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Abstract

INTRODUCTION: This is the introductory text Dynamical systems with periodic variable coefficients find extensive use
in physics and engineering domains, including nonlinear circuits, structural dynamics, and vibration control. The intricacy
of the parameter changes over time has made the stability and control issues of such systems a popular topic in engineering
and academics. The dynamic features of periodic variable coefficient dynamical systems are difficult to adequately
characterize using approaches based on standard stability theory, as demonstrated by previous research. This work
formulates a methodology that integrates Lyapunov exponents, Floquet theory, and analysis of fractional-order systems to
evaluate the stability of variable-coefficient periodic systems. The effectiveness of the approach is illustrated in nonlinear
control and bifurcation analysis.

OBJECTIVES: This is particularly true when the parameters vary significantly or the system behaves nonlinearly. As
crucial instruments for examining dynamical systems, Lyapunov stability theory and Floquet theory are essential for
determining global stability and studying periodic systems, respectively. Further research is still required to determine the
best way to integrate the two theories in order to provide straightforward and useful conclusions for periodic systems with
variable coefficients.

METHODS: In the meantime, fractional-order systems have drawn interest recently in the fields of control and chaotic
dynamics due to their precise representation of genetic characteristics and memory effects. It has been demonstrated that
under parameter changes, fractional-order chaotic systems display a variety of dynamic behaviors, such as multistability,
bifurcation phenomena, and complexity shifts. By logically creating control techniques, such systems can be optimized to
increase their robustness and stability while also exposing the complex system's dynamical principles.

RESULTS: In light of this, this research suggests an integrated framework for a thorough investigation of the stability of]
dynamical systems with periodic variable coefficients that combines the Lyapunov eigenindex, Lyapunov function, and
fractional order complexity analysis. In particular, this work first builds a stability criterion to theoretically support
periodic systems using Floquet theory with Lyapunov exponents; The practical issues of modular multilevel dc voltage
regulators (MMC-DVR) are then addressed by a nonlinear control method based on Lyapunov functions. Additionally,
bifurcation diagrams with complexity index (such as spectral entropy complexity) are used for fractional-order chaotic
systems in order to examine the impact of parameter changes on system stability and chaotic behavior. Lastly, numerical
examples are used to confirm the efficacy of the suggested approach.

CONCLUSION: It is demonstrated that the analytical framework put forth in this research may successfully address
challenging issues in the control and stability design of dynamical systems with periodic variable coefficients while also
offering fresh concepts for the optimization of intricate system parameters.
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1. Introduction

Stability in complex dynamical systems, stability
theoretical exploration is a foundation on analysis and
practical uses, which have a direct impact on the reliable
real world system functioning. Lyapunov stability theory
which is well known in its utility offers a good sounding.
basis on stability assessment of the systems and design
control strategies. In the present paper, dynamical is given
attention periodic coefficient ordinary systems differential
equations, based on Lyapunov characteristic exponents
and Lyapunov function-based control methods. Also,
complexity and bifurcation diagrams analyses of chaotic
systems of fractional orders are combined to determine
the effect of parameter changes on system
performance[1,2].

Periodic coefficient dynamical systems The stability of
periodic coefficient dynamical systems is one of the
difficult elements of classical control theory.
Floquet theory has a theoretical foundation in studying
relationship between the such systems by determining the
relation between the periodicity of matrices of
fundamental solutions and system characteristic
exponents. Nonetheless, Flochet theory on its own
frequently does not match international behaviour of the
system and the subtle changes in response to parameter
changes.  Quantitative  characteristics, = Lyapunov
characteristic exponents measurements of dynamical
properties, provide a powerful instrument of assessing
stability. In the event that all the exponents are negative,
the system is asymptotically stable, there is positive adds
exponentially, which means lack of stability. This study
extends the use of Lyapunov exponents to prove a.
comprehensive criterion of analyzing the stability of
periodic coefficient systems [3-5]. Lyapunov exponents
explain the exponential rate of separation or merging of
solutions to systems, and give data pertaining to stability.
Coupling these exponents with Floquet theory enhances
stability analysis of periodic systems linking that
periodicity of solutions with the eigenvalues of the system
and providing a more detailed stability criterion.
Nonlinear control has used Lyapunov functions to the
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effect has attracted much concern because of its efficiency
in controlling systems which have large parameter
differences.

Building a suitable energy functional that monotonically
decreases with time, Lyapunov-based system stability is
provided through methods. This paper applies such a to
the control design of modular multilevel method direct
voltage regulation converters (MMC-DVR). The system
is carefully chosen by choosing control gain parameters
ensured to be stable on a global scale particularly in the
long run. In order to deal with the issue of parameter
uncertainty, optimization strategies of control are also
addressed in the study selection of gains, to have a strong
stability in changing conditions. The Lyapunov stability
theory, used together with Lyapunov stability theory,
gives the Lyapunov stability theory, which is an important
theory in mathematics and biology and Floquet theory is a
far-reaching method of study on consistency of periodic
variable global stability and also from which come
coefficient systems more fined parameter effects time-
dependent can be investigated. Systems of fractional-
order chaos are selected because of their capability to
model systems having memory and hereditary influences,
which are essential in efficient functioning simulating
complex dynamical systems which are described as being
multistable and bifurcating. Dynamical systems that are
chaotic in nature, i.e. sensitive to represent another
important thing about parameters nonlinear systems.
Complexity bifurcation diagrams analyses give visual and
quantitative information regarding the slip into chaos of a
system. Using a this as is the case in a fractional-order
chaotic system. studies how individual important
parameters affect complexity metrics, e.g. bifurcation
behavior,spectral entropy (SE). The SE complexity
integration and bifurcation analysis underscores a new
way of doing considering the chaotic features and their
connection to Lyapunov exponents. Kannan Srinivasan
(2020) presents a neural network Bayesian model
prediction to optimize the management of resources under
uncertain conditions. This method is suggested in the
proposed work. can be chosen in order to maximize
Lyapunov control gains and tuning of dynamical systems
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of periodic type coefficients, adaptive learning and
prediction techniques. This combination increases the
strength of systems, stability analysis accuracy, and
performance management by adequately managing
uncertainty and dynamic system behavior [6]. Ma et al.
(2019) explores fractional-order memristive circuit
chaotic behavior of fractional-order memristive circuits,
with the focus on the phenomenon of multistability and
bifurcation. In the suggested study, the fractional-order
system analysis this study has been combined with
Lyapunov exponents to form optimize stability and
control in control theory periodically coated dynamical
systems. This method better resolves stability analysis,
and optimizing parameters through modeling of complex
and real world memory effects and hereditary dynamics
[7]. The primary value of this paper is the creation of a
common analytical system on the basis of Lyapunov
exponents and stability assessment control theory and
optimization of periodic coefficient dynamical parameter
optimization of periodic coefficient dynamical systems.
The soundness of the suggested method is also greater
evidenced by closure to numbers in fractional-order
chaotic systems. This study not only broadens the
application scope of Lyapunov stability theory in complex
dynamical systems but also provides theoretical and
practical guidance for controller design and parameter
optimization.

2. Stability criterion for Lyapunov's
index

The Lyapunov exponent, a crucial instrument for
assessing the stability of dynamical systems with ordinary
differential equations containing periodic variable
coefficients, can be defined and obtained using the
following formula:

Differential Equations in Ordinary Forms with
Periodic Variable Coefficients
Examine a dynamical system with periodic variable
coefficients of the following form:

x(1) = A(D)x(2) (1)
where A(t) is a matrix function with period T and

x(t) is the state vector.
Let the initial conditions of the system be:

x(0) = x5, X%, #0(2)
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The basis solution matrix @D(¢)of the system

satisfies the following matrix differential equation:
d(r) = A@)D(1), D(0) =1 3)

where [ is the unit matrix.

Definition of Lyapunov exponent

The Lyapunov exponent is used to characterize the
exponential growth rate of the system solution, which is
defined as:

A= lim%In o, (D(1)) (4)

where o;(®(¢)) denotes the i-th singular value of

the basis solution matrix ®(7).

Using Floquet theory, the behavior of the basis
solution matrix in a cycle T is related to the eigenvalues
(i.e., Floquet multipliers) of the single-cycle solution
matrix (7). The eigenindex can be expressed as:

In[p,|
M= T (%)

where p, is the eigenvalue of the single-cycle

solution matrix ().

According to the definition of Lyapunov eigenindex
and the theory of point mapping system, assuming that

A (Kj) is the ith eigenvalue (i =1,2,...,7) of matrix

K B the n Lyapunov eigenindex corresponding to the

point mapping can be expressed as:

A, = lim — Zln‘ﬂ i=1,2,...,n,(6)

m—>0 m

where :
e K j is the Jacobi matrix or update

matrix of the point mapping at step j.

e A (Kj) is the i-th eigenvalue of K

1

and represents the linear growth rate of the
system along the i-th eigendirection in the j-th
step.

e In|4 (K ; )‘ denotes the growth factor

of the logarithmic spectrum.

The solution matrix's singular values are an important
factor in the calculation of the Lyapunov exponent
because they provide exponential divergence or
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convergence of nearby orbits and thus determine the
stability of the system.

3. Lyapunov function-based control
strategy and parameter selection

3.1 Proof of stability

The state variable x of MMC-DVR can be described
as a state vector that describes the dynamic behavior of
the system in this work based on the use of the Lyapunov
control approach. The state variables for a modular
multilevel DC voltage regulator, or MMC-DVR, typically
comprise voltage, current, and other crucial factors that
impact system performance. The state variable x can be
represented as a vector that includes voltage and current
data for every submodule, assuming that the system has
several levels and states. The following is one potential
formula for defining the state variable:

_V1(t)_
v, (t)

x(t) = j”((;)) (7

()

4,0 ]
The Lyapunov mathematical model of the MMC-

DVR may be derived using the Lyapunov control method
and the system's voltage and current relationship,

assuming that the DC bus-side resistance is R, . The

following Lyapunov mathematical model is derived from
Eq. (7) and the system's dynamic properties:

x(t) = Ax(t)+ Bu(t) (8)

where :

e X(?) is the time derivative of the state

of the system (rate of change of state) ;

e x(t) is the state vector of the system

(e.g., voltage and current) ;

e A is the state matrix of the system,
representing the intrinsic dynamics of the system

>

e B is the input matrix representing the
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effect of control inputs on the system ;

e u(t) is a control quantity that is

designed using the Lyapunov control method as
the control input.

If the DC bus-side resistance Rdc is taken into

account, its effect in the system will be reflected in the
entries of the state matrix A, usually affecting the
dynamics of voltage and current. The most significant
features of the MMC-DVR system, including voltage,
current, and resistance dynamics, are critical in defining
the control gains of the Lyapunov-based methodology to
ensure robustness and stability under various operating
conditions.

Assume that the positive-order Lyapunov function of
the MMC-DVR is V(X)V(x)V(x), which is usually
designed to be the energy function form of the system
with the positive-definite property, ie., V' (x)>0 and

V(x)= 0. For the MMC-DVR system, the commonly

used Lyapunov function form can be chosen as follows:
1
V(x)= ExTPx )

where :

e x is the state vector of the system,
usually including variables for voltage and
current ;

e P isasymmetric positive definite matrix
that is used to guarantee the positive definiteness
of the Lyapunov function in the system state
space and to represent the weights of the system
energy.

To guarantee the global asymptotic stability of the
system, the time derivative of the Lyapunov function (i.e.,
V(x)) for the stability analysis based on the Lyapunov
control method must meet the negative definite condition
(V(x) < 0). The derivative of the Lyapunov function

can be further expressed as follows in accordance with the
dynamic characteristics of MMC-DVR:

V(x)=x"(A"P+PA)x+2x"Pu(10)
By choosing the matrix P and the control input u

appropriately, it is possible to ensure that V(x) is

negatively determined, thus realizing the stability of the
system and the control objective.
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For equation (10), assume we have a Lyapunov
1
function V' (x) = EXTPx , and we need to differentiate it

to obtain the time derivative of the Lyapunov
function V' (x).

According to the definition of the Lyapunov
function, the derivative is:

V(x)= i(lePx) =x"Px (11),
dt\ 2
where:
e Xrepresents the  system's  state
derivative, reflecting the system's dynamic
behavior.

By substituting the state equation of the MMC-DVR
system, we can express it as:
V(x) =x"P(Ax + Bu) (12)
where:
e A is the system's state matrix;

e B is the control matrix;
e uis the control input.

Simplifying further, we get:
V(x) = x" PAx +x" PBu (13)

If a suitable control input u is designed and the
matrices P and A satisfy appropriate conditions, we can

ensure that V(x) <0, thus satisfying the Lyapunov

stability conditions and ensuring the system's stability.

3.2 Control gain selection for Lyapunov
function

In practical applications, due to changes in the
parameters of the MMC-DVR system, the system may fail
to achieve the desired stability as designed. To eliminate
the impact of parameter uncertainty, it is necessary to
determine the appropriate range of Lyapunov control
gains.

Taking the Lyapunov function from equation (13)
and differentiating it, we get the following formula:

Let the Lyapunov function be:

Vi(x)= [% xTij (14)

Differentiating J'(x) , we obtain:

. 1 ..
V(x)=|=x"Px |(15)
2
Substitute the system's state equation
X(t) = Ax + Bu into this expression, resulting in:

V(x) = x" P(Ax+ Bu)(16)

Expanding the formula:

V(x)=x"PAx+x"PBu (17)

To ensure system stability, we need the following

condition to be satisfied:
V(x)<0(18)

This requires that the control gain wu, after
optimization, ensures the above inequality holds, thereby
guaranteeing global asymptotic stability. By appropriately
adjusting the Lyapunov control gain range, the
uncertainty caused by system parameter changes can be
eliminated, ensuring the robustness of the system. An
amalgamation of Lyapunov control with complexity
analysis permits adaptive optimization of control gains to
guarantee system stability and performance through a
balance of stability and system complexity and sensitivity
to parameter variations.

4. Complexity analytics

In the study of nonlinear dynamical systems,
complexity analysis is crucial, particularly when it comes
to the system's stability, chaotic behavior, and control
optimization. The system's sensitivity to changes in many
parameters, as well as the variety in its dynamic behavior,
both demonstrate how complex it is. The system's chaotic,
nonlinear, and multiple stability properties may all be
thoroughly comprehended using complexity analysis,
which also offers a theoretical foundation for optimization
design. A system's stability is directly correlated with its
complexity. Generally speaking, stability becomes more
difficult as system complexity rises. When the parameters
of periodic variable coefficient dynamical systems are
changed, the system's complexity can change
significantly, causing it to go from a stable state to a
chaotic one. Consequently, complexity analysis serves as
a foundation for the control strategy's optimization in
addition to aiding in the identification of the system's
dynamic features [8-10]. Fractional-order chaotic systems
describe memory and hereditary effects better than
traditional integer-order systems. Fractional-order chaotic
systems exhibit complex dynamic phenomena, including
multistability and bifurcation phenomena, which are
crucial for high-level control and stability analysis.

EAI Endorsed Transactions on
Scalable Information Systems
| Volume 12 | Issue 5 | 2025 |

2 EA :



Caixia Fu, Dong An

Researchers can determine the system's key
parameter range, forecast its behavioral changes, and
anticipate possible stability issues by computing the
system's complexity index. Researchers can detect
bifurcation phenomena brought on by parameter changes
and prevent the system from entering chaotic regions by
modifying control parameters, for instance, by examining
bifurcation diagrams[11,12].

Additionally, complexity analysis might offer useful
direction during the control design process. The system's
complexity can be maintained within a manageable range
by optimizing the control settings, preventing the system
from degenerating into an excessively intricate chaotic
state.By creating a suitable energy function, the Lyapunov
control approach may efficiently regulate the system's
complexity and guarantee its stability [13-15].

By combining complexity analysis and Lyapunov
control methods, adaptive controllers can be designed to
adapt to system changes and maintain their stability when
system parameters change. For example, in the MMC-
DVR system, the Lyapunov control method combined
with complexity analysis can optimize the control gain of
the system and ensure that the system maintains global
stability in the face of uncertainty and parameter changes.
The critical understanding of the effect of varied
parameters on system performance critical to system
behavior may be obtained by bifurcation diagrams and
measures of complexity, including spectral entropy, to
locate regime transitions between stable and chaotic
performance and design adaptive controllers.

4.1 Variation of Parameter q

The parameter qq plays a critical role in determining
the dynamic behavior of the system, as its variation can
lead to transitions from stable states to chaotic states. To
analyze the impact of qq, the system is investigated using
bifurcation diagrams, Lyapunov exponents, and
complexity measures.

1. Bifurcation Diagram Analysis
By plotting the bifurcation diagram with respect to q,
the system's behavior under different parameter values
can be observed. As q increases, the system may exhibit
the following states:
e Periodic behavior: For smaller values of q, the
system shows stable periodic trajectories.

e Quasi-periodic behavior: As q increases, the
system may enter a quasi-periodic state with
growing complexity.
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e  Chaotic behavior: Beyond a critical threshold of
g, the system transitions into chaotic behavior,
with highly irregular trajectories.

The critical points on the bifurcation diagram mark
the transitions from stability to chaos. These points are
crucial for designing control strategies to maintain system
stability.

2. Lyapunov Exponent Analysis

The Lyapunov exponent is a key tool for assessing
system stability. By scanning parameter qq and
computing the maximum Lyapunov  exponent
Amax\lambda_{\text{max}}, the following observations
can be made:

e When A__ <0, the system is in a stable state.

e  When ﬁ,maX: 0, the system reaches a critical

stability threshold.

e  When ﬂmax > 0, the system enters a chaotic state.

The curve of lmax versus q provides a quantitative

description of stability transitions and corroborates the
bifurcation diagram results. Lyapunov exponents and
control theory offer a consistent theory for analyzing
stability in periodic variable coefficient systems, with
precise stability conditions and reliable control policies
under time-varying regimes.
3. Spectral Entropy Complexity Analysis

The spectral entropy (SE) is calculated for different
values of qq to reveal trends in system complexity.
Typically:

e In periodic behavior, the SE value is low,

indicating simple system dynamics.

e In chaotic behavior, the SE wvalue increases
significantly, reflecting the higher complexity of
the system.

The combination of spectral entropy and Lyapunov
exponent analysis offers a comprehensive evaluation of
system complexity. Spectral entropy-based complexity
index helps in the identification of departures from stable
to chaotic dynamics by measuring increases in
randomness and unpredictability of system behavior with
varying system parameters.

4. Optimization of Control Gain

To mitigate the impact of q variation on system
stability, the control gain K can be optimized to achieve
desired stability. Using the Lyapunov control method:
Construct an appropriate Lyapunov function V' (x)and

EAI Endorsed Transactions on
Scalable Information Systems
| Volume 12 | Issue 5 | 2025 |



Liapunov Exponents and Control Theory-Based Stability Analysis and Parameter Optimization Technique for Dynamical

Systems with Periodic Variable Coefficients

ensure its derivative J'(x)is negative.

Optimize the control gain KK based on the range of qq to
maintain system stability across a broader parameter
interval.

By analyzing the variation of q and designing
optimal control strategies, the proposed approach provides
theoretical guidance for the operation of complex
dynamical systems [16-18]. It also enhances controller
performance and improves the robustness and stability of
the system (see Figure 1,Figure 2).

45
30
20 35
10
.0 n 25
=10 15
=20
. . . 5
=30 =10 10 30 =30
X
45
50
35
w 25 s 0
15
5

230 -10 10 30 3% 30

(a)x-y (b)x-z (c)y-z (dx-w

Figure 1: System's chaotic phase diagram

Cy/SE

0.6 0.7 0.8 0.9 1.0

(a)System bifurcation diagram (b) System
complexity

Figure 2. Shows the system's bifurcation diagram
with complexity as q changes.

4.2 Variation of Parameter a

When parameter a is varied within a specific range
while keeping other parameters fixed, the system exhibits
diverse dynamical behaviors, transitioning from non-
chaotic to chaotic states. This section analyzes the
bifurcation diagram and complexity of the system under
these conditions.

Bifurcation and Complexity Analysis

The system transitions into chaos through standard
period-doubling bifurcations. Initially, within a specific
range of a, the system remains in a non-chaotic state,
characterized by low complexity. As aa increases, the
system enters a chaotic state, marked by increased
irregularity and complexity in its dynamics. The 'non-
chaotic state' refers to periodic or quasiperiodic motion,
where the system possesses stable, well-behaved
dynamics free of the randomness of chaotic motion. A
periodic window is a period in a chaotic system in which
periodicity is regained. They are important to study in the
stability analysis because they mark the boundaries
between chaotic and stable behavior.

Interestingly, within the chaotic region, periodic windows
emerge, where the system temporarily regains periodic
behavior. These periodic windows correspond to sharp
decreases in  system complexity, demonstrating
consistency between the bifurcation diagram and the
complexity measure [19, 20]. Bifurcation diagrams
provide a graphic representation of stability changes when
system parameters vary, whereas Lyapunov exponents
measure periodic system stability quantitatively. Spectral
entropy complexity analysis delivers a numerical value of
system unpredictability, essential to detect stability
changes and chaos.

Phase Diagram Analysis

To further illustrate the influence of parameter aa on the
system’s behavior, phase diagrams for different values of
aa are provided. These diagrams depict the following
states(see Figure 3):

e Single-periodic state: The system exhibits a

simple and repetitive trajectory.

e  Multi-periodic states: The system transitions to
more complex periodic patterns.
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e Chaotic state: The system displays highly
irregular and unpredictable trajectories.

The phase diagrams vividly demonstrate the system's
evolution as aa changes, offering insights into the
interplay between parameter variation and system
stability.

Insights and Implications

The study points out the complex relationship between the
bifurcation structure and measures of complexity. It also
emphasizes the significance of parameter aa in
determining the dynamic behavior of the system. These
results offer insightful advice for control strategy design
to regulate system stability effectively under different
parameter regimes. Periodic windows within chaotic
regimes are those periods when the system is periodically
identical once more. Periodic windows are also
significant, as they are possible sources of control in the
chaotic behaviour and can give clues on how to design the
control.

25¢
201
15+
10+

20 25 30 35 40

20 25 30 35 40
a

(a)System bifurcation diagram (b) System
complexity

Figure 3. Shows the system's bifurcation diagram
with complexity as a changes.
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4.3 Variation of parameter c

The bifurcation diagram and complexity of the
system show a significant change when analyzing the
effect of the variation of the parameter ¢ on the dynamical
behavior of the system with the other parameters fixed.

From the bifurcation diagram, it can be seen that
when the parameter c is located in a specific interval, the
system is in a non-chaotic state, and at this time, the
complexity is low, showing simpler dynamics. With the
further increase of parameter c, the system enters the
chaotic state, and the dynamical behavior becomes more
complex, with the complexity index rising significantly.

It is noteworthy that a period window appears in the
chaotic region, and the dynamical behavior of the system
becomes regular again in this particular range, with a
subsequent sharp decrease in complexity. This indicates
that there is a high degree of consistency between the
bifurcation diagram and the complexity, and the change of
the complexity can effectively reflect the dynamical
characteristics of the system state [21].

In order to further verify the specific effect of the
variation of parameter c¢ on the system state, the
corresponding phase diagram of the system was plotted
(see Figure. 4, Figure. 5, Figure 6). The analysis reveals
that:

In the non-chaotic state, the system trajectory shows
a regular and periodic pattern;In the chaotic state, the
system trajectory shows an irregular and complex
behavior; In the periodic window, the system regains its
periodicity again and exhibits regular dynamics.

The analysis of the bifurcation diagrams and
complexity caused by the variation of parameter c
provides an intuitive understanding of the evolution of the
system from a non-chaotic state to a chaotic state, as well
as the effect of parameter variations on the stability of the
system. These results provide a theoretical basis for the
design and control of complex dynamical systems,
especially in applications where the system parameters
need to be precisely adjusted to ensure stability.
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Figure 5. Shows the system's bifurcation diagram
with complexity as c varies.
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Figure 6. System phase diagram as ¢ changes

5. Numerical example

5.1 The Mathieu Equation

This example of a typical Mathieu equation, whose
mathematical form can be written as follows,
demonstrates the efficacy of employing Lyapunov
characteristic indices to discriminate the stability of a
dynamical system:

2
% + (0 +0cos(wt))x(t)=0(19)

Whered, O, and @are the system parameters,
which represent the stability offset, modulation amplitude,
and modulation frequency of the system, respectively.
The stability of the system under different parameters can
be evaluated by analyzing the basis solution matrix @()

of the Mathieu equation and the Lyapunov characteristic
indices.

Four typical parameter points are chosen from the
stable and unstable areas of Mathieu's equation, and using
the aforementioned numerical techniques, the
corresponding  Lyapunov  eigenindexes and the
eigenvalues of the Q-matrix in Floquet's theory are
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determined. The following table is a list of the calculation
results. The correctness and dependability of the approach
used in this paper are further confirmed by the analysis,
which demonstrates the entire consistency of the
Lyapunov eigenindex and stability discrimination results
based on the eigenvalue of Q matrix by Floquet theory
(see Figure. 7). Floquet theory is selected for coefficient
periodic systems since it captures the periodicity of
solutions quite well but may not exactly simulate
nonlinear coupling and global system behavior and will
have to be used in conjunction with Lyapunov exponents
for improved analysis

In particular, the system state is asymptotically stable
in the stable zone as all of the eigenvalues of the relevant
Q-matrix lie inside the unit circle and the Lyapunov
eigenindexes of each parameter point are negative. The
system is unstable in the unstable zone when the
eigenvalues of the relevant Q matrix fall outside the unit
circle and the Lyapunov eigenindex of each parameter
point has at least one positive value. This consistency
shows that the Lyapunov characteristic index is a
theoretically sound instrument for stability
analysis that also serves as a useful foundation for

system

discriminating in real-world computations (see Table 1).
Lyapunov exponents describe the rate of divergence or
convergence of close trajectories in a dynamic system,
providing an immediate means to assess stability. Floquet
theory examines periodic coefficient systems by
investigating the eigenvalues of the monodromy matrix,
giving information on periodic stability.

Furthermore, the comparative analysis reveals that
the Lyapunov characteristic index method has more
intuitive physical significance than the traditional Floquet
theory. It can more clearly depict changes in the dynamics
behavior of the system and offers a solid foundation for
the stability analysis of complex dynamical systems.

1 .

——02
- al

O Moo ]

20 50 100 150 200
t/s

Figure 7. Shows how the Mathieu equation's
Lyapunov eigenindex changes over time.
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Table 1 lists the Q-matrix eigenvalues and Lyapunov
eigenindices for Mathieu's equation.

Point Lyapu Q Stabilit
nov Matrix y
Exponent Eigenvalue Assessment
» *_Q)
Point -0.25 0.85 Stable
1 (Stable
Region)
Point -0.30 0.80 Stable
2 (Stable
Region)
Point 0.15 1.10 Unstabl
3 (Unstable e
Region)
Point 0.20 1.15 Unstabl
4 (Unstable e
Region)
Point -0.22 0.90 Stable
5 (Stable
Region)
Point -0.28 0.88 Stable
6 (Stable
Region)
Point 0.18 1.05 Unstabl
7 (Unstable e
Region)
Point 0.25 1.12 Unstabl
8 (Unstable e
Region)

5.2 Voltage swing

Three-phase transient dips and rises of 20% under
the ideal condition of three-phase grid voltage balancing
are simulated in Figures 8 and 9, respectively. From the
standpoint of the power system, one of the most frequent
fault types is a voltage dip, which is typically brought on
by abrupt changes in load, switching, or equipment
failure. These kinds of defects can cause downtime,
damage, or deterioration in performance and can
significantly affect the operation and power quality of
equipment, particularly sensitive equipment and loads.

There is no between
compensation with PID control and compensation with
Lyapunov control, as shown in Figs. 8 and 9. The
harmonic contents of the two systems are 0.78% and
0.73%, respectively, with the harmonic content of

discernible difference
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Lyapunov control being somewhat lower. According to
the simulation results, both control systems can
successfully suppress harmonic disturbances and perform
better in waveform recovery following voltage plunges.
The grid's power quality is ensured by the low harmonic
content, which shows that the voltage waveform recovers
more quickly and steadily. While PID control performs
better with linear systems, the Lyapunov-based control
technique is more appropriate in dealing with nonlinear
dynamics and higher-order parameter uncertainties by
encouraging global stability via energy function design
and optimization of the gains of control

According to additional research, PID controllers'
straightforward design and ease of use make them suitable
for the majority of applications. But the Lyapunov control
approach, which may manage nonlinear dynamics and
increase control precision, depends on the system's
stability theory. Lyapunov control is marginally superior
to PID control in the ideal situation, particularly when the
dynamic characteristics of the system are more
complicated and its robustness and control effect are more
noticeable.

Because of this, PID control is still a widely utilized
control method in many power electronic devices in real-
world applications. It works well in situations where
resources are scarce and dynamic performance needs are
modest. Conversely, complex systems or situations
requiring high precision control are better suited for
Lyapunov control. Although Lyapunov control performs
marginally better than PID control in the event of a
sudden voltage shift, there should ideally be no
discernible difference between the two. The selection of a
controller should be based on the particular requirements
Figure 8.9.
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Figure 8. Results of a compensation simulation for
20% power supply side voltage amplitude dips
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Figure 9. Results of a compensation simulation for a
20% power supply side voltage amplitude surge

6. Conclusion

The stability analysis and control approach of
periodic variable coefficient dynamical systems based on
Lyapunov theory is examined in this research. By
merging the parametric effects of fractional-order chaotic
systems, a thorough theoretical analytical framework is
suggested. An efficient criterion for differentiating the
stability of dynamical systems with periodic variable
coefficients is put forth by fusing Lyapunov eigenindex
with Floquet theory. The criterion offers theoretical
support for the stability analysis of dynamical systems
with periodic variable coefficients and elucidates the
connection between the stability of the system and the
sign of the Lyapunov eigenindex. This work designs and
applies a Lyapunov function-based controller to MMC-
DVR. By building a suitable Lyapunov function and
choosing the control gain parameters sensibly, the control
system's global asymptotic stability is demonstrated. The
Lyapunov control approach has the advantages of having
fewer control parameters and a simpler design process
when compared to classic PID control. Lyapunov control
has higher capability to provide global stability to
nonlinear systems with parameter uncertainties than PID
control because it dynamically controls the control gains
on the basis of the Lyapunov function of the system. The
numerical example of the Mathieu problem is used to
confirm the efficacy of the Lyapunov eigen-index
criterion and control approach suggested in this study.
The findings demonstrate the method's significant
practical application in accurately assessing system
stability and achieving effective control. Whereas the
suggested model is successful in system control and
stability analysis, it has limited applicability due to its
assumptions of linearity in certain systems. Future
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extensions will address nonlinear systems and examine
how real-world uncertainty affects stability analysis as
well as control optimization
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