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Abstract 

INTRODUCTION: This is the introductory text Dynamical systems with periodic variable coefficients find extensive use 
in physics and engineering domains, including nonlinear circuits, structural dynamics, and vibration control. The intricacy 
of the parameter changes over time has made the stability and control issues of such systems a popular topic in engineering 
and academics. The dynamic features of periodic variable coefficient dynamical systems are difficult to adequately 
characterize using approaches based on standard stability theory, as demonstrated by previous research. This work 
formulates a methodology that integrates Lyapunov exponents, Floquet theory, and analysis of fractional-order systems to 
evaluate the stability of variable-coefficient periodic systems. The effectiveness of the approach is illustrated in nonlinear 
control and bifurcation analysis. 
OBJECTIVES: This is particularly true when the parameters vary significantly or the system behaves nonlinearly. As 
crucial instruments for examining dynamical systems, Lyapunov stability theory and Floquet theory are essential for 
determining global stability and studying periodic systems, respectively. Further research is still required to determine the 
best way to integrate the two theories in order to provide straightforward and useful conclusions for periodic systems with 
variable coefficients. 
METHODS: In the meantime, fractional-order systems have drawn interest recently in the fields of control and chaotic 
dynamics due to their precise representation of genetic characteristics and memory effects. It has been demonstrated that 
under parameter changes, fractional-order chaotic systems display a variety of dynamic behaviors, such as multistability, 
bifurcation phenomena, and complexity shifts. By logically creating control techniques, such systems can be optimized to 
increase their robustness and stability while also exposing the complex system's dynamical principles. 
RESULTS: In light of this, this research suggests an integrated framework for a thorough investigation of the stability of 
dynamical systems with periodic variable coefficients that combines the Lyapunov eigenindex, Lyapunov function, and 
fractional order complexity analysis. In particular, this work first builds a stability criterion to theoretically support 
periodic systems using Floquet theory with Lyapunov exponents; The practical issues of modular multilevel dc voltage 
regulators (MMC-DVR) are then addressed by a nonlinear control method based on Lyapunov functions. Additionally, 
bifurcation diagrams with complexity index (such as spectral entropy complexity) are used for fractional-order chaotic 
systems in order to examine the impact of parameter changes on system stability and chaotic behavior. Lastly, numerical 
examples are used to confirm the efficacy of the suggested approach. 
CONCLUSION: It is demonstrated that the analytical framework put forth in this research may successfully address 
challenging issues in the control and stability design of dynamical systems with periodic variable coefficients while also 
offering fresh concepts for the optimization of intricate system parameters. 
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1. Introduction

Stability in complex dynamical systems, stability 
theoretical exploration is a foundation on analysis and 
practical uses, which have a direct impact on the reliable 
real world system functioning. Lyapunov stability theory 
which is well known in its utility offers a good sounding. 
basis on stability assessment of the systems and design 
control strategies. In the present paper, dynamical is given 
attention periodic coefficient ordinary systems differential 
equations, based on Lyapunov characteristic exponents 
and Lyapunov function-based control methods. Also, 
complexity and bifurcation diagrams analyses of chaotic 
systems of fractional orders are combined to determine 
the effect of parameter changes on system 
performance[1,2]. 
Periodic coefficient dynamical systems The stability of 
periodic coefficient dynamical systems is one of the 
difficult elements of classical control theory. 
Floquet theory has a theoretical foundation in studying 
relationship between the such systems by determining the 
relation between the periodicity of matrices of 
fundamental solutions and system characteristic 
exponents. Nonetheless, Flochet theory on its own 
frequently does not match international behaviour of the 
system and the subtle changes in response to parameter 
changes. Quantitative characteristics, Lyapunov 
characteristic exponents measurements of dynamical 
properties, provide a powerful instrument of assessing 
stability. In the event that all the exponents are negative, 
the system is asymptotically stable, there is positive adds 
exponentially, which means lack of stability. This study 
extends the use of Lyapunov exponents to prove a. 
comprehensive criterion of analyzing the stability of 
periodic coefficient systems [3-5]. Lyapunov exponents 
explain the exponential rate of separation or merging of 
solutions to systems, and give data pertaining to stability. 
Coupling these exponents with Floquet theory enhances 
stability analysis of periodic systems linking that 
periodicity of solutions with the eigenvalues of the system 
and providing a more detailed stability criterion. 
Nonlinear control has used Lyapunov functions to the  

effect has attracted much concern because of its efficiency 
in controlling systems which have large parameter 
differences. 
Building a suitable energy functional that monotonically 
decreases with time, Lyapunov-based system stability is 
provided through methods. This paper applies such a to 
the control design of modular multilevel method direct 
voltage regulation converters (MMC-DVR). The system 
is carefully chosen by choosing control gain parameters 
ensured to be stable on a global scale particularly in the 
long run. In order to deal with the issue of parameter 
uncertainty, optimization strategies of control are also 
addressed in the study selection of gains, to have a strong 
stability in changing conditions. The Lyapunov stability 
theory, used together with Lyapunov stability theory, 
gives the Lyapunov stability theory, which is an important 
theory in mathematics and biology and Floquet theory is a 
far-reaching method of study on consistency of periodic 
variable global stability and also from which come 
coefficient systems more fined parameter effects time-
dependent can be investigated. Systems of fractional-
order chaos are selected because of their capability to 
model systems having memory and hereditary influences, 
which are essential in efficient functioning simulating 
complex dynamical systems which are described as being 
multistable and bifurcating. Dynamical systems that are 
chaotic in nature, i.e. sensitive to represent another 
important thing about parameters nonlinear systems. 
Complexity bifurcation diagrams analyses give visual and 
quantitative information regarding the slip into chaos of a 
system. Using a this as is the case in a fractional-order 
chaotic system. studies how individual important 
parameters affect complexity metrics, e.g. bifurcation 
behavior,spectral entropy (SE). The SE complexity 
integration and bifurcation analysis underscores a new 
way of doing considering the chaotic features and their 
connection to Lyapunov exponents. Kannan Srinivasan 
(2020) presents a neural network Bayesian model 
prediction to optimize the management of resources under 
uncertain conditions. This method is suggested in the 
proposed work. can be chosen in order to maximize 
Lyapunov control gains and tuning of dynamical systems 
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of periodic type coefficients, adaptive learning and 
prediction techniques. This combination increases the 
strength of systems, stability analysis accuracy, and 
performance management by adequately managing 
uncertainty and dynamic system behavior [6]. Ma et al. 
(2019) explores fractional-order memristive circuit 
chaotic behavior of fractional-order memristive circuits, 
with the focus on the phenomenon of multistability and 
bifurcation. In the suggested study, the fractional-order 
system analysis this study has been combined with 
Lyapunov exponents to form optimize stability and 
control in control theory periodically coated dynamical 
systems. This method better resolves stability analysis, 
and optimizing parameters through modeling of complex 
and real world memory effects and hereditary dynamics 
[7]. The primary value of this paper is the creation of a 
common analytical system on the basis of Lyapunov 
exponents and stability assessment control theory and 
optimization of periodic coefficient dynamical parameter 
optimization of periodic coefficient dynamical systems. 
The soundness of the suggested method is also greater 
evidenced by closure to numbers in fractional-order 
chaotic systems. This study not only broadens the 
application scope of Lyapunov stability theory in complex 
dynamical systems but also provides theoretical and 
practical guidance for controller design and parameter 
optimization.  

2. Stability criterion for Lyapunov's
index

The Lyapunov exponent, a crucial instrument for 
assessing the stability of dynamical systems with ordinary 
differential equations containing periodic variable 
coefficients, can be defined and obtained using the 
following formula: 

Differential Equations in Ordinary Forms with 
Periodic Variable Coefficients
Examine a dynamical system with periodic variable 
coefficients of the following form: 

( ) ( ) ( )x t A t x t=  (1) 
where A(t) is a matrix function with period T and 

x(t) is the state vector. 
Let the initial conditions of the system be: 

0 0(0) , 0x x x= ≠ (2) 

The basis solution matrix ( )tΦ of the system 
satisfies the following matrix differential equation: 

( ) ( ) ( ), (0)t A t t IΦ = Φ Φ = (3) 

where I is the unit matrix. 
Definition of Lyapunov exponent 
The Lyapunov exponent is used to characterize the 

exponential growth rate of the system solution, which is 
defined as: 

1lim ln ( ( ))i it
t

t
λ σ

→∞
= Φ (4) 

where ( ( ))i tσ Φ  denotes the i-th singular value of 

the basis solution matrix ( )tΦ . 
Using Floquet theory, the behavior of the basis 

solution matrix in a cycle T is related to the eigenvalues 
(i.e., Floquet multipliers) of the single-cycle solution 
matrix ( )tΦ . The eigenindex can be expressed as: 

ln i
i T

ρ
µ = (5) 

where iρ  is the eigenvalue of the single-cycle 

solution matrix ( )tΦ . 
According to the definition of Lyapunov eigenindex 

and the theory of point mapping system, assuming that 

( )i jKλ  is the ith eigenvalue ( 1, 2, ,i n= … ) of matrix 

jK , the n Lyapunov eigenindex corresponding to the 

point mapping can be expressed as: 

( )
1

1lim ln , 1,2, , ,
m

i i jm
j

K i n
m

λ
→∞

=

Λ = = …∑ (6) 

where： 

• jK  is the Jacobi matrix or update 

matrix of the point mapping at step j. 

• ( )i jKλ  is the i-th eigenvalue of jK
and represents the linear growth rate of the 
system along the i-th eigendirection in the j-th 
step. 

• ln ( )i jKλ denotes the growth factor 

of the logarithmic spectrum. 

The solution matrix's singular values are an important 
factor in the calculation of the Lyapunov exponent 
because they provide exponential divergence or 
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convergence of nearby orbits and thus determine the 
stability of the system. 

3. Lyapunov function-based control 
strategy and parameter selection 

3.1 Proof of stability  

The state variable x of MMC-DVR can be described 
as a state vector that describes the dynamic behavior of 
the system in this work based on the use of the Lyapunov 
control approach. The state variables for a modular 
multilevel DC voltage regulator, or MMC-DVR, typically 
comprise voltage, current, and other crucial factors that 
impact system performance. The state variable x can be 
represented as a vector that includes voltage and current 
data for every submodule, assuming that the system has 
several levels and states. The following is one potential 
formula for defining the state variable: 

1

2

1

2

( )
( )

( )
( )

( )
( )

( )

n

n

v t
v t

v t
x t

i t
i t

i t

 
 
 
 
 
 =  
 
 
 
 
  





(7) 

The Lyapunov mathematical model of the MMC-
DVR may be derived using the Lyapunov control method 
and the system's voltage and current relationship, 
assuming that the DC bus-side resistance is dcR . The 

following Lyapunov mathematical model is derived from 
Eq. (7) and the system's dynamic properties: 

( ) ( ) ( )x t Ax t Bu t= + (8) 

where： 
• ( )x t  is the time derivative of the state 

of the system (rate of change of state)； 

• ( )x t  is the state vector of the system 

(e.g., voltage and current)； 

• A is the state matrix of the system, 
representing the intrinsic dynamics of the system
； 

• B is the input matrix representing the 

effect of control inputs on the system； 

• ( )u t  is a control quantity that is 
designed using the Lyapunov control method as 
the control input. 

If the DC bus-side resistance dcR  is taken into 

account, its effect in the system will be reflected in the 
entries of the state matrix A, usually affecting the 
dynamics of voltage and current. The most significant 
features of the MMC-DVR system, including voltage, 
current, and resistance dynamics, are critical in defining 
the control gains of the Lyapunov-based methodology to 
ensure robustness and stability under various operating 
conditions. 

Assume that the positive-order Lyapunov function of 
the MMC-DVR is V(x)V(x)V(x), which is usually 
designed to be the energy function form of the system 
with the positive-definite property, i.e., ( )V x >0 and 

( )V x = 0. For the MMC-DVR system, the commonly 
used Lyapunov function form can be chosen as follows: 

1( )
2

TV x x Px= (9) 

where： 
• x is the state vector of the system, 

usually including variables for voltage and 
current； 

• P is a symmetric positive definite matrix 
that is used to guarantee the positive definiteness 
of the Lyapunov function in the system state 
space and to represent the weights of the system 
energy. 

To guarantee the global asymptotic stability of the 
system, the time derivative of the Lyapunov function (i.e., 

( )V x ) for the stability analysis based on the Lyapunov 
control method must meet the negative definite condition 

( ( ) 0V x < ). The derivative of the Lyapunov function 
can be further expressed as follows in accordance with the 
dynamic characteristics of MMC-DVR: 

( )( ) 2T T TV x x A P PA x x Pu= + + (10) 

By choosing the matrix P and the control input u 

appropriately, it is possible to ensure that ( )V x  is 
negatively determined, thus realizing the stability of the 
system and the control objective. 
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For equation (10), assume we have a Lyapunov 

function
1( )
2

TV x x Px= , and we need to differentiate it 

to obtain the time derivative of the Lyapunov 

function ( )V x . 
According to the definition of the Lyapunov 

function, the derivative is: 
1( )
2

T TdV x x Px x Px
dt
 = = 
 

  (11), 

where: 
• x represents the system's state 

derivative, reflecting the system's dynamic 
behavior. 

By substituting the state equation of the MMC-DVR 
system, we can express it as: 

( ) ( )TV x x P Ax Bu= + (12) 
where: 

• A is the system's state matrix; 

• B is the control matrix; 

• u is the control input. 

Simplifying further, we get: 

( ) T TV x x PAx x PBu= + (13) 
If a suitable control input u is designed and the 

matrices P and A satisfy appropriate conditions, we can 

ensure that ( ) 0V x < , thus satisfying the Lyapunov 
stability conditions and ensuring the system's stability. 

3.2 Control gain selection for Lyapunov 
function  

In practical applications, due to changes in the 
parameters of the MMC-DVR system, the system may fail 
to achieve the desired stability as designed. To eliminate 
the impact of parameter uncertainty, it is necessary to 
determine the appropriate range of Lyapunov control 
gains. 

Taking the Lyapunov function from equation (13) 
and differentiating it, we get the following formula: 

Let the Lyapunov function be: 
1( )
2

TV x x Px =  
 

 (14) 

Differentiating ( )V x , we obtain: 

1( )
2

TV x x Px =  
 

  (15) 

Substitute the system's state equation 
( )x t Ax Bu= + into this expression, resulting in: 

( ) ( )TV x x P Ax Bu= + (16) 
Expanding the formula: 

( ) T TV x x PAx x PBu= + (17) 
To ensure system stability, we need the following 

condition to be satisfied: 

( ) 0V x < (18) 
This requires that the control gain u, after 

optimization, ensures the above inequality holds, thereby 
guaranteeing global asymptotic stability. By appropriately 
adjusting the Lyapunov control gain range, the 
uncertainty caused by system parameter changes can be 
eliminated, ensuring the robustness of the system. An 
amalgamation of Lyapunov control with complexity 
analysis permits adaptive optimization of control gains to 
guarantee system stability and performance through a 
balance of stability and system complexity and sensitivity 
to parameter variations. 

4. Complexity analytics 

In the study of nonlinear dynamical systems, 
complexity analysis is crucial, particularly when it comes 
to the system's stability, chaotic behavior, and control 
optimization. The system's sensitivity to changes in many 
parameters, as well as the variety in its dynamic behavior, 
both demonstrate how complex it is. The system's chaotic, 
nonlinear, and multiple stability properties may all be 
thoroughly comprehended using complexity analysis, 
which also offers a theoretical foundation for optimization 
design. A system's stability is directly correlated with its 
complexity. Generally speaking, stability becomes more 
difficult as system complexity rises. When the parameters 
of periodic variable coefficient dynamical systems are 
changed, the system's complexity can change 
significantly, causing it to go from a stable state to a 
chaotic one. Consequently, complexity analysis serves as 
a foundation for the control strategy's optimization in 
addition to aiding in the identification of the system's 
dynamic features [8-10]. Fractional-order chaotic systems 
describe memory and hereditary effects better than 
traditional integer-order systems. Fractional-order chaotic 
systems exhibit complex dynamic phenomena, including 
multistability and bifurcation phenomena, which are 
crucial for high-level control and stability analysis. 
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Researchers can determine the system's key 
parameter range, forecast its behavioral changes, and 
anticipate possible stability issues by computing the 
system's complexity index. Researchers can detect 
bifurcation phenomena brought on by parameter changes 
and prevent the system from entering chaotic regions by 
modifying control parameters, for instance, by examining 
bifurcation diagrams[11,12]. 

Additionally, complexity analysis might offer useful 
direction during the control design process. The system's 
complexity can be maintained within a manageable range 
by optimizing the control settings, preventing the system 
from degenerating into an excessively intricate chaotic 
state.By creating a suitable energy function, the Lyapunov 
control approach may efficiently regulate the system's 
complexity and guarantee its stability [13-15]. 

By combining complexity analysis and Lyapunov 
control methods, adaptive controllers can be designed to 
adapt to system changes and maintain their stability when 
system parameters change. For example, in the MMC-
DVR system, the Lyapunov control method combined 
with complexity analysis can optimize the control gain of 
the system and ensure that the system maintains global 
stability in the face of uncertainty and parameter changes. 
The critical understanding of the effect of varied 
parameters on system performance critical to system 
behavior may be obtained by bifurcation diagrams and 
measures of complexity, including spectral entropy, to 
locate regime transitions between stable and chaotic 
performance and design adaptive controllers. 

4.1 Variation of Parameter q 

The parameter qq plays a critical role in determining 
the dynamic behavior of the system, as its variation can 
lead to transitions from stable states to chaotic states. To 
analyze the impact of qq, the system is investigated using 
bifurcation diagrams, Lyapunov exponents, and 
complexity measures. 
 
1. Bifurcation Diagram Analysis 

By plotting the bifurcation diagram with respect to q, 
the system's behavior under different parameter values 
can be observed. As q increases, the system may exhibit 
the following states: 

• Periodic behavior: For smaller values of q, the 
system shows stable periodic trajectories. 

• Quasi-periodic behavior: As q increases, the 
system may enter a quasi-periodic state with 
growing complexity. 

• Chaotic behavior: Beyond a critical threshold of 
q, the system transitions into chaotic behavior, 
with highly irregular trajectories. 

The critical points on the bifurcation diagram mark 
the transitions from stability to chaos. These points are 
crucial for designing control strategies to maintain system 
stability.  
2. Lyapunov Exponent Analysis 

The Lyapunov exponent is a key tool for assessing 
system stability. By scanning parameter qq and 
computing the maximum Lyapunov exponent 
λmax\lambda_{\text{max}}, the following observations 
can be made: 

• When maxλ < 0, the system is in a stable state. 

• When maxλ = 0, the system reaches a critical 

stability threshold. 

• When maxλ > 0, the system enters a chaotic state. 

The curve of maxλ versus q provides a quantitative 

description of stability transitions and corroborates the 
bifurcation diagram results. Lyapunov exponents and 
control theory offer a consistent theory for analyzing 
stability in periodic variable coefficient systems, with 
precise stability conditions and reliable control policies 
under time-varying regimes. 
3. Spectral Entropy Complexity Analysis 

The spectral entropy (SE) is calculated for different 
values of qq to reveal trends in system complexity. 
Typically: 

• In periodic behavior, the SE value is low, 
indicating simple system dynamics. 

• In chaotic behavior, the SE value increases 
significantly, reflecting the higher complexity of 
the system. 

The combination of spectral entropy and Lyapunov 
exponent analysis offers a comprehensive evaluation of 
system complexity. Spectral entropy-based complexity 
index helps in the identification of departures from stable 
to chaotic dynamics by measuring increases in 
randomness and unpredictability of system behavior with 
varying system parameters. 
4. Optimization of Control Gain 

To mitigate the impact of q variation on system 
stability, the control gain K can be optimized to achieve 
desired stability. Using the Lyapunov control method: 
Construct an appropriate Lyapunov function ( )V x and 
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ensure its derivative ( )V x is negative. 

Optimize the control gain KK based on the range of qq to 
maintain system stability across a broader parameter 
interval. 

By analyzing the variation of q and designing 
optimal control strategies, the proposed approach provides 
theoretical guidance for the operation of complex 
dynamical systems [16-18]. It also enhances controller 
performance and improves the robustness and stability of 
the system (see Figure 1,Figure 2). 

 

 
(a)x-y                 (b)x-z           (c)y-z             (d)x-w 

Figure 1: System's chaotic phase diagram 
 

 

 

(a)System bifurcation diagram  (b) System 
complexity 

Figure 2. Shows the system's bifurcation diagram 
with complexity as q changes. 

4.2 Variation of Parameter a 

When parameter a is varied within a specific range 
while keeping other parameters fixed, the system exhibits 
diverse dynamical behaviors, transitioning from non-
chaotic to chaotic states. This section analyzes the 
bifurcation diagram and complexity of the system under 
these conditions. 
Bifurcation and Complexity Analysis 
The system transitions into chaos through standard 
period-doubling bifurcations. Initially, within a specific 
range of a, the system remains in a non-chaotic state, 
characterized by low complexity. As aa increases, the 
system enters a chaotic state, marked by increased 
irregularity and complexity in its dynamics. The 'non-
chaotic state' refers to periodic or quasiperiodic motion, 
where the system possesses stable, well-behaved 
dynamics free of the randomness of chaotic motion. A 
periodic window is a period in a chaotic system in which 
periodicity is regained. They are important to study in the 
stability analysis because they mark the boundaries 
between chaotic and stable behavior. 
Interestingly, within the chaotic region, periodic windows 
emerge, where the system temporarily regains periodic 
behavior. These periodic windows correspond to sharp 
decreases in system complexity, demonstrating 
consistency between the bifurcation diagram and the 
complexity measure [19, 20]. Bifurcation diagrams 
provide a graphic representation of stability changes when 
system parameters vary, whereas Lyapunov exponents 
measure periodic system stability quantitatively. Spectral 
entropy complexity analysis delivers a numerical value of 
system unpredictability, essential to detect stability 
changes and chaos. 
Phase Diagram Analysis 
To further illustrate the influence of parameter aa on the 
system’s behavior, phase diagrams for different values of 
aa are provided. These diagrams depict the following 
states(see Figure 3): 

• Single-periodic state: The system exhibits a 
simple and repetitive trajectory. 

• Multi-periodic states: The system transitions to 
more complex periodic patterns. 
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• Chaotic state: The system displays highly 
irregular and unpredictable trajectories. 

The phase diagrams vividly demonstrate the system's 
evolution as aa changes, offering insights into the 
interplay between parameter variation and system 
stability. 
Insights and Implications 
The study points out the complex relationship between the 
bifurcation structure and measures of complexity. It also 
emphasizes the significance of parameter aa in 
determining the dynamic behavior of the system. These 
results offer insightful advice for control strategy design 
to regulate system stability effectively under different 
parameter regimes. Periodic windows within chaotic 
regimes are those periods when the system is periodically 
identical once more. Periodic windows are also 
significant, as they are possible sources of control in the 
chaotic behaviour and can give clues on how to design the 
control. 
 

 
(a)System bifurcation diagram   (b) System 

complexity 

Figure 3. Shows the system's bifurcation diagram 
with complexity as a changes. 

4.3 Variation of parameter c 

The bifurcation diagram and complexity of the 
system show a significant change when analyzing the 
effect of the variation of the parameter c on the dynamical 
behavior of the system with the other parameters fixed. 

From the bifurcation diagram, it can be seen that 
when the parameter c is located in a specific interval, the 
system is in a non-chaotic state, and at this time, the 
complexity is low, showing simpler dynamics. With the 
further increase of parameter c, the system enters the 
chaotic state, and the dynamical behavior becomes more 
complex, with the complexity index rising significantly. 

It is noteworthy that a period window appears in the 
chaotic region, and the dynamical behavior of the system 
becomes regular again in this particular range, with a 
subsequent sharp decrease in complexity. This indicates 
that there is a high degree of consistency between the 
bifurcation diagram and the complexity, and the change of 
the complexity can effectively reflect the dynamical 
characteristics of the system state [21]. 

In order to further verify the specific effect of the 
variation of parameter c on the system state, the 
corresponding phase diagram of the system was plotted 
(see Figure. 4, Figure. 5, Figure 6). The analysis reveals 
that: 

In the non-chaotic state, the system trajectory shows 
a regular and periodic pattern;In the chaotic state, the 
system trajectory shows an irregular and complex 
behavior; In the periodic window, the system regains its 
periodicity again and exhibits regular dynamics. 

The analysis of the bifurcation diagrams and 
complexity caused by the variation of parameter c 
provides an intuitive understanding of the evolution of the 
system from a non-chaotic state to a chaotic state, as well 
as the effect of parameter variations on the stability of the 
system. These results provide a theoretical basis for the 
design and control of complex dynamical systems, 
especially in applications where the system parameters 
need to be precisely adjusted to ensure stability. 
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(a)a=23                 (b)a=27           (c)a=27.7             

(d)a=28 

Figure 4. Phase diagram of the system for a change 
in a 

 
(a)System bifurcation diagram   (b) System 

complexity 

Figure 5. Shows the system's bifurcation diagram 
with complexity as c varies. 

 

 
(a)c=13                 (b)c=22.6 

Figure 6. System phase diagram as c changes 

5. Numerical example 

5.1 The Mathieu Equation 

This example of a typical Mathieu equation, whose 
mathematical form can be written as follows, 
demonstrates the efficacy of employing Lyapunov 
characteristic indices to discriminate the stability of a 
dynamical system: 

2

2
( ) ( cos( )) ( ) 0d x t t x t

dt
δ ω+ + =ò (19) 

Whereδ , ò , and ω are the system parameters, 
which represent the stability offset, modulation amplitude, 
and modulation frequency of the system, respectively. 
The stability of the system under different parameters can 
be evaluated by analyzing the basis solution matrix ( )tΦ  
of the Mathieu equation and the Lyapunov characteristic 
indices. 

Four typical parameter points are chosen from the 
stable and unstable areas of Mathieu's equation, and using 
the aforementioned numerical techniques, the 
corresponding Lyapunov eigenindexes and the 
eigenvalues of the Q-matrix in Floquet's theory are 
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determined. The following table is a list of the calculation 
results. The correctness and dependability of the approach 
used in this paper are further confirmed by the analysis, 
which demonstrates the entire consistency of the 
Lyapunov eigenindex and stability discrimination results 
based on the eigenvalue of Q matrix by Floquet theory 
(see Figure. 7). Floquet theory is selected for coefficient 
periodic systems since it captures the periodicity of 
solutions quite well but may not exactly simulate 
nonlinear coupling and global system behavior and will 
have to be used in conjunction with Lyapunov exponents 
for improved analysis 

In particular, the system state is asymptotically stable 
in the stable zone as all of the eigenvalues of the relevant 
Q-matrix lie inside the unit circle and the Lyapunov 
eigenindexes of each parameter point are negative. The 
system is unstable in the unstable zone when the 
eigenvalues of the relevant Q matrix fall outside the unit 
circle and the Lyapunov eigenindex of each parameter 
point has at least one positive value. This consistency 
shows that the Lyapunov characteristic index is a 
theoretically sound instrument for system stability 
analysis that also serves as a useful foundation for 
discriminating in real-world computations (see Table 1). 
Lyapunov exponents describe the rate of divergence or 
convergence of close trajectories in a dynamic system, 
providing an immediate means to assess stability. Floquet 
theory examines periodic coefficient systems by 
investigating the eigenvalues of the monodromy matrix, 
giving information on periodic stability. 

Furthermore, the comparative analysis reveals that 
the Lyapunov characteristic index method has more 
intuitive physical significance than the traditional Floquet 
theory. It can more clearly depict changes in the dynamics 
behavior of the system and offers a solid foundation for 
the stability analysis of complex dynamical systems. 

 
 

Figure 7. Shows how the Mathieu equation's 
Lyapunov eigenindex changes over time.  

 

Table 1 lists the Q-matrix eigenvalues and Lyapunov 
eigenindices for Mathieu's equation. 

Point Lyapu
nov 
Exponent 
(λ) 

Q 
Matrix 
Eigenvalue 
(λ_Q) 

Stabilit
y 
Assessment 

Point 
1 (Stable 
Region) 

-0.25 0.85 Stable 

Point 
2 (Stable 
Region) 

-0.30 0.80 Stable 

Point 
3 (Unstable 
Region) 

0.15 1.10 Unstabl
e 

Point 
4 (Unstable 
Region) 

0.20 1.15 Unstabl
e 

Point 
5 (Stable 
Region) 

-0.22 0.90 Stable 

Point 
6 (Stable 
Region) 

-0.28 0.88 Stable 

Point 
7 (Unstable 
Region) 

0.18 1.05 Unstabl
e 

Point 
8 (Unstable 
Region) 

0.25 1.12 Unstabl
e 

 

5.2 Voltage swing 

Three-phase transient dips and rises of 20% under 
the ideal condition of three-phase grid voltage balancing 
are simulated in Figures 8 and 9, respectively. From the 
standpoint of the power system, one of the most frequent 
fault types is a voltage dip, which is typically brought on 
by abrupt changes in load, switching, or equipment 
failure. These kinds of defects can cause downtime, 
damage, or deterioration in performance and can 
significantly affect the operation and power quality of 
equipment, particularly sensitive equipment and loads. 

There is no discernible difference between 
compensation with PID control and compensation with 
Lyapunov control, as shown in Figs. 8 and 9. The 
harmonic contents of the two systems are 0.78% and 
0.73%, respectively, with the harmonic content of 
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Lyapunov control being somewhat lower. According to 
the simulation results, both control systems can 
successfully suppress harmonic disturbances and perform 
better in waveform recovery following voltage plunges. 
The grid's power quality is ensured by the low harmonic 
content, which shows that the voltage waveform recovers 
more quickly and steadily. While PID control performs 
better with linear systems, the Lyapunov-based control 
technique is more appropriate in dealing with nonlinear 
dynamics and higher-order parameter uncertainties by 
encouraging global stability via energy function design 
and optimization of the gains of control 

According to additional research, PID controllers' 
straightforward design and ease of use make them suitable 
for the majority of applications. But the Lyapunov control 
approach, which may manage nonlinear dynamics and 
increase control precision, depends on the system's 
stability theory. Lyapunov control is marginally superior 
to PID control in the ideal situation, particularly when the 
dynamic characteristics of the system are more 
complicated and its robustness and control effect are more 
noticeable. 

Because of this, PID control is still a widely utilized 
control method in many power electronic devices in real-
world applications. It works well in situations where 
resources are scarce and dynamic performance needs are 
modest. Conversely, complex systems or situations 
requiring high precision control are better suited for 
Lyapunov control. Although Lyapunov control performs 
marginally better than PID control in the event of a 
sudden voltage shift, there should ideally be no 
discernible difference between the two. The selection of a 
controller should be based on the particular requirements 
Figure 8,9. 

 

 
(a) grid voltage 

 
(b) Load voltage controlled by PID 

 
(c) Load voltage controlled by Lyapunov 

 
(d) PID controlled load voltage spectrum 

 
(e) Lyapunov controlled load voltage spectrum 

Figure 8. Results of a compensation simulation for 
20% power supply side voltage amplitude dips 
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(a) grid voltage

(b) Load voltage controlled by PID

(f) Load voltage controlled by Lyapunov

(g) PID controlled load voltage spectrum

(h) Lyapunov controlled load voltage spectrum

Figure 9. Results of a compensation simulation for a 
20% power supply side voltage amplitude surge 

6. Conclusion

The stability analysis and control approach of
periodic variable coefficient dynamical systems based on 
Lyapunov theory is examined in this research. By 
merging the parametric effects of fractional-order chaotic 
systems, a thorough theoretical analytical framework is 
suggested. An efficient criterion for differentiating the 
stability of dynamical systems with periodic variable 
coefficients is put forth by fusing Lyapunov eigenindex 
with Floquet theory. The criterion offers theoretical 
support for the stability analysis of dynamical systems 
with periodic variable coefficients and elucidates the 
connection between the stability of the system and the 
sign of the Lyapunov eigenindex. This work designs and 
applies a Lyapunov function-based controller to MMC-
DVR. By building a suitable Lyapunov function and 
choosing the control gain parameters sensibly, the control 
system's global asymptotic stability is demonstrated. The 
Lyapunov control approach has the advantages of having 
fewer control parameters and a simpler design process 
when compared to classic PID control. Lyapunov control 
has higher capability to provide global stability to 
nonlinear systems with parameter uncertainties than PID 
control because it dynamically controls the control gains 
on the basis of the Lyapunov function of the system. The 
numerical example of the Mathieu problem is used to 
confirm the efficacy of the Lyapunov eigen-index 
criterion and control approach suggested in this study. 
The findings demonstrate the method's significant 
practical application in accurately assessing system 
stability and achieving effective control. Whereas the 
suggested model is successful in system control and 
stability analysis, it has limited applicability due to its 
assumptions of linearity in certain systems. Future 
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extensions will address nonlinear systems and examine 
how real-world uncertainty affects stability analysis as 
well as control optimization 
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