EAIl Endorsed Transactions

on Scalable Information Systems Research Article EALLEU

The Cutting-Edge Hadoop Distributed File System: Un-
leashing Optimal Performance

Anish Gupta!, P. Santhiya?, C. Thiyagarajan®, Anurag Gupta*, Manish Kr. Gupta®>", Rajendra Kr.
Dwivedi®

"Department of Computer Science & Engineering, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri,
Mohali, Punjab, India

2Department of Computer Science & Engineering, School of Computing, Sathyabama Institute of Science and Technology
Semmancheri, Chennai, Tamilnadu, India

3Department of Artificial Intelligence and Machine Learning, Panimalar Engineering College Chennai, Tamilnadu, India
“Department of Computer Science & Engineering, ABESEC, Ghaziabad, Uttar Pradesh, India

SDepartment of Computer Science & Engineering, Madan Mohan Malaviya University of Technology, Gorakhpur, UP, India

Department of Information Technology & Computer Application, Madan Mohan Malaviya University of Technology, Go-
rakhpur, UP, India

Abstract

Despite the widespread adoption of 1000-node Hadoop clusters by the end of 2022, Hadoop implementation still encoun-
ters various challenges. As a vital software paradigm for managing big data, Hadoop relies on the Hadoop Distributed File
System (HDFS), a distributed file system designed to handle data replication for fault tolerance. This technique involves
duplicating data across multiple DataNodes (DN) to ensure data reliability and availability. While data replication is effec-
tive, it suffers from inefficiencies due to its reliance on a single-pipelined paradigm, leading to time wastage. To tackle this
limitation and optimize HDFS performance, a novel approach is proposed, utilizing multiple pipelines for data block trans-
fers instead of a single pipeline. Additionally, the proposed approach incorporates dynamic reliability evaluation, wherein

each DN updates its reliability value after each round and sends this information to the NameNode (NN). The NN then
sorts the DN based on their reliability values. When a client requests to upload a data block, the NN responds with a list of]
high-reliability DN, ensuring high-performance data transfer. This proposed approach has been fully implemented and test-
ed through rigorous experiments. The results reveal significant improvements in HDFS write operations, providing a prom-
ising solution to overcome the challenges associated with traditional HDFS implementations. By leveraging multiple pipe-
lines and dynamic reliability assessment, this approach enhances the overall performance and responsiveness of Hadoop's

distributed file system.
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1. Introduction

In the digital age, the proliferation of data has reached un-
precedented levels, creating an information landscape of
colossal proportions known as “Big Data.” The explosion

< EAI

of data generated from various sources, presents both tre-
mendous opportunities and significant challenges. Effec-
tively harnessing and extracting valuable insights from
these massive datasets have become a pivotal focus for
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researchers, industry professionals, and policymakers alike.

In recent years, Hadoop has emerged as a dominant soft-
ware paradigm for handling big data in large-scale distrib-
uted environments. With the ever-increasing volume of
data, companies have been adopting 1000-node Hadoop
clusters to tackle the challenges of data management and
analysis. The foundation of Hadoop lies in its distributed
file system, known as the Hadoop Distributed File System
(HDEFS), which ensures fault tolerance through data repli-
cation across multiple DNs, thus achieving reliability and
availability. DFS is a client/server architecture that enables
clients to access data stored on servers. In this architecture,
DFS software is deployed on both the servers and clients,
facilitating the connection of files located on various file
servers into a unified Namespace. The primary goal of
DFS is to enhance data availability by providing a seam-
less and transparent experience for clients.

In the rapidly evolving landscape of data management,
Distributed File Systems (DFSs) have emerged as critical
paradigms that enable efficient and seamless access to data
across distributed environments. These innovative systems
bridge the gap between clients and servers, providing a
unified Namespace and enhancing data availability for
users. In this context, Table 1 presents a comprehensive
overview of various types of DFSs, each designed to ad-
dress specific challenges and requirements in the field of
data distribution and access. One of these notable DFSs is
the Network File System (NFS) [1]. The NFS protocol
became publicly available for use by other vendors. An-
other significant DFS is the Andrew File System (AFS), as
presented by Howard [2]. Inspired by Carnegie Mellon
University, AFS was specifically designed to cater to dis-
tributed workstation environments, providing seamless
data access and management. The Google File System
(GFS) takes inspiration from Ghemawat et al.'s work [3].
Comprising a single master and multiple segment servers,
GFS efficiently handles requests from multiple clients.
With the rise of object-oriented computing environments,
Martini et al. developed XtreemFS, a file system specifi-
cally tailored for Grid environments [4]. XtreemFS offers
enhanced capabilities for managing data in complex and
distributed Grid settings. Each of these DFSs brings unique
features and advantages to the table, catering to diverse
data management needs in today's complex computing
landscape.

Table 1: Different types of Distributed File System

Scalability L H H H H
Transparency -- L H H H
Security H H L L L

Features NFS | AFS | GPS | XFS | HDFS
Reliability -- H H H H
Flexibility - L H H H

H=High, L= Low

Despite the widespread implementation of Hadoop and
HDFS, several challenges persist in their utilization, in-
cluding concerns related to security, fault tolerance, and
flexibility. One prominent issue is the time-consuming
nature of the data replication technique due to its reliance
on a single-pipelined paradigm. This limitation can hinder
the overall performance and responsiveness of HDFS write
operations.

To address these challenges and optimize HDFS per-
formance, this paper proposes a novel approach employing
multiple pipelines for data block transfers, rather than a
single pipeline. Additionally, the proposed approach intro-
duces dynamic reliability evaluation, where each DN up-
dates its reliability value after each round and communi-
cates this information to the NN. The NN then sorts the
DNs based on their reliability values, allowing for efficient
data management.

1.1. Motivation and Research Problems

With the exponential growth of big data, organizations
increasingly rely on the Hadoop Distributed File System
(HDFS) to manage large-scale distributed storage efficient-
ly. However, despite its widespread adoption, HDFS still
faces performance bottlenecks during data replication and
write operations due to its traditional single-pipeline mech-
anism. This sequential data transfer model leads to in-
creased latency, reduced throughput, and inefficient utili-
zation of available network bandwidth. Additionally, the
random selection of DataNodes (DNs) during replication
often overlooks their varying reliability and performance,
resulting in potential data transfer failures and uneven load
distribution. Therefore, there is a strong motivation to en-
hance the efficiency and reliability of HDFS by introduc-
ing a multi-pipeline architecture and a dynamic reliability
evaluation mechanism. The key research problems ad-
dressed in this study include optimizing the data replica-
tion process to minimize execution time, improving
throughput without compromising fault tolerance, and de-
veloping an adaptive reliability model that ensures con-
sistent performance in heterogeneous Hadoop environ-
ments.

2. Background
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This section provide a detail background on big data,
HDFS, read operation in HDFS and write operation in
HDFS

2.1. Big Data

Big data is a term that refers to the massive volume of
structured and unstructured data generated by various
sources, which cannot be effectively managed and pro-
cessed using traditional data processing techniques [5] It
has become a driving force behind modern-day technologi-
cal advancements and decision-making processes across
various domains. The concept of big data encompasses the
three V's: volume, velocity, and variety [6] Volume refers
to the sheer amount of data generated daily, velocity de-
notes the speed at which data is produced and must be pro-
cessed, and variety represents the diverse formats and
types of data. Big data has opened up new avenues for re-
search, particularly in data-driven fields like artificial intel-
ligence, machine learning, and predictive analytics [7].
The ability to harness vast amounts of data has led to sig-
nificant breakthroughs in areas such as natural language
processing, computer vision, and personalized medicine. In
addition to its applications in research and technology, big
data has also transformed industries such as healthcare,
finance, and marketing. By analyzing large datasets, organ-
izations can gain valuable insights into customer behavior,
market trends, and investment opportunities [8]. However,
with the potential benefits of big data come significant
challenges, including data privacy, security, and scalability
[9]. Researchers and practitioners must address these is-
sues to ensure the responsible and ethical use of big data.
In conclusion, big data continues to reshape the world by
providing opportunities for innovative research and driving
transformative changes in various sectors. Its potential
remains vast, and ongoing research efforts aim to address
the challenges associated with its implementation and us-
age.

2.2. HDFS

HDFS is a crucial component of the Apache Hadoop eco-
system, designed to store and manage large-scale distribut-
ed data across a cluster of commodity hardware. It is de-
signed for handling big data efficiently, providing fault
tolerance, scalability, and high throughput for data-
intensive applications [10]. HDFS operates on a mas-
ter/slave architecture, consisting of a single NN that acts as
the central metadata repository and multiple DN that store
the actual data. The data is divided into blocks, typically
128 MB or 256 MB in size, which are replicated across

different DNs to ensure fault tolerance. One of the primary
goals of HDFS is to facilitate data locality, wherein data
processing tasks are executed on the nodes where the data
is stored. This approach minimizes data movement across
the network, leading to improved performance and reduced
latency [11]. HDFS is widely adopted in various industries
for its ability to handle vast amounts of data efficiently. It
has been utilized in large-scale data-intensive applications,
including web search engines, social media platforms, and
log processing systems [12]. The fault tolerance mecha-
nism of HDFS is achieved through data replication, where
each block is replicated across multiple DNs. If a DN fails,
the NN automatically instructs other DNs to replicate the
lost data, ensuring data integrity and continuous availabil-
ity [13]. Although HDFS offers several benefits, it also
faces certain challenges, such as handling small files and
supporting real-time data processing. Efforts have been
made to address these limitations through optimizations
and the integration of complementary technologies.

Table 2: Abbreviation used

Abbrevi Full Abbrev Full
ation Form iation Form
reli reliability adpt | Adapt
mxreli | maxReliabili mnre | minReliabili
ty li ty
DNS | DataNodeSt RDN | Repair
atus S DataNodeSt
atus

2.3. Read operation in HDFS

HDFS read operation involves retrieving data from the
distributed storage system. The process of reading data
from HDFS involves communication between the client
and the NN to determine the DNs containing the required
data. As mentioned in [14], to ensure security and authen-
tication, the NN issues a token to the client, which allows
the client to access and read data from the DNs. The pro-
cess of reading data from HDFS, as described in the given
steps and in Figure 1, involves the client's interaction with
the NN and the DN. The steps can be summarized as fol-
lows:

1. Client Request: The client communicates with
the NN by using the API, requesting the location
of the required data block.

2. Privilege Check: The NN checks the client's
privilege to access the requested data, verifying if
the client is an authorized user.
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3. Authorization Response: If the client is author-
ized, the NN responds by providing the data loca-
tion and a security token for authentication pur-
poses. If the client is not authorized, the NN re-
jects the request.

4. DN Permission: After receiving the data location
and security token, the client communicates di-
rectly with the DN where the required block is
stored. The DN checks the security token to en-
sure the client's authentication and provides the
client with permission to read the required data
block.

| Client | l Name Node I

Data Reading: With the necessary permissions
granted, the client opens an input stream and
starts reading the data directly from the DN.

DN Failure Handling: In the event of a DN fail-
ure (e.g., due to a hardware issue), the client re-
turns

to the NN to obtain an alternative location for the
same data block. The NN provides the client with
a new location, allowing the client to resume
reading the data from another available DN.

l Data Node l l Data Node ...... I

API
>
Requesting the location of the required data
block
Veritying
( If the client is authorized, the NameNode
responds by providing the data location
and a security token for authentication
purposes
Data location and security token -
»
DataNode checks the security token to ensure the
client's authentication
Permission to read the required data block
<€
Client opens an input stream and starts reading
the data directly from the DataNode >
If the Data Node fail
A
Provide new location of the Data
‘ Node for the same data
>
Figure 1. Read operation in HDFS
Figure 2 and based on the steps described in the provided
Overall, this process ensures secure and authorized ac- text, the writing operation can be summarized as follows:

cess to the data stored in HDFS while providing fault tol-
erance in case of DN failures, resulting in a robust and
reliable data retrieval mechanism.

2.4. Write operation in HDFS

The writing operation in Hadoop HDEFS involves the cli-

ent's interaction with the NN and the DNs. As shown in 3.

2 EA

Client Request: The client contacts the NN
through the API to obtain the location of the DN
where it should start writing the data.

Data Writing: The client initiates the data writ-
ing process to the designated DN by utilizing the
File FS data output stream.

Replication: Once the client finishes writing the
first data block, the first DN replicates the same
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block to other DNs to ensure data redundancy and
fault tolerance. This replication process creates
multiple copies of the block across different DNs
in the HDFS cluster.

4. DN-to-DN Copying: After the replication is
completed, the DN that possesses the replicated
block starts copying the block to the next DN in
the sequence. This process continues until all the
necessary DNs have a copy of the data block.

The writing operation in HDFS is designed to achieve
data reliability and fault tolerance through data replication.

By creating multiple copies of the data blocks across dif-
ferent DNs, HDFS can tolerate the failure of individual
nodes and ensure the availability of data even in the pres-
ence of hardware failures.

Name

Nod

Client Data Node 1 Data Node 2 Data Node 3

Requesting location
for DN >

Initiating data wiiting process

>

Replication

DN to DN Copy

Figure 2. Write operation in HDFS

3. Related Works

C.L. Abad et al. [15] introduce a DARE (dynamic data
replication) approach for efficient cluster scheduling. It
uses adaptive data replication based on demand patterns to
reduce data access latency. DARE improves cluster sched-
uling efficiency by replicating data close to the nodes
where it is frequently accessed. This reduces data transfer
time and enhances overall cluster performance. DARE
optimizes data replication dynamically, leading to better
resource utilization and improved data availability in the
cluster. B. Fan et. al. [16] proposes the use of RAID tech-
niques for data-intensive scalable computing. Which com-
bines multiple disks into a single logical unit to improve
data reliability and performance. By implementing RAID,
DiskReduce achieves better fault tolerance and data avail-
ability in data-intensive computing environments. DiskRe-
duce's RAID implementation enhances data resilience and
scalability, which is crucial for large-scale computing tasks.
Z. Cheng et al. [17] introduces an elastic replication man-
agement system for the Hadoop Distributed File System
(HDFS). It dynamically adjusts the replication factor of
data blocks based on workload characteristics. ERMS ef-
fectively balances data replication and resource utilization
in HDFS, leading to improved data access performance

and reduced storage overhead. ERMS optimizes the repli-
cation process in HDFS, resulting in better data availability
and more efficient use of storage resources. Q. Feng et. al.
[18] proposes a storage architecture for cloud computing
that emphasizes high reliability and low redundancy.
Magicube achieves high data reliability with minimal re-
dundancy, reducing storage costs and enhancing data in-
tegrity. Magicube's design ensures data safety and integrity
in cloud computing environments without incurring exces-
sive storage overhead. M. Patel Neha et al. [19] focuses on
optimizing the write performance of Hadoop Distributed
File System (HDFS) by strategically placing data replicas.
By improving replica placement, the write performance in
HDFS is enhanced, reducing write latency and improving
overall data write throughput. Faster write performance
leads to better data ingestion rates and overall HDFS effi-
ciency. M. Patel Neha et al. [20] proposed a model on effi-
cient replica placement, with a focus on data transfer rates
and throughput in HDFS. By optimizing replica placement,
data transfer rates and overall throughput in HDFS are im-
proved. H. Zhang et al. [21] introduces SMARTH, a meth-
od to enable multi-pipeline data transfer in HDFS, allow-
ing for concurrent data transfers. SMARTH's multi-
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pipeline approach improves the overall data transfer effi-
ciency in Hadoop clusters by enabling concurrent transfers.
Algaradi et al. [22] proposes a mechanism enhances securi-
ty in Hadoop by implementing a knowledge-based authen-
tication system, improving access control and preventing
unauthorized access. By using Kerberos and a knowledge-
based approach, the authentication process is more robust
and resistant to unauthorized access attempts. Tsu-Yang
Wu et al. [23] introduces a lightweight authenticated key
agreement protocol that utilizes fog nodes in the Social
Internet of Vehicles (SIoV) environment. The proposed
protocol establishes secure communication among SloV
entities and fog nodes, enhancing privacy and security in
vehicular networks. The lightweight design of the protocol
reduces computation and communication overhead in re-
source-constrained SIoV environments, while providing
robust security mechanisms. Hena, M. et al. [24] presents a
distributed authentication framework specifically designed
for Hadoop-based big data environments. The framework
ensures secure authentication and access control in distrib-
uted big data systems, safeguarding sensitive information
and preventing unauthorized access. The tailored approach
for Hadoop-based environments enhances security and
scalability, providing efficient authentication services for
large-scale big data systems. Honar Pajooh [25] proposes a
provenance scheme that utilizes blockchain technology in
the Hadoop ecosystem to maintain the integrity and tracea-
bility of IoT big data. The scheme ensures data authenticity,
provenance tracking, and tamper-resistance, which is cru-
cial for maintaining trustworthiness in IoT big data pro-
cessing. By leveraging blockchain technology, the scheme
enhances data trustworthiness and ensures that data from
IoT devices can be verifiably traced and audited within the
Hadoop ecosystem. Marco Anisetti et al. [26] introduces
an assurance process for assessing and ensuring the trust-
worthiness of big data. The proposed process provides a
comprehensive approach to evaluate the reliability, securi-
ty, and quality of big data, enhancing user confidence in its
usage. The assurance process allows organizations to ef-
fectively manage and monitor the trustworthiness of their
big data, facilitating informed decision-making. Tall, A.M.
et al. [27] presents a framework that enables fine-grained
access control based on attributes, ensuring that data is
accessed only by authorized users and processes. ABAC
offers greater flexibility and security in big data environ-
ments with varying data sensitivities, allowing for more
precise access control policies.

Several researchers have explored methods to en-
hance performance, reliability, and scalability in large-
scale distributed and learning systems. Beyond the studies
focusing on Hadoop and HDFS, additional relevant works

provide insights into improving data transmission, com-
pression, optimization, and reliability in distributed envi-
ronments.

Zhao et al. [31] in “Performance Analysis of Big Model
Transmission under Double Rayleigh Fading” investigated
the transmission performance of large models over wire-
less channels affected by double Rayleigh fading. Their
analytical and simulation-based approach evaluated outage
probability and latency in unreliable communication envi-
ronments. The study’s emphasis on reliability and end-to-
end transmission efficiency under fading conditions pro-
vides a useful analogy for improving data block transfer in
HDFS when operating across heterogeneous or partially
wireless clusters. By integrating channel reliability con-
cepts, HDFS can better adapt to network variations during
multi-pipeline transfers, reducing delays and improving
fault tolerance.

Similarly, “Compression and Transmission of Big Al
Model Based on Deep Learning”[32] proposed a deep-
learning-driven compression framework to reduce the size
of large Al models during network transfer while preserv-
ing accuracy. The adoption of adaptive compression and
error-resilient encoding schemes demonstrates that effi-
cient data representation can significantly enhance transfer
speed and reliability. In the context of HDFS, such com-
pression strategies can be applied to data blocks prior to
replication or transmission through multiple pipelines, thus
optimizing bandwidth utilization and further accelerating
the write process without compromising data integrity.

In the field of optimization and intelligent resource selec-
tion, “Bi-Directional Feature Fixation-Based Particle
Swarm Optimization (BDFF-PSO) for Large-Scale Fea-
ture Selection” introduced a self-adaptive bi-directional
mechanism to improve convergence and balance explora-
tion and exploitation in high-dimensional search spaces.
This optimization strategy can be mapped to HDFS envi-
ronments, where the selection of suitable DataNodes
(DNis) for replication and pipelined writing can be modeled
as a multi-objective optimization problem. Applying
BDFF-PSO can enable dynamic and intelligent selection of
DNs based on real-time reliability, bandwidth, and work-
load, leading to improved global efficiency and reduced
data transfer latency [33].

Furthermore, in “Elastic Optimization for Stragglers in
Edge Federated Learning,” [34] researchers addressed the
challenge of uneven client performance (stragglers) by
developing an elastic optimization mechanism that balanc-
es model updates and reduces training delays. The concept
of elasticity—adapting resource participation dynamical-
ly—has direct relevance for HDFS environments. By
adopting elastic replication policies and reliability-based
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participation control, HDFS can dynamically exclude or
down-weight underperforming DNs, improving system
throughput and resilience during high-load or degraded

network conditions.

Collectively, these studies demonstrate the significance of
reliability modeling, adaptive compression, intelligent op-
timization, and elasticity in large-scale distributed systems.
Integrating these principles into HDFS can lead to en-

hanced data transmission efficiency, fault tolerance, and
throughput. Therefore, this paper’s proposed multi-pipeline
architecture with dynamic reliability evaluation aligns with
and extends these contemporary research directions, estab-
lishing a holistic framework for next-generation distributed
storage optimization.

Table 3: Comparative analysis of the related works

Citation =~ Method Used Advantages Disadvantages Future Use
& Year
[15] Adaptive data Improves scheduling May introduce Enhancing data replication
2011 replication (DARE). efficiency in clusters. overhead due to algorithms.
replication.
[16] RAID (Redundant Enhances data Increased storage Integration with modern
2009 Array reliability and overhead. storage technologies.
Independent Disks).  availability.
[17] Elastic  replication Dynamically adjusts Resource consumption Further optimization for
2012 management data replication. during adjustments. HDFS ecosystem.
system.
[18] Magicube storage High reliability with Potential complexity in Adaptation for different
2012 architecture. low redundancy. implementation. cloud computing platforms.
[19] Efficient replica Improved HDFS Potential data Scalability for larger HDFS
2014 placement. write performance. consistency challenges. clusters.
[20] Efficient replica Increased data May introduce Optimization for various
2014 placement. transfer rate and additional network network topologies.
throughput. traffic.
[21] Multi-pipeline data Concurrent data Resource contention Integration with modern
2014 transfer in HDFS. transfers in Hadoop during concurrent Hadoop distributions.
clusters. transfers.
[22] Knowledge-Based Enhanced  security Initial setup and Security enhancement in
2019 Authentication using Kerberos. configuration distributed systems.
Mechanism. complexity.
[23] Authenticated Key Enhanced  security Overhead due to Scalability for larger SloV
2021 Agreement and privacy in SloV.  cryptographic environments.
Protocol. operations.
[24] Distributed Secure authentication Additional processing Scalability for larger big
2022 authentication and access control. overhead. data environments.
framework.
[25] IoT Big Data Data authenticity and Potential  blockchain Integration with diverse IoT
2021 provenance scheme. provenance tracking.  scalability issues. devices and platforms.
[26] Assurance process Comprehensive Resource consumption Integration with various Big
2023 for Big Data evaluation of Big during evaluation. Data frameworks.
trustworthiness. Data trustworthiness.
[27] Attribute-Based Fine-grained access Additional complexity Scalability for processing
2023 Access Control control for big data in access policies diverse sensitive data
Framework
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4. Proposed Model

In this section, we present our proposed technique that
aims to enhance the reliability and efficiency of data stor-
age in an HDFS (Hadoop Distributed File System) cluster.
Our approach focuses on selecting the most reliable DNs
while also taking into account the full network bandwidth
during the data writing process.

In the proposed technique in figure 3 for HDFS data
writing, the process involves the following steps:

1. Requesting File Construction: When an HDFS
client wants to create a new file, it sends a request
to the NN.

2. Reliability-Based DN Selection: The NN re-
sponds to the client's request by providing

3. an ordered list of DNs to store the file data. The
ordering is based on the reliability of each DN.
The default value for the number of DNs in the
list is set to 3, which means that the file data will
be replicated on three DNs.

4. Data Division and Pipelining: The HDFS client
divides the file data into default-sized blocks,
which are subsequently split into packets. These

which is the third DN. This process ensures fault
tolerance and data redundancy in HDFS, as the
data is replicated across multiple nodes in the
cluster.

Acknowledgment and Pipelining: After the first
and second DNs receive the packets and store
them, they send acknowledgment messages to the
client.

Reliability Update: Simultaneously, each DN
sends an update message to the NN to update its
reliability value. The reliability value is evaluated
using an algorithm that starts with initializing the
reliability for each DN as 1. The algorithm uses
inputs such as F-repli (reliability factor), mnareli,
and mxreli. The reliability value for each DN is
adapted based on this algorithm, ensuring that it
converges towards an optimal reliability level.

Acknowledgment and Reliability Update Con-
tinuation: After storing packet on third DN, it
sends an acknowledgment to the second DN and
simultaneously updates its reliability value in the
NN using the equations specified in step number
6.

This proposed technique aims to improve the

packets are transmitted through a pipeline com-
prising multiple DNs. In the default replication
setup, the pipeline consists of three nodes.

Parallel Data Writing: Indeed, in the default
setup, the packets are sent in parallel to the first
and second Data Nodes (DNs) in the pipeline.
Each DN receives the packet, stores it locally, and
then forwards it to the next DN in the pipeline,

2 EA

overall reliability and efficiency of data storage in the
HDEFS cluster by strategically selecting reliable DNs
and utilizing network bandwidth efficiently through
pipelining. The continuous updating of reliability
values ensures that the system adapts to changing
conditions and maintains optimal data storage relia-
bility.
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Client Meta Data DN1 DN2 DN3
Rack Data I
Name Node Availability
Name
Request to write
>
List of Data Node
<€
Write to Data Node 1
>
Acknowledgement
<€
Update Reliability
Close
>
Write on DN2
E Ack
Update Reliability
Write on DN3
Ack
. <€
Update Rellablllly
< |

Figure 3. Proposed Model

Algorithm: Reliability Assessment

Initialization

reli=1, Adapt-F:=0.01
Input

F-repli, mxreli, mnreli, DNS
Output

RDNS

Start
if(DNS= Success)
then
reli= reli+ (reli * F-repli)
if (adpt-F > 1)
then
adpt-F:= adpt-F —1;
else if (DNS = Fail)
then
reli=reli — (reli * F-repli * adpt-F)
adpt-F= adpt-F +1;

2 EA

if (reli >= mxreli)
then
reli= mxreli
if (reli < mnreli)
then
DNS=Idle
call proc: RDNS
End

5. Performance Evaluation

An often used assessment of HDFS involves leveraging its
DNs across multiple racks. The conventional HDFS strate-
gy works as follows: the NN selects available DNs to store
the data block. The second replica is placed in a DN from a
different rack, and the third replica is placed in a different
DN on the same rack as the second. TestDFSIO bench-
mark is specifically designed to test various HDFS opera-
tions, including both reading and writing. By utilizing
TestDFSIO, we were able to assess the performance of the
network, operating system, and Hadoop setup on NN and

EAI Endorsed Transactions on
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DNs. Additionally, this benchmark enabled us to calculate
the average throughput for HDFS operations.

Our experiment was conducted with three different
replication factors, block sizes of 64 MB and 128 MB, and
file sizes ranging from 1 GB to 10 GB. Moreover, the ini-
tial reliability value was set to 1, with an adaptability factor
of 0.01. Additionally, we set the mxreli to 1.4 and the
mnreli to 0.06. These parameter settings were used to eval-
uate and analyze the performance of the proposed writing
on HDFS approach under various scenarios. The experi-
ment demonstrates that there is no significant gain when
dealing with small file sizes. However, the proposed ap-
proach exhibits notable improvements, achieving a 35.9%

enhancement compared to traditional HDFS with a 1 GB
file and an even more substantial improvement of 61.3%
with a 10 GB file.

When compared to the parallel broadcast algorithm,
the proposed approach achieves a remarkable 48.9% re-
duction in execution time. Furthermore, it outperforms the
parallel master-slave technique by an impressive 60.3% in
the context of large file sizes. Table 4 and Figure 4 illus-
trates that while the parallel master-slave technique takes
210 seconds to upload a 5 GB file, the proposed approach
only takes 90 seconds, making it 57.14% faster.

Table 4: Execution time (Sec) of write operation @ block size 64 MB

Execution Times (Sec) of different techniques

File Size
Parallel Parallel Master- Lazy Proposed
Broadcast Slave Method
1 GB 40 36 32 30
2 GB 60 65 59 52
3GB 100 105 97 67
4 GB 135 140 110 85
5GB 190 210 130 90
6 GB 220 225 170 110
7 GB 300 305 200 120
8 GB 320 330 265 125
9 GB 410 426 265 132
10 GB 450 470 350 190
Il Parallel Broadcast
W Parallel_Master_Slave
4001 mmm Lazy
=) B Proposed_Method
A
‘@ 300 -
£
=
£ 200 -
100 -
O .
1 2 3 4 6 7 8 10
File Size in GB

Figure 4. Execution time (Sec) of write operation @ block size 6
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Table 5 and Figure 5 illustrate for HDFS writing opera-
tions with a block size of 128 MB. When compared to lazy
HDFS with a 1 GB file, the proposed approach achieves a
commendable improvement. Moreover, with a file size of

10 GB, the improvement reaches 34.03%. When com-
paring the proposed approach to traditional HDFS, the
overall improvement in execution time reaches an impres-
sive 65.06%.

Table 5: Execution time (Sec) of write operation @ block size 128 MB

Execution Times (Sec) of different techniques

File Size
Parallel Parallel Lazy Proposed
Broadcast Master- Slave Method
1 GB 70 80 60 55
2GB 110 115 90 70
3GB 180 200 175 105
4GB 285 300 190 115
5GB 380 400 200 180
6 GB 445 460 220 190
7GB 600 603 300 205
8 GB 635 700 370 230
9GB 726 770 400 290
10 GB 815 800 485 303
800 1 W Parallel Broadcast
mmm Parallel_Master_Slave
700 1 mmm Lazy
— s P Meth
600 - roposed_Method
u
() -
£ 500
|_
_S 400 A
5
9 300 -+
>
L
200 H
100 -
0 _
1 2 3 4 5 6 7 8 9 10
File Size in GB

Figure 5. Execution time (Sec) of write operation @ block size 128 MB

Figures 5 and 7 display the enhancements in throughput
achieved by different techniques, taking into account block

< EAI

sizes of 64 and 128, respectively. The graphs highlight the
comparative performance of these techniques in terms of
data transfer rates, showing how each approach fares with
different block sizes.
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Table 6: Throughput Rate (MB/Sec) of write operation @ block size 64 MB

Throughput Rate (GB/Sec) of different techniques

File Size
Parallel Parallel Lazy Proposed
Broadcast Master- Slave Method

1GB 28 27 30 39
2 GB 28 26 31 38
3GB 27 26 32 37
4 GB 25 24 31 38
5GB 24 23 30 38
6 GB 24 23 28 37
7 GB 23 22 27 36
8 GB 23 22 27 35
9 GB 22 21 26 35
10 GB 22 21 25 34

40 1

I Parallel Broadcast
35 [m Parallel_Master_Slave

Throughput Rate (GB/Sec)
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File Size in GB

Figure 6. Throughput Rate (MB/Sec) of write operation @ block size 64 MB
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Table 7: Throughput Rate (MB/Sec) of write operation @ block size 128 MB

File Size

1GB
2GB
3GB
4GB
5GB
6 GB
7 GB
8 GB
9 GB
10 GB

Throughput Rate (MB/Sec) of different techniques

Parallel Parallel Lazy Proposed
Broadcast Master- Slave Method
32 28 38 48
29 28 38 48
28 27 37 47
27 26 36 47
26 25 35 46
26 25 35 45
26 26 34 44
26 25 34 44
25.5 24 36 43
25.5 24 35 42

50 A

N w B
o o o
1 1 1

Throughput Rate (GB/Sec)

=
o
1

Parallel Broadcast
Parallel_Master_Slave
Lazy
Proposed_Method

3 4 5 6 7 8 9 10
File Size in GB

Figure 7. Throughput Rate (MB/Sec) of write operation @ block size 128 MB
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With a 64 MB block size, the throughput improvement in
the writing operation varies between 28.2% and 32.4% in
the parallel broadcast technique, while the traditional
HDFS technique shows an improvement ranging from
33.33% to 41.4%. When using a larger 128 MB block size,
the overall percentage of throughput improvement reaches
18.7% in the lazy technique. This indicates that the pro-
posed technique performs better in terms of throughput
improvement with the 128 MB block size compared to the
lazy technique.

5. Conclusion

In traditional HDFS, data reliability and availability are
achieved through a data replication technique, wherein
data blocks are replicated on different DNs, selected ran-
domly, and transmitted using a single pipeline. This paper
presented a novel approach to enhance the replication
technique by selecting the most reliable DNs based on their
reliability values. Our proposed approach employs a paral-
lel pipelined architecture to replicate the data blocks, re-
sulting in a substantial increase in the data transfer rate and,
consequently, the overall system throughput. Specifically,
with a block size of 64 MB, our approach has demonstrat-
ed an impressive 59.5% increase in system throughput. For
a larger block size of 128 MB, the system throughput has
been enhanced by 43.6%. This improvement can signifi-
cantly enhance the performance of HDFS by ensuring data
reliability and reducing data transfer latency, making it
more efficient and reliable for handling large-scale data
storage and processing tasks.
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