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Abstract

Life expectancy is a crucial indicator of the population’s health and well-being. Recent research has
highlighted the importance of various socioeconomic and health factors in determining the lifespan of
individuals. Those factors include Gross Domestic Product (GDP), healthcare expenditure, mortality rates,
and education level. This study employs recursive partitioning (decision trees) and bagging (random forest)
techniques on the Life Expectancy dataset from the World Health Organization (WHO) to evaluate the
effectiveness of predictive models. The dataset was prepared by encoding categorical features, scaling the
features, normalizing them, and handling outliers. Mean imputation was used to handle missing values and
produce a quality dataset. Optimized models based on recursive partitioning and bagging algorithms achieved
performance efficiencies of 92% and 97%, respectively. The bagging algorithm-based model produced a mean
squared error of 1.17, a mean absolute error of 2.0, and an R2-score of 97%. Other key findings included
the importance of dataset characteristics—such as HIV/AIDS prevalence, adult mortality, and health resource
income—in predicting life expectancy. This research elucidates the impact of feature engineering and data
preprocessing strategies on data quality and predictive model precision, offering novel insights for public
health policymaking and informing future research directions.
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1. Introduction
Life expectancy remains one of the most widely used
indicators of population health and social development.
Global statistics indicate that life expectancy can
vary by more than 30 years between the top- and
bottom-ranked countries, representing significant gaps
in access to healthcare, socioeconomic conditions, and
living environments. Such variation highlights the
need for accurate forecasting models to help evidence-
based policymaking [1]. A wide range of factors
contribute to life expectancy outcomes. Economic
indicators, including Gross Domestic Product (GDP)

∗Corresponding author. Email: mbalvi@iub.edu.pk

and income distribution, as well as health-related
indicators (adult and infant mortality, HIV/AIDS
prevalence, vaccination and nutrition levels, and Body
Mass Index), education, and investment in healthcare,
are all important. Understanding the relative influence
of these variables requires methods that can capture
both linear and nonlinear relationships [2].

Life expectancy is challenging to predict due to
the complex and varied factors that influence it.
Many existing models struggle with imputing data and
capturing the non-linear relationships between these
features. Hence, there is a need for robust machine
learning models that can integrate various health
and socioeconomic indicators to provide accurate life
expectancy forecasts [3].
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Figure 1. Average life expectancy of countries from 2000—2015 [3]

Figure 1 shows the trends in the average life
expectancy of various countries over time. It demon-
strates how life expectancy has steadily increased in
most countries, a testament to global progress in
healthcare and living conditions. It also shows that
life expectancy varies significantly from one nation to
another, reflecting variations in socioeconomic condi-
tions, healthcare availability, and economic develop-
ment. This information is critical for tracking global
health and development trends. A thorough list of fea-
tures and their brief explanations for various indicators
related to global health and development is provided in
Table 1. Dataset features include lifespans (adult and
infant mortality), vaccination coverage (against Hep-
atitis B, Measles, and Polio), and nutritional status, as
indicated by BMI, as well as socioeconomic features
(GDP and total population count).

This study aims to develop robust machine learning
models that predict life expectancy and provide
insights for improving it. To achieve the set goal, a
comprehensive dataset was acquired and effectively
preprocessed to be fit for modeling. The study
employed recursive partitioning (Decision Tree) [4]
and bagging (Random Forest) [5] techniques on the
World Health Organization (WHO) Life Expectancy
dataset. By combining systematic preprocessing, such
as mean imputation of missing values, normalization,
and feature engineering, the proposed models seek
to enhance the precision of the predictions while
identifying the most significant determinants of life
expectancy. The experimental results demonstrated
good performance, particularly for the random forest
model, which yielded higher accuracy. The developed
models were evaluated using the mean squared

Table 1. Dataset Features and their Descriptions

Features Features description
Country List of the 179 countries
Year Year of Observation for health data
Life
expectancy

The average life a person is expected to
live

Adult Mor-
tality

Number of adult deaths per 1,000
individuals in a population

Infant
deaths

Infant deaths per 1,000 live births

Alcohol Alcohol consumption (liters of pure
alcohol per capita) for Aged 15+

Hepatitis-B Percentage coverage of Hepatitis-B
(HepB3) immunization coverage in
1-year-olds

Measles % of coverage of the Measles containing
vaccine first dose (MCV1), immuniza-
tion among 1-year-olds

BMI A measurement of nutritional status in
adults, defined as a person’s weight in
kilograms divided by the square of that
person’s height in meters (kg/m²)

Under-five
deaths

Deaths of children under five per 1,000
live births

Polio % of coverage of Polio (Pol3) immuniza-
tion among 1-year-olds

Schooling Average years that people aged 25+
spent in formal education

HIV/AIDS Incidents of HIV per 1,000 population
(aged 15-49)

Diphtheria % of coverage of Diphtheria tetanus tox-
oid and pertussis (DTP3) immunization
among 1-year-olds

GDP GDP per capita in USD
Population Total population (millions)

error (MSE), mean absolute error (MAE), and R2-
scores. Random forest-based model performed better,
achieving an R2-score of 97%, a mean absolute error
(MAE) of 2.0, and a mean squared error (MSE) of 1.17.

The key findings underscored the importance of
factors such as HIV/AIDS prevalence, adult mortality,
and income share of health resources as predictors of
life longevity. The research demonstrated the impact
of feature engineering and missing data handling
strategies on model quality, providing valuable insights
for public health policy. The study contributed to
the literature by establishing effective models for
handling complex datasets and improving the accuracy
of life expectancy prediction using machine learning
techniques.

The remainder of this paper is organized as follows.
Section II provides background information relevant to
the study. Section III describes the proposed framework
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design and implementation details. Section IV discusses
the obtained results and interprets the findings. Finally,
Section V concludes the paper and highlights directions
for future research.

2. Related Work

This section elaborates on the methods, tools, and
techniques employed by researchers in machine
learning studies on lifespan prediction.

Vikram Bali (2021) presented findings on life
expectancy by developing machine learning models,
which are among the most relevant models developed
in recent times. The authors employed Linear Regres-
sion, Ridge Regression, and Decision Tree to predict
lifespan and obtained good results [1].

A.A. Bhosale and D. Sundaram in [6] developed
a model to predict human life expectancy based on
weight, respiration rate, heart rate, and blood pressure.
Their study aimed to establish a descriptive assessment
of these parameters, highlighting their impact on
projected life expectancy. The authors used descriptive
analysis to describe various features involved and
the life expectancy associated with these features.
Additionally, regression analysis was used to determine
the relationship between the factors mentioned and life
expectancy.

The authors in [7] performed data analysis to
measure life expectancy forecasts using regression-
based machine learning methods. The study employed
cross-sectional data from a WHO repository and
Kaggle, which contained data for 193 countries for
the years 2000 and 2015, to examine the determinants
of life expectancy. They reported Random Forest
Regressor to be the model of choice due to its strong
predictive capability, resulting in a performance level
of 95%.

According to Kerdprasop, economic and envi-
ronmental factors significantly contributed to life
expectancy. The authors analyzed data obtained from
the World Bank Database, covering the period 1990 to
2015. They established a CHAID predictive model with
a structure similar to the Decision Tree algorithm. They
found that economic growth had the highest mean coef-
ficient among all the included variables, demonstrating
a strong positive correlation with life expectancy [8].

The authors employed XGBoost and Random Forest
Regressor to predict life expectancy for 193 countries
using the WHO dataset (from 2000 to 2015). The study
described and assessed different health, immunization,
socioeconomic, and behavioral factors with the HDI.
The results showed that XGBoost outperformed the
Random Forest and Artificial Neural Networks models,
achieving a mean absolute error (MAE) of 1.554 and a
root mean square error (RMSE) of 2.402.

The Random Forest Regressor was found to be
the best model, and the study pointed out that the
consequences of showing accurate life expectancy could
have in terms of decisions being made by public health
facilities. The performance of the models was tested
using MAE, RMSE, CV-score, and R2-score of the model
obtained is 93.88% [9].

The authors in [10] employed clustering techniques
using features included mental and physical health
conditions, disease incidence, and accidents to deter-
mine the life expectancy. Three clustering techniques -
Density-Based Spatial Clustering of Applications with
Noise (DBSCAN), k-means, and fuzzy c-means cluster-
ing - were used, and the results were analyzed using the
Silhouette score, the Davis Bouldin Index (DBI), and the
Calinski-Harabasz index. The authors reported the k-
means algorithm to prove better.

A.A. Bhosale and K.K. Sundaram in their work,
"Life Prediction Equation for Human Beings," aimed
to create a model that predicted the human chance
of living long using other measurable factors such
as blood pressure, weight, and pulse rate, among
others. There was an intention to develop a useful
instrument to meet the needs of insurance companies
and governments in predicting average life expectancy,
given that many characteristics are easily measurable,
especially in the developing world. The authors used
information collected from a group of people in good
health, focusing on factors such as blood pressure, pulse
rate, weight, and breathing rate. The paradigm they
provided was represented by the empirical equation,
which was derived from differential calculus.

life = 0.4467
(WT · BP

HR

)
+ 3.5735 (1)

The study identified direct relationships with weight,
life expectancy, and blood pressure, revealing inverse
relationships with heart and respiratory rates. However,
it did not incorporate validation criteria, which greatly
hampered the model’s stability and practicability due
to the omission of genetic predisposition and lifestyle
considerations [11].

• W – Body Weight (kg): In equation 1, it appears
in the numerator, so a higher body weight
within healthy limits pushes the predicted life
expectancy upward. This suggests that adequate
body mass is associated with a better nutritional
status.

numerator,

• BP – Blood Pressure (mmHg, usually systolic):
In equation 1, its presence in the numerator
means that, in this dataset, moderate increases
in blood pressure correlated with longer life. The
authors were working with healthy subjects, so
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“higher” here still refers to normal, well-regulated
pressure.

• HR – Heart Rate (beats per minute): In equation
1, placed in the denominator, heart rate has an
inverse effect—when resting heart rate rises, the
calculated life expectancy falls. This aligns with
clinical evidence that a persistently elevated heart
rate can stress the cardiovascular system.

In equation 1, the numerical factors are purely
empirical:

• 0.4467 – a scaling coefficient obtained from curve
fitting; it adjusts the combined ratio

W × T × BP
HR

So the predicted values match the observed
lifespans in the training data.

• 3.5735 – an additive constant that shifts the
line vertically, ensuring the formula’s baseline
prediction aligns with the actual life expectancy
when the other terms are near average.

3. Proposed Architecture
Figure 2 presents all the components of the proposed
architecture, which are explained in the following
subsections. The architecture illustrates the overall
approach for creating a data-driven model. It starts
with data collection from WHO, a United Nations
specialized agency. Data preprocessing is the next step,
during which the data is cleaned, missing values are
handled, categorical features are transformed, outliers
are detected and managed, and the data is normalized.
The next step is to perform feature engineering,
followed by splitting the dataset. The training set is
used to build the predictive models. The predictive
models use recursive partitioning (Decision Tree) and
bagging (Random Forest) algorithms. Each model is
assessed based on suitability indices, followed by
model tuning and optimization for increased suitability.
The performance of both models is evaluated on the
testing set using metrics such as mean squared error
(MSE) and mean absolute error (MAE), which measure
the difference between the predicted and actual life
expectancy values.

3.1. Data Acquisition
The data is acquired from the World Health Orga-
nization (WHO) [12], a reliable data source uti-
lized globally. The dataset comprises 22 features and
2,938 data entries. It contains health-related factors,
including Polio, Hepatitis-B, Body Mass index (BMI),

Measles, and Diphtheria. The economic factors encom-
pass Gross Domestic product (GDP), income composi-
tion of resources, health expenditures, and total expen-
ditures. Additionally, significant features in the dataset
include schooling, year, country name, and status, as
well as infant mortality, adult mortality, and alcohol
consumption.

3.2. Data Preprocessing
Data preprocessing is a pertinent step in predictive
model building that may include multiple sub-steps.
Often, initial data analysis is performed to examine the
behavior of the dataset. The data analysis encompassed
exploratory data analysis (EDA) to understand the
structure of the data. Through EDA, it was identified
that the dataset contained missing values, categorical
features, outliers, and notable discrepancies among
feature values. If unaddressed, these factors can lead to
skewed and misleading results.

Missing values handling. Missing values render the
dataset incomplete and may be removed if doing so
does not compromise the dataset’s size or distribution.
However, in this case, dropping missing values would
result in significant data loss. Therefore, missing values
were handled by filling them using techniques such
as mean imputation, median imputation, forward-fill,
backward-fill, simple imputation, and KNN imputa-
tion. These techniques were applied sequentially, and
the data distribution was recorded before and after each
application. It was found that filling missing values
with the mean preserved the original distribution; thus,
it was adopted. A similar process was also selected
in the previous studies [13, 14]. Table 2 shows the
percentage of missing values for dataset features. The
dataset features such as Hepatitis-B (18.68%) and Pop-
ulation have missing values of 18.58% and 21.96%,
respectively. In contrast, features such as Year, Infant
Deaths, and HIV/AIDS have no missing values. It could
be concluded that missing value handling is instru-
mental in assessing data completeness and subsequent
investigations. The high percentage of missing values
in features like Hepatitis-B and Population may require
more sophisticated imputation or data cleaning tech-
niques —using statistical methods or domain-specific
knowledge —to fill in the gaps without distorting the
overall trends.

Categorical features. The dataset included categorical
variables that required transformation into numerical
representations to ensure compatibility with machine
learning algorithms. Two techniques were considered
for processing variables: Label Encoding and One-
Hot Encoding. However, Label Encoding was identified
as the most suitable approach for this dataset. The
dataset contained two categorical variables, namely
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Figure 2. Proposed Life Expectancy Prediction Model Architecture

Country and Status. Both were transformed, ensuring
their compatibility with the algorithms while retaining
the ability to capture meaningful patterns and
relationships [15, 16].

In the context of Decision Tree and Random Forest
models, Label Encoding is often preferred over One-
Hot Encoding due to its computational efficiency and
its compatibility with the way these models process
data. Tree-based models inherently handle categorical
features effectively by splitting data based on feature
values, regardless of whether they are numerically
encoded or binary encoded. Label Encoding converts
categorical variables into integers, ensuring each
variable remains a single column. This is particularly
useful for features with high cardinality, such as a
"Country" feature containing 190 unique categories, as
it avoids the curse of dimensionality that arises with
One-Hot Encoding.

One-Hot Encoding, while effective for algorithms that
rely on distance-based metrics (e.g., logistic regression
or support vector machines), creates a separate
binary column for each unique category, significantly

increasing the dimensionality of the dataset. This can
lead to increased memory usage and computational
overhead, as well as a higher risk of overfitting in
smaller datasets. In contrast, Label Encoding maps
each category to a unique integers, preserving the
compactness of the data and ensuring that the models
remain computationally efficient.

Importantly, Decision Trees and Random Forests are
not sensitive to the ordinal nature of Label Encoded
values, as they split data based on thresholds, not
on the relative magnitude of the numerical labels.
For instance, if "Developing" is encoded as 0 and
"Developed" as 1, the model will treat these as
distinct categories during splits without assuming any
inherent order. Thus, Label Encoding provides a simple,
interpretable, and efficient solution for preparing
categorical data in tree-based models, making it a
natural choice in scenarios where these algorithms are
employed [17].

Table 3 illustrates the mapping process of categorical
features, such as Country and Status, into their corre-
sponding Label-Encoded values. The Original Features
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Table 2. Missing Values Percentage for Each Feature

Feature Missing Values Percent-
age

Year 0.00%
Adult Mortality 0.34%
Infant Deaths 0.00%
Alcohol 6.72%
Percentage Expenditure 0.00%
Hepatitis-B 18.68%
Measles 0.00%
BMI 1.15%
Under-five Deaths 0.00%
Polio 0.60%
Total Expenditure 7.87%
Diphtheria 0.60%
HIV/AIDS 0.00%
GDP 14.68%
Population 21.96%
Thinness 1-19 Years 1.15%
Thinness 5-9 Years 1.15%
Income Composition of
Resources

5.57%

Schooling 5.49%

column showcases the original categorical data, while
the Encoded Features column displays the transformed
integer values. This mapping highlights the inter-
pretable nature of Label Encoding, ensuring efficient
handling of high-cardinality categorical data without
inflating feature space. Such encoding aligns seamlessly
with the requirements of Decision Tree and Random
Forest models, ensuring both computational efficiency
and effective utilization of categorical variables in these
algorithms.

Table 3. Mapping of Original and Encoded Features

Original Features Encoded Features
Country Status Ctry Stat
Tanzania Developing 0 0

United States Developed 1 1
Pakistan Developing 2 0

Saint Vincent Developing 3 0
Poland Developed 4 1

Outlier detection. A variety of methods exist for detect-
ing and handling outliers in datasets. Statistical tech-
niques for outlier detection include Z-score methods
and the Interquartile Range (IQR). Visualization tech-
niques such as distplot, boxplot, and scatter plot are also
utilized to detect outliers. After detecting the outliers,
the next step is to handle them. There are multiple
techniques to handle outliers, depending on their type.

The outliers may be classified based on whether the
outliers affect the dataset distribution or not. One
solution is to remove the outliers if they are outside
the interquartile range (IQR-based filtering). Another
approach for outlier handling is through capping (Win-
sorization). In the capping technique, values outside
the interquartile range are replaced with the nearest
boundary value from the IQR. The capping method
is used when removing outliers is costly and affects
the data. Other techniques included imputation, where
outliers were replaced with statistical measures, such as
the mean, median, or mode, to preserve data continuity.
Transformation methods, such as logarithmic or Box-
Cox transformations, can also be employed to reduce
the impact of outliers by stabilizing variance and nor-
malizing skewed distributions.

All dataset features, except Country, Year, and
Alcohol, contain outliers. The outliers were detected
and handled using the Inter Quartile Range (IQR) and
Z-score. The outliers were capped with boundary values
to minimize their impact on overall analysis [18, 19].
The identification of outliers using the interquartile
range (IQR) and box plots is demonstrated in Figure
3. The upper plots show that the extreme outliers in
the original dataset significantly affected the overall
distribution and statistical summaries. The density
plot indicates that the data were skewed due to these
outliers, while the box plot clearly shows multiple
outliers below the lower limit of the IQR. After
applying the capping method, as depicted in the
lower plots, the extreme values were replaced with the
nearest boundaries of the interquartile range, rather
than being removed. This process effectively mitigated
the influence of outliers on the data distribution. The
resulting density plot exhibits a reduction in skewness,
resulting in a more balanced representation of the data.
Similarly, the box plot for the capped data confirms the
absence of outliers, ensuring that the dataset remained
within the defined range.

Data scaling and normalization. The scaling and nor-
malization techniques transform the data. Data scal-
ing and normalization help mitigate the chances for a
particular feature to dominate the other features while
producing the model results. Scaling adjusted the data
range to a specific value, while normalization trans-
formed the data to fit a standard normal distribution.
These steps help improving the model performance and
avoid biased results [20, 21]. Figure 4 illustrates the
scaling process applied to the dataset. Before scaling,
Adult Mortality had a much larger range, which could
dominate model training and lead to biased outcomes,
particularly in algorithms that are sensitive to feature
magnitudes. After scaling, both variables were adjusted
to a comparable range with a mean of zero and a
variance of one, ensuring fair representation and equal
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Figure 3. Visualization of the ’Polio’ column after capping the outliers using the IQR method.

contribution during analysis. This transformation pre-
served the relative distribution and patterns of the data
while reducing the impact of varying scales. Moreover,
scaling facilitated faster and more stable convergence
of optimization algorithms by eliminating numerical
imbalances.

3.3. Feature Engineering

Feature engineering is a crucial step in machine
learning workflows that enhances model accuracy and
performance. It involves selecting, transforming, or
creating features that capture meaningful patterns
from the data. The feature engineering process not
only enhances the model’s predictive power but
also reduces overfitting and computational complexity
by eliminating irrelevant or redundant features. By
focusing on the most impactful variables, feature
engineering enables models to perform more effectively
and yield more interpretable results.

Feature Selection. Feature selection plays a pivotal
role in reducing data dimensionality, enhancing model
interpretability, and improving predictive performance.

Recursive Feature Elimination (RFE) was applied
with a Random Forest (RF) estimator to select the top
10 features of the dataset. RFE iteratively removed less
significant features based on their importance scores
derived from the RF model. Top ten features included
Year, Adult Mortality, Alcohol, BMI, Under-Five Deaths,
Total expenditure, HIV/AIDS, Thinness 5–9 Years,
Income composition of resources, and Schooling. RFE
is an effective feature selection method that retains
only the most relevant features [22]. Sequential Feature
Selection (SFS) is an other feature selection technique
to identify the most relevant feature subset. SFS
iteratively evaluates combinations of features by adding
or removing them based on their contribution to
the model’s performance. In this study, the backward
direction of SFS was applied with a Random Forest
(RF) regressor as the base estimator to optimize the
selection process. The application of SFS resulted in
the selection of 12 key features: Country, Year, Status,
Adult Mortality, Infant Deaths, Under-five Deaths,
Polio, HIV/AIDS, GDP, Thinness 1-19 Years, Thinness
5-9 Years, and Schooling. SFS maintain a strong model
performance and generalizability capability [23].
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Figure 4. Illustration of scaling process

3.4. Model Building and Optimization

Model building is the process of feeding the training
data subset to a machine learning algorithm. The
dataset was split into the feature matrix (X) and
the target vector (y). The feature matrix included all
predictors except Life expectancy, which was used as
the target variable. The data set was then split into a
training subset (80%) and a testing subset (20%), to
ensure a random and reproducible split [24].

The decision tree algorithm works by recursively
partitioning the data into smaller subsets based on the
values of the input features. The process of building
a Decision Tree begins with a root node representing
the entire dataset. The algorithm then selects the best
feature to split the data based on criteria, such as
information gain or Gini impurity. The data is then
split into two child nodes based on the selected feature
and a splitting criterion, such as a threshold value.
This process is recursively applied to each child node
until a stopping criterion is met, such as all instances
belonging to the same class. The final prediction is
made at the leaf node [25, 26].

Mathematical Foundations of Decision Trees. Decision
trees are constructed on a strong mathematical
foundation that ensures data is well partitioned,
enabling accurate prediction. Embedded within this
approach are important principles, such as entropy (a
measure of impurity) and information gain, which must
be used to choose features and split during tree growth.

Entropy (Information Gain) Entropy measures the
impurity of a node, with higher entropy indicating
higher impurity. The formula for entropy is:

H(X) = −
∑

(p(x) · log2(p(x))) (2)

where H(X) is the entropy of node X, p(x) is the
probability of class x, and the sum is taken over all
classes.
Explanation: In the context of decision trees, entropy
quantifies the randomness in the data. A high entropy
implies that the data is highly disordered, whereas a
low entropy indicates that the data is well-organized or
pure.

Proof: Let X be a discrete random variable
with possible values {x1, x2, . . . , xn} and probabilities
{p1, p2, . . . , pn}. Entropy is defined as:

H(X) = −
∑

(p(x) · log2(p(x)))

where the sum is taken over all possible values of X. To
prove that entropy is a measure of impurity, it must be
shown that:

1. H(X) ≥ 0 for all X

2. H(X) = 0 if and only if X is a constant

3. H(X) = H(Y ) if X and Y have the same probability
distribution

Proof of 1:

[H(X) = −
∑

(p(x) · log2(p(x))) ≥ 0] (3)
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since log2(p(x)) ≤ 0 for all p(x) ≤ 1.
Proof of 2: If X is a constant, then p(x) = 1 for some x

and p(x) = 0 for all other x.

H(X) = −(1 · log2(1)) = 0 (4)

Conversely, if H(X) = 0, then p(x) = 0 for all x, which
implies that X is a constant.

Proof of 3: Let X and Y have the same probability
distribution. Then:

H(X) = −
∑

p(x) · log2(p(x))

= −
∑

p(y) · log2(p(y))

= H(Y )

Gini Impurity Gini impurity measures the probabil-
ity of misclassifying an instance. The formula for Gini
impurity is:

Gini(X) = 1 −
∑

(p(x)2) (5)

where Gini(X) is the Gini impurity of node X, and
p(x) is the probability of class x.

Explanation: Gini impurity measures the probability
of incorrectly classifying a randomly chosen element in
the dataset if it were randomly labeled according to the
class distribution.

Proof: Let X be a discrete random variable
with possible values {x1, x2, . . . , xn} and probabilities
{p1, p2, . . . , pn}. To prove that Gini impurity is a measure
of impurity, it must be shown that:

1. Gini(X) ≥ 0 for all X

2. Gini(X) = 0 if and only if X is a constant

3. Gini(X) = Gini(Y ) if X and Y have the same
probability distribution

Proof of 1:

Gini(X) = 1 −
∑

(p(x)2) ≥ 0 (6)

since
∑

(p(x)2) ≤ 1 for all p(x) ≤ 1.
Proof of 2: If X is a constant, then p(x) = 1 for some x

and p(x) = 0 for all other x.

Gini(X) = 1 − (12) = 0 (7)

Conversely, if Gini(X) = 0, then p(x) = 0 for all x,
which implies that X is a constant.

Proof of 3: Let X and Y have the same probability
distribution. Then:

Gini(X) = 1 −
∑

(p(x)2) = 1 −
∑

(p(y)2) = Gini(Y )

Logarithmic Loss (for Regression Tasks) Logarith-
mic loss measures the error of the model for regression

tasks. The formula for logarithmic loss is:

L(y, y′) =
(y − y′)2

2 · σ2 (8)

where L(y, y′) is the logarithmic loss, y is the true
value, y′ is the predicted value, and σ is the standard
deviation.

Explanation: Logarithmic loss quantifies the accu-
racy of a regression model by penalizing large errors
more than small ones. It is often used as a metric for
evaluating regression tasks.

Proof: Let y be the true value and y′ be the predicted
value. Logarithmic loss is defined as:

L(y, y′) =
(y − y′)2

2 · σ2

where σ is the standard deviation. To prove that
logarithmic loss is a measure of error, it must be shown
that:

1. L(y, y′) ≥ 0 for all y and y′

2. L(y, y′) = 0 if and only if y = y′

3. L(y, y′) = L(y, y′′) if y′ and y′′ have the same
probability distribution

Proof of 1:

L(y, y′) =
(y − y′)2

2 · σ2 ≥ 0

since (y − y′)2 ≥ 0 for all y and y′ .
Proof of 2: If y = y′ , then:

L(y, y′) =
(y − y′)2

2 · σ2 = 0

Conversely, if L(y, y′) = 0, then y − y′ = 0, which implies
that y = y′ .

Proof of 3: Let y′ and y′′ have the same probability
distribution. Then:

L(y, y′) =
(y − y′)2

2 · σ2 =
(y − y′′)2

2 · σ2 = L(y, y′′)

Information Gain Ratio The information gain ratio
is a modification of information gain that takes into
account the number of splits. The formula for the
information gain ratio is:

IGR(X, Y ) = H(Y ) −
∑(∣∣∣∣∣Xi

X

∣∣∣∣∣ ·H(Yi)
)

(9)

where IGR(X, Y ) is the information gain ratio, H(Y )
is the entropy of the target variable, |Xi | is the number
of instances in the i-the split, and |X | is the total number
of instances.

Example: Imagine a dataset consisting of students
and their corresponding class grade which is either A,
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B, C, or F. The aim is to find out the grade of a new
student considering its attributes and characteristics.

Entropy: Let’s say the probability distribution of the
grades is:

P (A) = 0.4

P (B) = 0.3

P (C) = 0.2

P (F) = 0.1

The entropy of this distribution is:

H(Grades) = −


0.4 · log2(0.4)

+0.3 · log2(0.3)

+0.2 · log2(0.2)

+0.1 · log2(0.1)

 = 1.8464

Gini Impurity: The Gini impurity of the grades is:

Gini(Grades) = 1 − (0.42 + 0.32 + 0.22 + 0.12) = 0.64

Logarithmic Loss (for Regression Tasks): Let’s say
the true grade is A and the predicted grade is B. The
standard deviation is σ = 0.5.

L(Grade,Predicted Grade) =
(A − B)2

2 · 0.52 = 1.125

Decision Tree: A decision tree might split the data
based on the student’s characteristics, such as their GPA
or test scores. The tree might look like this:

• If GPA > 3.5, predict A

• Else if GPA > 3.0, predict B

• Else if GPA > 2.5, predict C

• Else, predict F

The entropy and Gini impurity of the grades at each
node of the tree would be calculated based on the
probability distribution of the grades at that node.

Assumption of Decision Tree Algorithm. The assumptions
in a decision tree primarily relate to whether the data
is categorical or continuous, as well as the nature of the
model’s output, which can be either linear or non-linear.
Here are some key assumptions:

Recursive Partitioning: Decision trees divide data
step by step based on feature values. The repeated
splitting helps group the data so that the target variable
shows similar behavior within each group [27].

Hierarchical Structure: A decision tree can be
divided into nodes, which show features; branches,
which represent decisions; and leaves, which show
the final outcome or prediction. This hierarchical
structure clearly illustrates how various features are
interconnected and interact with one another.

Greedy Approach: Decision trees are created using
greedy methods, meaning that at each node, the best
split is chosen based on measures like information gain
or impurity around that node. The interesting part
is that these locally optimal choices, when combined,
form a globally optimal structure for the entire decision
tree.

Predictive Accuracy: Decision trees are built so that
each split reduces impurity or increases information
gain. The algorithm assumes that this process helps
find the best feature and split, allowing the data to
be divided most effectively into classes or continuous
values.

No Feature Interactions: Decision trees split data
based only on individual features, without considering
how features interact. However, in real-world applica-
tions, decision trees can still capture some interactions
between features due to their hierarchical structure.

Robustness to Noise: Decision trees make no
assumptions about the data; they handle noise and
outliers well. However, too much noise or too many
outliers can cause overfitting or lead to poorly
structured trees.

No Multicollinearity: Decision trees assume that the
features are mostly independent of each other. If there
is high multicollinearity (strong relationships between
features), it can distort the tree’s structure and lead to
incorrect feature importance scores.

Single Split Decision: For each tree, only one node
is split based on a single feature. This binary split is
enough to divide the feature space properly, so there’s
no need to consider mixed feature interactions.

Parameters of Decision Tree. Decision trees have several
parameters that can be adjusted to influence their
behavior. Here are some common parameters along
with their mathematical definitions where applicable:

Criterion defines the function to measure the quality
of a split, that is, the quality function g in section 2.
Some of the measures that are frequently used in CART
algorithms include Gini impurity and entropy.

Gini Impurity (G): Let nt be the number of samples
at node t, p(i|t) = number of samples of class i at t

nt
. Then, the

Gini impurity is calculated as:

G(t) = 1 −
c∑

i=1

(p(i|t))2 (10)

where c is the number of classes.
Entropy (H): Entropy is a measure of impurity in the

node. It is calculated as:

H(t) = −
c∑

i=1

p(i|t) log2(p(i|t)) (11)

where p(i|t) is the proportion of samples of class i at
node t.
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Max Depth (max_depth): This parameter sets the
maximum depth of the decision tree, meaning the
greatest number of splits it can have. The depth
indicates how far the tree extends from the top node
to the lowest node.

Min Samples Split (min_samples_split): This
defines the minimum number of samples needed to
split an internal node and create branches in a decision
tree. It determines the number of samples a node must
have before it can be divided.

Min Samples Leaf (min_samples_leaf): These are
some of the methods used to build the tree: The
minimum number of samples allowed in a node is
called samples per node. During pruning, if a leaf node
has fewer samples than this number, it may be removed
or merged with nearby nodes.

Max Features (max_features): By default, it is set
to
√
n for the categorical features and 2 log2(n) for the

continuous features where n is the number of instances
in the data set. This parameter defines the maximum
number of features to consider when finding the best
split. It can be specified as an integer, for instance, the
number of features, or a decimal value, for instance, the
percentage of features.

Splitter: defines the criterion used to determine the
preferred split accomplished at the nodes. It often
includes “best”, by which users select the best split,
while “random” is used to select a random split.

Class Weights (class_weight): Some weights related
to classes should be used to balance the classes. It can be
used to address classification imbalance by giving the
minority class decisions larger weights.

Random State (random_state): The basic input used
for random number creation; starting figures to count
down from. To make the results replicable, different
random seeds can be set to a fixed value.

Splitting rules in decision trees control the tree’s
behavior, and these rules determine the depth and
number of splits that can be achieved in a tree, thereby
preventing the tree from overfitting. Concepts in this
domain refer to specific mathematical definitions and
give insight into tuning decision-tree models.

As shown in Table 4, the HIV feature had a 58%
importance in the model, followed by Adult Mortality
with 16%. The last three features, having the least
importance, were Diphtheria, Polio, and Infant Death.
The feature importance analysis revealed that HIV
had a significantly greater impact on life expectancy
compared to other features. In contrast, infant death
had the least effect on life expectancy among all
features.

Figure 5 illustrates the decision tree for a regression
model. It predicts the target variable by iteratively
splitting the dataset based on the feature that minimizes
the squared error at each step. The root node at the

Table 4. Feature Importance Based on Decision Tree

Feature Name Importance (%)
HIV/AIDS 58.9893
Adult Mortality 16.215
Income composition of resources 15.4081
BMI 2.8836
Schooling 1.2131
Under-five deaths 0.7072
Thinness 1-19 years 0.6957
GDP 0.5579
Year 0.5525
Total expenditure 0.4301
Thinness 5-9 years 0.3827
Percentage expenditure 0.3596
Alcohol 0.3456
Population 0.2987
Hepatitis-B 0.2344
Measles 0.2035
Diphtheria 0.1902
Polio 0.1886
Infant deaths 0.1444

top highlights HIV/AIDS as the most significant factor
influencing the target, with a threshold value of -
0.215, which divides the dataset into two branches.
On the left, where the HIV/AIDS condition is met,
further splits are made based on Adult Mortality
and Income Composition of Resources, indicating the
importance of these features in refining predictions.
On the right, where the HIV/AIDS condition is not
met, splits are made using Adult Mortality and BMI,
demonstrating a different pathway for prediction.
Each node displays the squared error, the number of
samples, and the average target value for the subgroup.
This visualization effectively illustrates the hierarchical
decision-making process of the tree and the relative
importance of features in the model.

Figure 6 represents the decision boundary visual-
ization for the regression model. It demonstrates how
the model predicts the target variable by splitting the
feature space into distinct regions. The plot is based
on the first two features, Adult Mortality (scaled) and
BMI (scaled), while dummy values are used for other
features. The color gradient highlights the predicted
target values across the feature space, with warmer
tones (red) representing higher predictions and cooler
tones (blue) representing lower predictions. Each region
corresponds to a split created by the decision tree, form-
ing non-linear boundaries that adapt to the data. The
scattered points represent the test dataset, with their
colors indicating actual target values for comparison.
The edges of the regions align with the splits observed
in the decision tree (Figure 5), highlighting how the
model captures the relationships between these two
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Figure 5. Decision Tree Visualization

features and the target. This visualization effectively
shows how the decision tree maps inputs to outputs
piecewise.

Random Forest Algorithm. Random Forest, a powerful
ensemble algorithm, combines multiple decision trees
to create a robust and flexible model, offering high
accuracy and the ability to handle complex, non-linear
relationships in data [28–31]. Each tree is trained on a
random subset of features and data points to introduce
diversity and reduce variance. Predictions are made by
averaging the predictions of all individual trees in the
forest. The Random Forest Regressor was initialized
with 100 estimators and trained on the training data.
Predictions were made on the test set, and the model’s
performance was evaluated using the R2-score. The
study also explored the sampling techniques, types
of sampling employed, and the general uses of those
samples, particularly in the construction of decision
trees. Data Sampling The dataset has 1,000 record
samples. To implement robust model training and
introduce randomness, various sampling techniques
were employed, which are described below.

Types of Sampling included row samples, column
samples, and the combination.

How to Take Samples Sampling can be done in two
ways:

• With Replacement: The notable thing about the
application of this method is that the same sample
can be selected more than once.

• Without Replacement: The idea here is that each
sample is chosen only once, avoiding it from being
selected again.

Assumptions of Random Forest.

• Ensemble Learning: Random Forest combines
multiple decision trees to improve predictive
performance and robustness.

• Independent Trees: Each decision tree is built
independently using a random subset of fea-
tures, ensuring diversity and reducing correlation
between trees.

• Bootstrap Sampling: Random Forest uses boot-
strap sampling to create the training dataset for
each tree, introducing randomness and reducing
overfitting.

• Feature Randomness: Each split in the decision
trees considers only a random subset of available
features, introducing additional randomness and
diversity.

• Majority Voting/Averaging: The final prediction
is made by taking the majority vote (classification)
or average (regression) across all individual
decision trees.

• Robustness to Overfitting: The ensemble nature
and randomness in the training process make
Random Forest robust to overfitting, even with a
large number of decision trees.

Parameters of Random Forest.

• Max Depth: This parameter controls the maxi-
mum depth of each decision tree in the forest. A
higher maximum depth allows for more complex
trees but can lead to overfitting.

• Number of Trees: The number of decision trees to
include in the forest. More trees generally lead to
better performance, but increase training time.
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Figure 6. Decision boundary of the regression model using scaled features Adult Mortality and BMI

• Minimum Samples Per Split: The minimum
number of samples required to split an internal
node. Higher values can prevent overfitting but
may lead to underfitting.

• Feature Importance: Random Forest can calculate
the relative importance of each feature in
the dataset, helping identify the most relevant
predictors [32].

Table 5 shows the importance of features. It was
found that the HIV feature had a 59% importance in
the model, followed by Adult Mortality with 17% and
Income Composition with 12%. The last three features,
which had the least importance in the random forest,
were Diphtheria, Polio, and Infant Death in that order.
This feature importance analysis also showed that HIV
had a superior effect on life expectancy compared to
other features, while Hepatitis-B had the least effect on
life expectancy among all the features.

3.5. Model Optimization and evaluation
To optimize the model’s performance, hyperparameter
tuning was conducted using grid search. The hyperpa-
rameters tuned included the number of estimators, the
maximum depth of the tree, the minimum number of
samples required to split a node, and the minimum
number of samples required to be at a leaf node. Grid

Table 5. Feature Importance Based on Random Forest

Feature Importance (%)
HIV/AIDS 59.7174
Adult Mortality 17.2109
Income composition of resources 12.1946
Schooling 1.9719
BMI 1.7492
Under-five deaths 1.1153
Thinness 5-9 years 0.8373
Year 0.7388
Alcohol 0.7188
Total expenditure 0.5555
Thinness 1-19 years 0.4939
Infant deaths 0.4818
Polio 0.4168
Measles 0.3654
GDP 0.3501
Population 0.3092
Diphtheria 0.3033
Percentage expenditure 0.2969
Hepatitis-B 0.1729

search helped to find the best combination of hyperpa-
rameters by exhaustively searching through a specific
parameter grid and evaluating the model performance
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using cross-validation [33]. The performance of the
decision tree and random forest models was compared
using R2-score. The random forest model showed supe-
rior performance due to its ability to reduce overfitting
through ensemble learning. The decision tree model,
while simpler and faster to train, tended to overfit the
training data, resulting in lower predictive accuracy
[34].

4. Result and Discussion

The results of this study support previous findings that
the Random Forest (bagging) Regressor outperforms
other models based on its superior performance,
quantified through evaluation metrics.

4.1. Model Performance and Quantitative Comparison

This section presents a comprehensive comparison
of the models employed and provides an in-depth
examination of the findings.

1. Random Forest Regressor (Bagging) – Superior
Predictive Power
The Random Forest regressor proved to be the most
effective for predicting life expectancy due to its
ability to identify complex patterns, high accuracy
(resulting in reduced prediction errors), and resistance
to overfitting. After hyperparameter tweaking, the
model achieved the highest R2 of 0.9716, the lowest
MSE of 1.17, and the MAE of 2.00.

2. Decision Tree Regressor (Partitioning) – Compet-
itive performer
The Decision Tree Regressor performed similarly to
the bagging model, with an R2 value of 0.92, an MSE
of 1.19, and an MAE of 2.01, after hyperparameter
tuning. Nevertheless, the variable importance, ease of
interpretability, and the ability to handle non-linear
relationships made the Random Forest model outper-
form the Decision Tree model. The optimal parameters
and their values for the Decision Tree model were:
criterion: Friedman MSE, max depth: 6, max features:
1.0, and min samples split: 0.25.

3. Model Performance Without Hyperparameter
Tuning
The first assessment, conducted without any trial of
hyperparameters, indicated that the Random Forest
Regressor performed better than the Decision Tree
Regressor. The Random Forest model had an MSE of
3.17, MAE of 2.04, and R2 of 0.94, while the Decision
Tree had an MSE of 5.6, MAE of 3.18, and R2 of
0.80. This goes to illustrate the general superiority of
ensemble learning methods, specifically in identifying
intricate patterns, as shown in Figure 7

4. Model Performance with Hyperparameter Tun-
ing

The performance of decision tree and random forest-
based models was increased after adjusting the hyper-
parameters. The Random Forest model further opti-
mized its performance, increasing its R2 from 0.94 to
0.97, and the decision tree model’s R2 increased from
0.81 to 0.92, indicating enhanced accuracy as given in
Table 6.

Table 6. The Model Performance after Hyperparameter Tuning

Performance
Metrics

Decision Tree
Regression

Random
Forest
Regressor

Mean squared
error

1.19 1.17

Mean absolute
error

2.01 2.00

Model score 0.92 0.97

5. RFE combined with RF
RFE combined with an RF estimator was employed
to select the ten most important features from the
dataset. RFE sequentially deleted features with lower
importance in the model using the RF model. The
chosen features were year, adult mortality, alcohol,
BMI, under-five deaths, total expenditure, HIV / AIDS,
thinness (5-9 years), income composition of resources,
and schooling. With these features, the model achieved
an R2-score of 0.97162, indicating that the selected
features were combined successfully. The result further
highlights the capability of RFE to improve the inter-
pretability and accuracy of models when analyzing only
relevant predictors.

6. SFS combined with RF)
The SFS method determined 12 features as the most
relevant to the prediction outcome. These selected
features were country, year, status, adult mortality,
infant deaths, under-5 deaths, polio, HIV/AIDS, GDP,
the prevalence of thinness (ages 1–19), the prevalence
of thinness (ages 5–9), and schooling. The model with
these features was trained to have an R2-score of
0.9623 for the training set and 0.9534 for the test set.
This result concluded that SFS fits the best. Figure
8 compares the Decision Tree model performance
under different feature selection methods. With all the
features, the model produced an R2 of 0.93 and an
MSR of 6.36 on the model. With Recursive Feature
Elimination (RFE) using the seven best features, the
model achieved an R2 value of 0.93, while the MSE
was found to be 5.72. It was a clear indicator that
feature selection is valuable in reducing residual error
while maintaining a good level of determination on the
model.
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Figure 7. Assessing Model Performance without Hyperparameter Optimization

Figure 8. Feature Engineering Model Performance Comparison

Furthermore, Figure 9 presents the performance
evaluation of two tree-based regression models. Both
the models (the decision tree regressor and the extra
trees regressor) used fifteen features. The Decision Tree
model yielded an MSE of 11.41, an MAE of 1.79, and
a coefficient of determination of 0.86. The Extra Trees
Regressor confirmed an improved predictive power
compared to the Decision Tree, with a lower MSE value
of 11.15, an MAE of 1.76, and a slightly higher R2 of
0.87. The Extra Tree-based model performed better, a

testament to the applicability of ensemble methods in
increasing prediction accuracy for life expectancy.

Table 7 presents a quantitative performance compari-
son of the developed model (current study) and the pre-
vious studies. Both the models (repetitive and bagging
algorithm-based) demonstrate higher performance and
reliability than the prior studies.
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Figure 9. Performance Comparison of Decision Tree and Extra Trees Regressor Using PAC on a 15-Feature Dataset

Table 7. Summary of techniques used, dataset, model efficiency, and results

Ref. Tech. Dataset Efficiency Limitations
[1] DT and RF WHO DT-R2=0.91 RF-R2=0.96 DT-MSR=1.55 RF-MSR=1.27
[7] RF WHO RT=95 -
[14] DT and RF Limited Asian popula-

tion
10-fold RT=81.42 10-fold
RF=88.24

10-fold RMSE=0.27 10-fold RF-
RMSE=0.19

[34] DT and RF Limited Asian popula-
tion

20-fold RT=82.04 20-fold
RF=87.62

10-fold RMSE=0.26 10-fold RF-
RMSE=0.19

[34] MLR WHO Train-R2=80% Test-R2=81% -
[34] DT WHO Train-R2=98.95% Test-

R2=83.15%
-

[34] DT WHO Model score=0.909 MSE=2.843
[34] RF WHO Model score=0.958 MSE=1.930
[35] Voting Regressor WHO Model score=0.947 MSE=4.693
[36] Voting Regressor WHO Train-R2=0.99 Test=0.95% MSE=4.43 MSE=1.58
[37] Extra Tree Regression - R2=0.9729% -

4.2. Life Expectancy Data Insight
As shown in Figure 10, the average life expectancy
in selected Asian countries (Pakistan, India, China,
Bangladesh, and Afghanistan) was analyzed from 2000
to 2015. The data indicated a general upward trend
in life expectancy across all countries, with notable
differences in the rate of increase.

China consistently maintained the highest average
life expectancy throughout the period, peaking sig-
nificantly around 2012 before stabilizing. Bangladesh
experienced a sharp increase in life expectancy around
the same time, which then plateaued. India and Pak-
istan have shown steady, incremental improvements in
life expectancy since 2000, demonstrating a substantial
upward trajectory, particularly after 2010. This analysis
highlights the varying progress of these countries in
health and living conditions. The graph shows that
in 2005, Pakistan’s average life expectancy suddenly
dropped, which can be attributed to the 2005 Kashmir

earthquake.
As shown in Figure 11, the average life expectancy

Figure 10. Avg Life Expectancy in Selected Asian Countries
(2000-2015)

across different continents from 2000-2015 highlights
significant regional disparities. Europe consistently
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had the highest life expectancy, reaching approxi-
mately 82 years by 2015. Oceania and the Ameri-
cas followed similar trends, peaking around 78 and
76 years, respectively. Asia showed a steady increase,
with life expectancy reaching around 73 years by
2015. In Africa, despite significant improvements, life
expectancy remained the lowest, starting below 50 years
and rising to approximately 60 years by 2015. These
trends reflect ongoing health and development chal-
lenges and progress in different regions.

Figure 11. Avg Life Expectancy in Different Continents (2000-
2015)

5. Conclusion
This research is a step toward the field of public
health predictive modeling. The study developed
robust and scalable life expectancy prediction models
using recursive partitioning (decision tree) and bagging
(random forest) algorithms using the World Health
Organization (WHO) dataset. The raw data went
through an appropriate data preprocessing sequence
and feature engineering process before being fed into
the model-building process. Decision tree (repetitive
recursion) and random forest (bagging) models were
found to predict more accurately. The random forest
performed better among all the methods used due to
its ability to combine multiple decision trees to achieve
better accuracy and avoid overfitting.

In addition to its methodological implications, this
study has practical importance for public health. The
findings highlight the need for focused health spending
in regions with low life expectancy, where issues
like low immunization rates of major diseases like
poliomyelitis, Hepatitis B, and Diphtheria, along with
education and health facilities, are critical.

Furthermore, this study provided actionable recom-
mendations for policymakers, highlighting that the
application of big data approaches in critically relevant
fields could enhance society’s well-being. Health insur-
ance companies can benefit by evaluating the risks of
the underlying population more effectively. This study
lays the foundation for future work in life expectancy

prediction and the ongoing pursuit of global health
equality and sustainable development.

5.1. Future Direction
The following research directions have been identified
during this research study.

This study advocates for a coordinated global
approach to consolidate datasets in light of the current
global health situation. The dataset should be available
in a single database for global reference for research
and policy development. The test datasets should
encompass recent trends, cross-regional comparisons,
and other emerging health issues to utilize the efficiency
of machine learning algorithms. Further research
should also examine how additional indicators from
socioeconomic, environmental, and health systems can
be incorporated to reveal other factors that may
influence human longevity. For such a complex and
multi-variable dataset, it is possible to supplement the
model development through deep learning.
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