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Abstract

Enterprise knowledge graphs (EKGs) are pivotal in structuring and analyzing vast amounts of enterprise data,
yet conventional construction methods struggle to efficiently capture complex relationships and dynamic
enterprise contexts. This paper proposes a deep learning (DL)-based enterprise knowledge graph framework
that integrates transformer-based architectures, graph attention networks (GATs), and reinforcement learning
to enhance the construction, refinement, and querying of EKGs. Specifically, we employ a business-enhanced
RoBERTa (BERTO) model for entity and relation extraction from unstructured data, a graph attention network
for refining edge weights, and a reinforcement learning agent to adaptively update relationships based on user
feedback. Additionally, a query-aware attention mechanism is incorporated for context-sensitive knowledge
retrieval. Simulation results demonstrate that the proposed scheme outperforms conventional knowledge
graph (GK) and DL models in predictive accuracy, especially under varying signal-to-noise ratio (SNR)
conditions. Numerical comparisons reveal that at 10 dB SNR, the proposed scheme achieves a prediction
accuracy of 0.74, surpassing the conventional GK with the accuracy of 0.49 and the conventional DL with the
accuracy of 0.34.
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1. Introduction

Information technology (IT) has become a critical
enabler in the realm of enterprise management, trans-
forming how businesses operate, strategize, and com-
pete in a dynamic global environment [1–3]. In par-
ticular, IT facilitates more efficient and streamlined
processes, enhances decision-making, and fosters inno-
vation through advanced data analytics, artificial intel-
ligence (AI), and cloud computing [4–6]. Enterprise
resource planning (ERP) systems, for instance, have
revolutionized how organizations manage key business
processes such as finance, human resources, supply
chain, and customer relations by integrating various
functions into a unified system. This integration not
only improves operational efficiency but also provides
real-time data visibility, enabling management to make
more informed, data-driven decisions [7–9]. Moreover,
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advancements in AI and machine learning allow enter-
prises to harness predictive analytics for strategic fore-
casting, risk management, and customer personaliza-
tion, thus elevating their competitive edge [10–12].
Cloud computing further enhances flexibility and scala-
bility, offering businesses the ability to adjust resources
on demand and facilitating remote work, which has
become essential in the modern workforce.

Deep learning has rapidly emerged as a transfor-
mative technology in the fields of wireless commu-
nication and edge computing, driving advancements
in system optimization, resource allocation, and net-
work management [13–15]. In wireless communication,
deep learning techniques, particularly neural networks,
are leveraged to model and predict complex wireless
channel behaviors, enabling more efficient spectrum
allocation, beamforming, and interference management
[16–18]. Traditional wireless communication systems
relied heavily on manual, model-based approaches that
could not fully capture the dynamic nature of real-
world environments. Deep learning, however, excels

1
EAI Endorsed Transactions 

on Scalable Information Systems 
| Volume 12 | Issue 3 | 2025 |

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:<yadongshi.eecs@hotmail.com>


Y. Shi et.al

in environments where large-scale data and nonlinear
patterns prevail, making it ideal for handling complex
wireless scenarios such as multipath fading, mobility,
and varying interference levels [19–22]. Additionally,
deep learning models can improve signal detection
and decoding processes, leading to more reliable and
higher-throughput communications. In the context of
edge computing, deep learning plays a crucial role
in enabling low-latency, high-efficiency processing at
the network edge, closer to the data source. This is
particularly important for applications like the Internet
of Things (IoT) and real-time data analytics, where mas-
sive amounts of data are generated and need to be pro-
cessed in real-time to minimize communication delays.
By deploying deep learning algorithms at the edge,
devices can perform intelligent data filtering, compres-
sion, and decision-making without relying on cloud
servers, thus reducing bandwidth usage and improving
response times. Moreover, the attention mechanism can
be applied into deep learning to enhance the model
performance by dynamically focusing on relevant parts
of the input data, enabling better context-aware pre-
dictions [23, 24]. Such applications have been widely
adopted in tasks like natural language processing and
computer vision, improving efficiency and accuracy
[25].

Knowledge graphs (KGs) have become an essen-
tial tool for organizing and representing structured
and unstructured data in a way that captures the
relationships between different entities, making them
particularly valuable in complex domains such as
Industrial IoT (IIoT) networks and enterprise systems
[26, 27]. In IIoT networks, where vast amounts of
data are generated by connected sensors, devices, and
machines [28–30], knowledge graphs provide a seman-
tic framework for integrating, managing, and analyz-
ing this data across different layers of an industrial
system. By mapping the interactions between various
physical and digital components, knowledge graphs
enable enhanced visibility into machine operations,
supply chains, and system behaviors, fostering predic-
tive maintenance, fault diagnosis, and resource opti-
mization [31]. Additionally, by incorporating real-time
data streams from IIoT devices, knowledge graphs facil-
itate adaptive control and decision-making, allowing
for dynamic responses to fluctuating industrial environ-
ments [32]. Enterprise knowledge graphs can connect
data from various business units, such as customer rela-
tions, supply chain management, and human resources,
into a cohesive structure that captures the relationships
and dependencies between different entities. For indus-
trial enterprises, combining IIoT data with internal
business knowledge into a unified knowledge graph
enables cross-functional insights, such as correlating
supply chain disruptions with machine performance or
identifying opportunities for operational efficiencies. In

further, enterprise knowledge graphs support advanced
analytics by enabling natural language queries and
machine learning applications, allowing for more intu-
itive data exploration and intelligent automation. The
ability to incorporate both structured and unstruc-
tured data, including text, sensor data, and relational
databases, gives knowledge graphs the flexibility to
adapt to diverse enterprise needs. Overall, the integra-
tion of knowledge graphs in IIoT networks and enter-
prise systems is useful for more interconnected, intelli-
gent, and autonomous industrial environments, driving
both operational efficiency and strategic innovation.

Motivated by the above literature review, this paper
introduces a deep learning based enterprise knowledge
graph (EKG) framework that leverages transformer-
based architectures, graph attention networks (GATs),
and reinforcement learning to enhance EKG construc-
tion, refinement, and querying. Specifically, the frame-
work utilizes a business-enhanced RoBERTa (BERTO)
model for entity and relation extraction from unstruc-
tured data, a graph attention network to dynamically
refine edge weights, and a reinforcement learning agent
to iteratively adjust relationships based on user feed-
back. Additionally, a query-aware attention mechanism
is incorporated to facilitate context-sensitive knowledge
retrieval. Experimental evaluations demonstrate that
the proposed framework significantly outperforms con-
ventional knowledge graph and deep learning mod-
els in predictive accuracy, particularly under varying
signal-to-noise ratio (SNR) conditions. Numerical com-
parisons indicate that at 10 dB SNR, the proposed
approach achieves a prediction accuracy of 0.74, sur-
passing the conventional GK with accuracy of 0.49 and
the conventional DL with accuracy of 0.34.

2. Enterprise Knowledge Graph

An enterprise knowledge graph is a semantic network
that integrates heterogeneous data sources, such as
databases, documents, and APIs, into a unified graph
structure. It consists of entities (nodes) and relation-
ships (edges) that capture domain-specific knowledge.
Formally, an EKG is represented as K = (V , E ,R), where
V = {v1, v2, ..., vN } is the set of entities (nodes), E =
{e1, e2, ..., eM } is the set of relationships (edges), andR =
{r1, r2, ..., rP } is the set of relation types. Each edge ek ∈ E
is a triplet (vi , rp, vj ), indicating that entity vi is related
to entity vj via relation rp. For example, in a supply
chain EKG, (SupplierA, supplies,ProductX ) represents a
supplier-product relationship.

To enable machine learning on EKGs, entities and
relations are embedded into low-dimensional vector
spaces. Let ui ∈ Rd and rp ∈ Rd denote the embeddings
of entity vi and relation rp, respectively. The likelihood
of a triplet (vi , rp, vj ) is modeled using a scoring function
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f ,

f (vi , rp, vj ) = ∥ui + rp − uj∥22, (1)

where ∥ · ∥2 is the Euclidean norm. A lower score
indicates a stronger relationship.

To capture asymmetric relations (e.g., “manages"
vs. “is_managed_by"), a translation-based embedding
model is used,

f (vi , rp, vj ) = ∥ui + rp − uj∥1, (2)

where ∥ · ∥1 is the L1 norm. This ensures that ui + rp ≈
uj for valid triplets.

Enterprise data often originates from disparate
sources with varying schemas. To construct a unified
EKG, schema alignment is performed. Let S1 and S2
denote two schemas with entity sets V1 and V2. The
alignment function φ,V1 → V2 maps entities between
schemas,

φ(vi) = arg max
vj∈V2

sim(ui ,uj ), (3)

where sim(·, ·) is a similarity function based on the
cosine distance,

sim(ui ,uj ) =
u⊤i uj

∥ui∥2∥uj∥2
. (4)

For schema alignment, a contrastive loss is used,

Lalign =
∑

(vi ,vj )∈P
∥ui − uj∥22 +

∑
(vi ,vk )∈N

max(0, α − ∥ui − uk∥2)2,

(5)

where P and N are sets of positive and negative entity
pairs, and α is a margin hyperparameter.

Enterprise data often evolves over time, necessitating
temporal modeling. LetKt = (Vt , Et ,Rt) denote the EKG
at time t. The temporal embedding of entity vi at time t
is ut

i , computed as,

ut
i = ui + ∆ut

i , (6)

where ∆ut
i captures temporal changes. A temporal

scoring function evaluates the likelihood of a triplet
(vi , rp, vj ) at time t,

ft(vi , rp, vj ) = ∥ut
i + rp − ut

j∥
2
2. (7)

To model temporal dependencies, a recurrent neural
network (RNN) is used,

∆ut
i = RNN(ut−1

i , xti ), (8)

where xti is a feature vector encoding time-specific
attributes (e.g., sales data at time t).

EKG queries often involve multi-hop reasoning.
For example, "Find suppliers of products affected by
a delay" requires traversing paths like Supplier→
Product→ Delay. The likelihood of a query Q is
modeled using a path-based scoring function,

f (Q) =
∑

(vi ,rp ,vj )∈Path(Q)

f (vi , rp, vj ), (9)

where Path(Q) is the set of triplets in the query path.
For complex queries, a graph neural network (GNN)

performs inference by propagating information across
the graph. The node embedding hl

i at layer l is updated
as,

hl
i = σ

 ∑
j∈N (i)

W lhl−1
j + bl

 , (10)

where W l and bl are learnable parameters, and σ is an
activation function. The final embedding hL

i is used for
query answering.

To handle large-scale EKGs, sampling techniques are
employed. For each training iteration, a subgraph K′ ⊆
K is sampled with probability,

P (K′) =
|K′ |∑

K′′⊆K |K′′ |
. (11)

The training objective is optimized using stochastic
gradient descent (SGD),

θ ← θ − η∇θL(K′), (12)

where η is the learning rate, and L(K′) is the loss
computed on K′ . For real-time querying, indexing
structures such as k-d trees are used to accelerate
nearest-neighbor searches,

NN(vi) = arg min
vj∈V
∥ui − uj∥2. (13)

3. Proposed DL-based Framework
The proposed framework integrates transformer-based
architectures, graph attention networks, and reinforce-
ment learning to construct, refine, and query EKGs.
In the following, we detail the implementation. Firstly,
we construct the entity and relation extraction with
transformer encoders. To this aim, unstructured enter-
prise data (e.g., contracts, emails) is processed using
a business-enhanced roberta (BERTO) model. Given
an input sequence X = {x1, x2, ..., xn}, the transformer
encoder computes contextual embeddings using multi-
head self-attention. For each head h, the attention score
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αh
ij between tokens xi and xj is,

αh
ij = softmax

Qh
i (Kh

j )⊤√
dk

 , (14)

where Qh
i = W h

Qxi and Kh
j = W h

Kxj are query and key
vectors, and dk is the dimension of keys. The output
embedding zi for token xi aggregates information across
all heads,

zi =
n∑

j=1

αh
ijV

h
j , (15)

V h
j = W h

V xjzi . (16)

To classify entities (e.g., "Product," "Supplier") and
relations (e.g., "supplies," "depends_on"), a linear layer
with softmax is applied,

P (yi |zi) = softmax(Wczi + bc), (17)

where Wc and bc are learnable parameters. To handle
noisy enterprise data, label smoothing is applied to the
cross-entropy loss Lner,

Lner = −
n∑
i=1

(1 − ϵ) log P (yi |zi) +
ϵ
K

K∑
k=1

log P (k|zi)

 ,
(18)

where ϵ is the smoothing factor and K is the number of
classes.

Then, we construct the attention-driven graph with
GAT and reinforcement learning. To this aim, we collect
the extracted entities E = {e1, ..., em} and relations R =
{r1, ..., rp} to form an initial graph G = (E ,R). A graph
attention network refines edge weights by learning
attention coefficients βij between nodes ei and ej ,

βij = softmax
(
σ
(
a⊤[WgeiWgej ]

))
, (19)

where Wg is a weight matrix, a is the learnable vector,
and σ is the LeakyReLU activation. The updated node
embedding e′i is,

e′i = σ

 ∑
j∈N (i)

βijWgej

 , (20)

withN (i) denoting neighbors of ei .
To adapt to dynamic enterprise contexts (e.g., new

suppliers), a reinforcement learning agent adjusts edge
weights based on user feedback. The agent’s policy πθ
selects actions (add/remove edges) to maximize the
reward R,

R = λ1 · Accuracy(QG) + λ2 ·UserFeedback(QG), (21)

where QG is a query subgraph. The policy gradient is
updated as,

∇θJ(θ) = Eπθ

[
∇θ logπθ(a|s) · R

]
, (22)

and the graph is updated as G′ = G + ∆G, where ∆G
represents edge modifications.

In further, we perform the contextual knowledge
retrieval with query-specific attention. For a user query
q, a query-aware attention mechanism retrieves relevant
subgraphs. The query embedding q interacts with node
embeddings ei via scaled dot-product attention,

γi = softmax

q⊤Wq(Wkei)√
d

 , (23)

where Wq and Wk transform q and ei into a shared
space. The retrieved subgraph Gq is,

Gq = {ei |γi > τ}, (24)

with threshold τ . Temporal attention further prioritizes
time-sensitive nodes (e.g., "Q4_Sales"). For a node ei
with timestamp ti , its temporal score ηi is,

ηi = σ
(
w⊤t [eiφ(ti − tnow)]

)
, (25)

where φ encodes time differences and wt is the
learnable vector. The final attention score γ̂i fuses γi
and ηi ,

γ̂i =
exp(γi + ηi)∑m
j=1 exp(γj + ηj )

. (26)

The DL-based model is jointly trained using a
composite loss,

L = Lner + Lgat + Lrl, (27)

in which Lgat is the GAT reconstruction loss, given by,

Lgat =
∑

(ei ,r,ej )∈G

∥∥∥∥e′i + r − e′j
∥∥∥∥2

2
, (28)

and Lrl is the RL policy loss weighted by entropy
regularization,

Lrl = −Eπθ
[R] + ξ · H(πθ), (29)

where H is the entropy term and ξ is a regularization
coefficient.

4. Simulation Results and Discussions
In this work, the parameter settings for both deep
learning and knowledge graph implementation are
presented. Specifically, the deep learning model
uses a multi-layer neural network, specifically a
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Figure 1. Convergence performance versus the number of training
epochs with 10 types.

convolutional neural network, which is fine-tuned
with key hyperparameters of learning rate, batch size,
and dropout rate. In particular, the learning rate
is set to 0.001 to balance the convergence speed
with stability, while a batch size of 32 improves
the gradient estimation without straining memory.
Dropout is applied at a rate of 0.5 to prevent
overfitting during training. For the knowledge graph,
entity embeddings are generated using a node2vec
algorithm, which is parameterized with a context
window size of 5 and a negative sampling rate of
10 to effectively capture relational patterns among
entities. The overall architecture is trained on a
dataset comprising various enterprise-related entities
and relationships, leveraging deep learning to enhance
model accuracy and scalability.

Fig. 1 shows the convergence pattern of the loss
function in the proposed deep learning-based EGK
system as training epochs progress, using 10 types
of enterprise data. Here, NL represents the network’s
number of layers, with values in {8, 10, 12}. As observed
in Fig. 1, all lines exhibit a sharp initial decline
in the loss function, particularly within the first 50
epochs, indicating a rapid learning progress at the
beginning of training. However, as training progresses,
the different layer configurations result in distinct
steady-state behaviors. Specifically, the loss function
with NL = 12 starts with a higher initial value, around
16, and converges more slowly, eventually stabilizing
around 7.5, which is higher compared to the other
lines. The loss function with NL = 8 begins with
an initial loss of approximately 10 and converges
more quickly, reaching a steady-state loss near 6.5,
showing a better performance than the deeper network.
The loss function with NL = 10 exhibits the most
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Figure 2. Convergence performance versus the number of training
epochs with 20 types.

efficient performance, starting with an initial loss
around 9 and converging steadily to the loss of
approximately 6, which is the lowest among the three
lines. These observations indicate that increasing the
number of layers beyond a certain point does not
necessarily improve performance and may even hinder
convergence, while a more moderate network depth
results in the best training performance, as evidenced
by the lower loss function.

Fig. 2 illustrates the convergence performance of the
loss function for the proposed deep learning models
with 20 types of enterprise data, where the number
of layers in the DL network varies from 8 to 12. We
can see from Fig. 2 that initially, for all values of NL,
there is a sharp reduction in the loss function, with the
steepest drop occurring in the early stages of training,
particularly within the first 50 epochs. Among the
configurations, the model with NL = 12 begins with the
highest initial loss of approximately 28 and converges
more slowly, eventually stabilizing at a higher steady
value, around 12, after 300 epochs. On the other hand,
the model with NL = 8 starts with a lower initial loss,
around 18, and converges more rapidly, reaching a
steady loss of approximately 10. The configuration with
NL = 10 demonstrates the most favorable performance,
starting with an initial loss near 15 and converging to
the steady loss of around 9. This observation indicates
that adding more layers beyond a certain threshold may
result in slower convergence and a higher final loss,
whereas a moderate depth of NL = 10 yields the best
overall training performance, reflected in the lowest
stable loss across the configurations. Thus, while deeper
networks may offer greater capacity, they may not
always result in a better performance, especially in
terms of training convergence and loss minimization.
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Figure 3. Test accuracy versus data SNR with 10 types.

Table 1. Numerical test accuracy versus SNR for different
schemes with 10 types.

SNR (dB) Proposed Scheme Conv. GK Conv. DL
0 0.00 0.00 0.00
2 0.35 0.11 0.04
4 0.48 0.23 0.11
6 0.56 0.34 0.18
8 0.66 0.40 0.28

10 0.74 0.49 0.34

Fig. 3 and Table 1 demonstrate the test accuracy in
relation to the signal-to-noise ratio (SNR) in dB for
three different schemes with 10 types of enterprise
data, where the data SNR varies from 0 dB to 10
dB. For performance comparison, we consider two
competing schemes, where one is the conventional
GK, and the other is the conventional deep learning.
This figure and table firstly reveal that across the
entire SNR range, the proposed scheme consistently
outperforms conventional ones. Specifically, at 0 dB,
the proposed scheme starts with a prediction accuracy
of around 0.15, compared to approximately 0.05 for
the conventional GK and nearly 0 for the conventional
DL. As the SNR rises to 5 dB, the prediction accuracy
of the proposed scheme reaches around 0.6, while
conventional GK achieves approximately 0.35, and
conventional DL lags behind at about 0.2. At 10 dB,
the proposed scheme attains a prediction accuracy
near 0.75, significantly outperforming the others, with
conventional GK around 0.5 and conventional DL
at roughly 0.3. This trend highlights the superior
performance of the proposed scheme, particularly
in high-SNR environments, where it maintains the
highest accuracy across all SNR levels. Additionally,
the performance gap between the proposed and
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Figure 4. Test accuracy versus data SNR with 20 types.

Table 2. Numerical test accuracy versus data SNR with 20 types.

SNR (dB) Proposed Scheme Conv. GK Conv. DL
0 0.00 0.00 0.00
2 0.27 0.09 0.03
4 0.38 0.18 0.09
6 0.44 0.26 0.15
8 0.49 0.32 0.21

10 0.60 0.40 0.28

conventional schemes widens with increasing SNR,
underscoring the robustness and improved prediction
capability of the proposed method in noise-limited
conditions.

Fig. 4 and Table 2 present the test accuracy versus
the data SNR for the three schemes, using 20 types of
enterprise data, with SNR ranging from 0 dB to 10 dB.
As shown in Fig. 4 and Table 2, the proposed scheme
consistently outperforms the conventional methods
across all SNR levels. In particular, when SNR=0dB,
the proposed scheme starts with a test accuracy
of approximately 0.1, whereas the conventional GK
and conventional DL schemes exhibit much lower
accuracies, around 0.05 and nearly 0, respectively.
As the SNR increases to 5 dB, the proposed scheme
achieves a significant improvement, reaching around
0.45, while the conventional GK rises to about 0.25,
and the conventional DL lags further behind at
approximately 0.15. This indicates that the proposed
scheme offers the most robust performance, particularly
in higher SNR conditions, where the gap between
the proposed and conventional schemes becomes more
pronounced. Overall, the simulation results in Fig.
4 and Table 2 clearly highlight the superiority of
the proposed scheme, particularly as SNR increases,
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leading to significantly higher test accuracy across all
scenarios.

5. Conclusions
This paper proposed a DL-based EKG framework
that integrated transformer architectures, GATs, and
reinforcement learning to enhance EKG construction,
refinement, and querying. The framework employed
a business-enhanced RoBERTa model for entity and
relation extraction from unstructured data, a GAT to
dynamically refine edge weights, and a reinforcement
learning agent to iteratively adjust relationships
based on user feedback. Additionally, a query-aware
attention mechanism was incorporated to enable
context-sensitive knowledge retrieval. Experimental
results demonstrated that the proposed framework
significantly outperformed conventional GK and DL
models in predictive accuracy, particularly across
different SNR levels. Numerical comparisons showed
that at 10 dB SNR, the proposed framework achieved
a prediction accuracy of 0.74, surpassing the accuracy
of 0.49 achieved by the conventional GK and that of
0.34 achieved by the conventional DL, highlighting
its superior effectiveness in enterprise knowledge
management.
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