im-
proved. H. Zhang et al. [21] introduces SMARTH, a meth-
od to enable multi-pipeline data transfer in HDFS, allow-
ing for concurrent data transfers. SMARTH's multi-
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pipeline approach improves the overall data transfer effi-
ciency in Hadoop clusters by enabling concurrent transfers. 
Algaradi et al. [22] proposes a mechanism enhances securi-
ty in Hadoop by implementing a knowledge-based authen-
tication system, improving access control and preventing 
unauthorized access. By using Kerberos and a knowledge-
based approach, the authentication process is more robust 
and resistant to unauthorized access attempts. Tsu-Yang 
Wu et al. [23] introduces a lightweight authenticated key 
agreement protocol that utilizes fog nodes in the Social 
Internet of Vehicles (SIoV) environment. The proposed 
protocol establishes secure communication among SIoV 
entities and fog nodes, enhancing privacy and security in 
vehicular networks. The lightweight design of the protocol 
reduces computation and communication overhead in re-
source-constrained SIoV environments, while providing 
robust security mechanisms. Hena, M. et al. [24] presents a 
distributed authentication framework specifically designed 
for Hadoop-based big data environments. The framework 
ensures secure authentication and access control in distrib-
uted big data systems, safeguarding sensitive information 
and preventing unauthorized access. The tailored approach 
for Hadoop-based environments enhances security and 
scalability, providing efficient authentication services for 
large-scale big data systems. Honar Pajooh [25] proposes a 
provenance scheme that utilizes blockchain technology in 
the Hadoop ecosystem to maintain the integrity and tracea-
bility of IoT big data. The scheme ensures data authenticity, 
provenance tracking, and tamper-resistance, which is cru-
cial for maintaining trustworthiness in IoT big data pro-
cessing. By leveraging blockchain technology, the scheme 
enhances data trustworthiness and ensures that data from 
IoT devices can be verifiably traced and audited within the 
Hadoop ecosystem. Marco Anisetti et al. [26] introduces 
an assurance process for assessing and ensuring the trust-
worthiness of big data. The proposed process provides a 
comprehensive approach to evaluate the reliability, securi-
ty, and quality of big data, enhancing user confidence in its 
usage. The assurance process allows organizations to ef-
fectively manage and monitor the trustworthiness of their 
big data, facilitating informed decision-making. Tall, A.M. 
et al. [27] presents a framework that enables fine-grained 
access control based on attributes, ensuring that data is 
accessed only by authorized users and processes. ABAC 
offers greater flexibility and security in big data environ-
ments with varying data sensitivities, allowing for more 
precise access control policies. 

Several researchers have explored methods to en-
hance performance, reliability, and scalability in large-
scale distributed and learning systems. Beyond the studies 
focusing on Hadoop and HDFS, additional relevant works 

provide insights into improving data transmission, com-
pression, optimization, and reliability in distributed envi-
ronments. 
Zhao et al. [31] in “Performance Analysis of Big Model 
Transmission under Double Rayleigh Fading” investigated 
the transmission performance of large models over wire-
less channels affected by double Rayleigh fading. Their 
analytical and simulation-based approach evaluated outage 
probability and latency in unreliable communication envi-
ronments. The study’s emphasis on reliability and end-to-
end transmission efficiency under fading conditions pro-
vides a useful analogy for improving data block transfer in 
HDFS when operating across heterogeneous or partially 
wireless clusters. By integrating channel reliability con-
cepts, HDFS can better adapt to network variations during 
multi-pipeline transfers, reducing delays and improving 
fault tolerance. 
Similarly, “Compression and Transmission of Big AI 
Model Based on Deep Learning”[32] proposed a deep-
learning-driven compression framework to reduce the size 
of large AI models during network transfer while preserv-
ing accuracy. The adoption of adaptive compression and 
error-resilient encoding schemes demonstrates that effi-
cient data representation can significantly enhance transfer 
speed and reliability. In the context of HDFS, such com-
pression strategies can be applied to data blocks prior to 
replication or transmission through multiple pipelines, thus 
optimizing bandwidth utilization and further accelerating 
the write process without compromising data integrity. 
In the field of optimization and intelligent resource selec-
tion, “Bi-Directional Feature Fixation-Based Particle 
Swarm Optimization (BDFF-PSO) for Large-Scale Fea-
ture Selection” introduced a self-adaptive bi-directional 
mechanism to improve convergence and balance explora-
tion and exploitation in high-dimensional search spaces. 
This optimization strategy can be mapped to HDFS envi-
ronments, where the selection of suitable DataNodes 
(DNs) for replication and pipelined writing can be modeled 
as a multi-objective optimization problem. Applying 
BDFF-PSO can enable dynamic and intelligent selection of 
DNs based on real-time reliability, bandwidth, and work-
load, leading to improved global efficiency and reduced 
data transfer latency [33]. 
Furthermore, in “Elastic Optimization for Stragglers in 
Edge Federated Learning,” [34] researchers addressed the 
challenge of uneven client performance (stragglers) by 
developing an elastic optimization mechanism that balanc-
es model updates and reduces training delays. The concept 
of elasticity—adapting resource participation dynamical-
ly—has direct relevance for HDFS environments. By 
adopting elastic replication policies and reliability-based 
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participation control, HDFS can dynamically exclude or 
down-weight underperforming DNs, improving system 
throughput and resilience during high-load or degraded 
network conditions. 
Collectively, these studies demonstrate the significance of 
reliability modeling, adaptive compression, intelligent op-
timization, and elasticity in large-scale distributed systems. 
Integrating these principles into HDFS can lead to en-

hanced data transmission efficiency, fault tolerance, and 
throughput. Therefore, this paper’s proposed multi-pipeline 
architecture with dynamic reliability evaluation aligns with 
and extends these contemporary research directions, estab-
lishing a holistic framework for next-generation distributed 
storage optimization. 

Table 3: Comparative analysis of the related works 

Citation 
& Year 

Method Used Advantages Disadvantages Future Use 

[15] 
2011 

Adaptive data 
replication (DARE). 

Improves scheduling 
efficiency in clusters. 

May introduce 
overhead due to 
replication. 

Enhancing data replication 
algorithms. 

[16] 
2009 

RAID (Redundant 
Array of 
Independent Disks). 

Enhances data 
reliability and 
availability. 

Increased storage 
overhead. 

Integration with modern 
storage technologies. 

[17] 
2012 

Elastic replication 
management 
system. 

Dynamically adjusts 
data replication. 

Resource consumption 
during adjustments. 

Further optimization for 
HDFS ecosystem. 

[18] 
2012 

Magicube storage 
architecture. 

High reliability with 
low redundancy. 

Potential complexity in 
implementation. 

Adaptation for different 
cloud computing platforms. 

[19] 
2014 

Efficient replica 
placement. 

Improved HDFS 
write performance. 

Potential data 
consistency challenges. 

Scalability for larger HDFS 
clusters. 

[20] 
2014 

Efficient replica 
placement. 

Increased data 
transfer rate and 
throughput. 

May introduce 
additional network 
traffic. 

Optimization for various 
network topologies. 

[21] 
2014 

Multi-pipeline data 
transfer in HDFS. 

Concurrent data 
transfers in Hadoop 
clusters. 

Resource contention 
during concurrent 
transfers. 

Integration with modern 
Hadoop distributions. 

[22] 
2019 

Knowledge-Based 
Authentication 
Mechanism. 

Enhanced security 
using Kerberos. 

Initial setup and 
configuration 
complexity. 

Security enhancement in 
distributed systems. 

[23] 
2021 

Authenticated Key 
Agreement 
Protocol. 

Enhanced security 
and privacy in SIoV. 

Overhead due to 
cryptographic 
operations. 

Scalability for larger SIoV 
environments. 

[24] 
2022 

Distributed 
authentication 
framework. 

Secure authentication 
and access control. 

Additional processing 
overhead. 

Scalability for larger big 
data environments. 

[25] 
2021 

IoT Big Data 
provenance scheme. 

Data authenticity and 
provenance tracking. 

Potential blockchain 
scalability issues. 

Integration with diverse IoT 
devices and platforms. 

[26] 
2023 

Assurance process 
for Big Data 
trustworthiness. 

Comprehensive 
evaluation of Big 
Data trustworthiness. 

Resource consumption 
during evaluation. 

Integration with various Big 
Data frameworks. 

[27] 
2023 

Attribute-Based 
Access Control 
Framework 

Fine-grained access 
control for big data 

Additional complexity 
in access policies 

Scalability for processing 
diverse sensitive data 
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4. Proposed Model

In this section, we present our proposed technique that 
aims to enhance the reliability and efficiency of data stor-
age in an HDFS (Hadoop Distributed File System) cluster. 
Our approach focuses on selecting the most reliable DNs 
while also taking into account the full network bandwidth 
during the data writing process. 

In the proposed technique in figure 3 for HDFS data 
writing, the process involves the following steps: 

1. Requesting File Construction: When an HDFS
client wants to create a new file, it sends a request
to the NN.

2. Reliability-Based DN Selection: The NN re-
sponds to the client's request by providing

3. an ordered list of DNs to store the file data. The
ordering is based on the reliability of each DN.
The default value for the number of DNs in the
list is set to 3, which means that the file data will
be replicated on three DNs.

4. Data Division and Pipelining: The HDFS client
divides the file data into default-sized blocks,
which are subsequently split into packets. These
packets are transmitted through a pipeline com-
prising multiple DNs. In the default replication
setup, the pipeline consists of three nodes.

5. Parallel Data Writing: Indeed, in the default
setup, the packets are sent in parallel to the first
and second Data Nodes (DNs) in the pipeline.
Each DN receives the packet, stores it locally, and
then forwards it to the next DN in the pipeline,

which is the third DN. This process ensures fault 
tolerance and data redundancy in HDFS, as the 
data is replicated across multiple nodes in the 
cluster. 

6. Acknowledgment and Pipelining: After the first
and second DNs receive the packets and store
them, they send acknowledgment messages to the
client.

7. Reliability Update: Simultaneously, each DN
sends an update message to the NN to update its
reliability value. The reliability value is evaluated
using an algorithm that starts with initializing the
reliability for each DN as 1. The algorithm uses
inputs such as F-repli (reliability factor), mnreli,
and mxreli. The reliability value for each DN is
adapted based on this algorithm, ensuring that it
converges towards an optimal reliability level.

8. Acknowledgment and Reliability Update Con-
tinuation: After storing packet on third DN, it
sends an acknowledgment to the second DN and
simultaneously updates its reliability value in the
NN using the equations specified in step number
6.

This proposed technique aims to improve the 
overall reliability and efficiency of data storage in the 
HDFS cluster by strategically selecting reliable DNs 
and utilizing network bandwidth efficiently through 
pipelining. The continuous updating of reliability 
values ensures that the system adapts to changing 
conditions and maintains optimal data storage relia-
bility. 
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Figure 3. Proposed Model 

Algorithm: Reliability Assessment 

Initialization  
reli=1, Adapt-F:= 0.01 
Input  
F-repli, mxreli, mnreli, DNS
Output
RDNS

Start 
if(DNS= Success) 
then  

reli= reli+ (reli * F-repli) 
if (adpt-F > 1) 

then 
adpt-F:= adpt-F –1; 

else if (DNS = Fail) 
then 

reli= reli – (reli * F-repli * adpt-F) 
adpt-F= adpt-F +1;  

if (reli >= mxreli) 
then 

reli= mxreli 
if (reli < mnreli) 

then 
DNS=Idle 

call_proc: RDNS  
End 

5. Performance Evaluation

An often used assessment of HDFS involves leveraging its 
DNs across multiple racks. The conventional HDFS strate-
gy works as follows: the NN selects available DNs to store 
the data block. The second replica is placed in a DN from a 
different rack, and the third replica is placed in a different 
DN on the same rack as the second. TestDFSIO bench-
mark is specifically designed to test various HDFS opera-
tions, including both reading and writing. By utilizing 
TestDFSIO, we were able to assess the performance of the 
network, operating system, and Hadoop setup on NN and 
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DNs. Additionally, this benchmark enabled us to calculate 
the average throughput for HDFS operations.  

Our experiment was conducted with three different 
replication factors, block sizes of 64 MB and 128 MB, and 
file sizes ranging from 1 GB to 10 GB. Moreover, the ini-
tial reliability value was set to 1, with an adaptability factor 
of 0.01. Additionally, we set the mxreli to 1.4 and the 
mnreli to 0.06. These parameter settings were used to eval-
uate and analyze the performance of the proposed writing 
on HDFS approach under various scenarios. The experi-
ment demonstrates that there is no significant gain when 
dealing with small file sizes. However, the proposed ap-
proach exhibits notable improvements, achieving a 35.9% 

enhancement compared to traditional HDFS with a 1 GB 
file and an even more substantial improvement of 61.3% 
with a 10 GB file.  

When compared to the parallel broadcast algorithm, 
the proposed approach achieves a remarkable 48.9% re-
duction in execution time. Furthermore, it outperforms the 
parallel master-slave technique by an impressive 60.3% in 
the context of large file sizes. Table 4 and Figure 4 illus-
trates that while the parallel master-slave technique takes 
210 seconds to upload a 5 GB file, the proposed approach 
only takes 90 seconds, making it 57.14% faster. 

Table 4: Execution time (Sec) of write operation @ block size 64 MB 

File Size 
Execution Times (Sec) of different techniques 

Parallel 
Broadcast 

Parallel Master- 
Slave 

Lazy Proposed 
Method 

1 GB 40 36 32 30 
2 GB 60 65 59 52 
3 GB 100 105 97 67 
4 GB 135 140 110 85 
5 GB 190 210 130 90 
6 GB 220 225 170 110 
7 GB 300 305 200 120 
8 GB 320 330 265 125 
9 GB 410 426 265 132 

10 GB 450 470 350 190 

Figure 4. Execution time (Sec) of write operation @ block size 6
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Table 5 and Figure 5 illustrate for HDFS writing opera-
tions with a block size of 128 MB. When compared to lazy 
HDFS with a 1 GB file, the proposed approach achieves a 
commendable improvement. Moreover, with a file size of  

10 GB, the improvement reaches 34.03%. When com-
paring the proposed approach to traditional HDFS, the 
overall improvement in execution time reaches an impres-
sive 65.06%.  

Table 5: Execution time (Sec) of write operation @ block size 128 MB 

File Size 
Execution Times (Sec) of different techniques 

Parallel 
Broadcast 

Parallel 
Master- Slave 

Lazy Proposed 
Method 

1 GB 70 80 60 55 
2 GB 110 115 90 70 
3 GB 180 200 175 105 
4 GB 285 300 190 115 
5 GB 380 400 200 180 
6 GB 445 460 220 190 
7 GB 600 603 300 205 
8 GB 635 700 370 230 
9 GB 726 770 400 290 

10 GB 815 800 485 303 

Figure 5. Execution time (Sec) of write operation @ block size 128 MB

Figures 5 and 7 display the enhancements in throughput 
achieved by different techniques, taking into account block  

sizes of 64 and 128, respectively. The graphs highlight the 
comparative performance of these techniques in terms of 
data transfer rates, showing how each approach fares with 
different block sizes. 
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Table 6: Throughput Rate (MB/Sec) of write operation @ block size 64 MB 

File Size 
Throughput Rate (GB/Sec) of different techniques 

Parallel 
Broadcast 

Parallel 
Master- Slave 

Lazy Proposed 
Method 

1 GB 28 27 30 39 
2 GB 28 26 31 38 
3 GB 27 26 32 37 
4 GB 25 24 31 38 
5 GB 24 23 30 38 
6 GB 24 23 28 37 
7 GB 23 22 27 36 
8 GB 23 22 27 35 
9 GB 22 21 26 35 

10 GB 22 21 25 34 

Figure 6. Throughput Rate (MB/Sec) of write operation @ block size 64 MB 
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Table 7: Throughput Rate (MB/Sec) of write operation @ block size 128 MB 

File Size 
Throughput Rate (MB/Sec) of different techniques 

Parallel 
Broadcast 

Parallel 
Master- Slave 

Lazy Proposed 
Method 

1 GB 32 28 38 48 
2 GB 29 28 38 48 
3 GB 28 27 37 47 
4 GB 27 26 36 47 
5 GB 26 25 35 46 
6 GB 26 25 35 45 
7 GB 26 26 34 44 
8 GB 26 25 34 44 
9 GB 25.5 24 36 43 

10 GB 25.5 24 35 42 

Figure 7. Throughput Rate (MB/Sec) of write operation @ block size 128 MB 
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With a 64 MB block size, the throughput improvement in 
the writing operation varies between 28.2% and 32.4% in 
the parallel broadcast technique, while the traditional 
HDFS technique shows an improvement ranging from 
33.33% to 41.4%. When using a larger 128 MB block size, 
the overall percentage of throughput improvement reaches 
18.7% in the lazy technique. This indicates that the pro-
posed technique performs better in terms of throughput 
improvement with the 128 MB block size compared to the 
lazy technique. 

5. Conclusion

In traditional HDFS, data reliability and availability are 
achieved through a data replication technique, wherein 
data blocks are replicated on different DNs, selected ran-
domly, and transmitted using a single pipeline. This paper 
presented a novel approach to enhance the replication 
technique by selecting the most reliable DNs based on their 
reliability values. Our proposed approach employs a paral-
lel pipelined architecture to replicate the data blocks, re-
sulting in a substantial increase in the data transfer rate and, 
consequently, the overall system throughput. Specifically, 
with a block size of 64 MB, our approach has demonstrat-
ed an impressive 59.5% increase in system throughput. For 
a larger block size of 128 MB, the system throughput has 
been enhanced by 43.6%. This improvement can signifi-
cantly enhance the performance of HDFS by ensuring data 
reliability and reducing data transfer latency, making it 
more efficient and reliable for handling large-scale data 
storage and processing tasks. 
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