
EAI Endorsed Transactions  
on Scalable Information Systems  Research Article 
 
 

        

Multimodal-Driven Emotion-Controlled Facial 
Animation Generation Model 

 
Zhenyu Qiu1, Yuting Luo2*, Yiren Zhou3, Teng Gao1 

1. School of Computer and Information Engineering, Nanchang Institute of Technology, Nanchang, 330044, China 
2. School of Music, Nanchang Institute of Technology, Nanchang, 330044, China     
3. Rapid prototyping institute, Nanchang Institute of Technology, Nanchang, 330044, China 

Abstract 
INTRODUCTION: In recent years, the generation of facial animation technology has emerged as a prominent area of focus 
within computer vision, achieving varying degrees of progress in lip-synchronization quality and emotion control. 
OBJECTIVES: However, existing research often compromises lip movements during facial expression generation, thereby 
diminishing lip synchronisation accuracy. This study proposes a multimodal, emotion-controlled facial animation generation 
model to address this challenge. 
METHODS: The proposed model comprises two custom deep-learning networks arranged sequentially. By inputting an 
expressionless target portrait image, the model generates high-quality, lip-synchronized, and emotion-controlled facial 
videos driven by three modalities: audio, text, and emotional portrait images.  
RESULTS: In this framework, text features serve a critical supplementary function in predicting lip movements from audio 
input, thereby enhancing lip-synchronization quality.  
CONCLUSION: Experimental findings indicate that the proposed model achieves a reduction in lip feature coordinate 
distance (L-LD) of 5.93% and 33.52% compared to established facial animation generation methods, such as MakeItTalk 
and the Emotion-Aware Motion Model (EAMM), and a decrease in facial feature coordinate distance (F-LD) of 7.00% and 
8.79%. These results substantiate the efficacy of the proposed model in generating high-quality, lip-synchronized, and 
emotion-controlled facial animations.  

Keywords: Deep Learning; Computer Vision; Generative Adversarial Networks; Facial Animation Generation Technology; Multimodal 

Received on 21 October 2025, accepted on 07 July 2025, published on 17 July 2025 

Copyright © 2025 Zhenyu Qiu et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA 
4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the 
original work is properly cited. 
 
doi: 10.4108/eetsis.7624 

 
    * Corresponding author. Email: 19979129968@163.com, yuting_luo24@outlook.com 

1. Introduction 

With the continuous advancement of generative models [1-
4], facial animation generation technology [5-9] has rapidly 
developed and gained widespread attention. It is now 
applied in virtual character creation [10-12], animation film 
assistance, and short video production [13]. Current facial 
animation generation technologies can be categorized 
based on their driven targets into two types: (1) methods 
based on portrait videos [14-18], where the driven target is 
a portrait video, typically edited and reshaped directly or 

indirectly, and (2) methods based on portrait images [19-
23], where the driven target is usually a single-frame 
portrait image, aiming to synthesize corresponding video 
segments through driving factors. 

In high-quality facial animation technology, 
synchronizing speech content with lip movements is 
crucial. In contrast, high-fidelity visuals and rich facial 
expressions can further enhance the authenticity and 
practicality of the animation [5]. Both types of facial 

1
EAI Endorsed Transactions 

on Scalable Information Systems 
| Volume 12 | Issue 4 | 2025 | 

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/


Zhenyu Qiu et al. 

animation generation technologies have explored facial 
emotional expression. Ji et al. [14] and Fang et al. [22] 
attempted to control facial emotions in videos without 
adding extra driving factors. Still, their methods were 
influenced by a single driving source, resulting in poor 
flexibility and low robustness. Other works [15, 23-24] 
introduced one or more additional driving factors to control 
facial emotions in videos. Although these methods granted 
emotional expression to the videos, the driving factors' 
complexity reduced lip synchronisation accuracy, 
interfering with the portrait background and limiting 
practical application. 

This paper aims to design a highly flexible facial 
animation generation model that ensures precise lip 
movement and controllable emotions to improve the 
practical efficiency of facial animation generation 
technology. However, achieving such a model faces the 
following challenges: 1) ensuring instant usability while 
maintaining the identity of the target portrait and lip 
synchronization, avoiding unnecessary and cumbersome 
preprocessing; 2) managing variations in portrait facial 
expressions, which can easily cause non-rigid facial 
structure distortions that interfere with lip movements, 
reducing the accuracy of lip synchronization; 3) addressing 
the limitations of a single driving factor, which offer weak 
control, while multiple driving factors can easily lead to 
entanglement, resulting in the mixing of portrait contours 
and background pixels, and even causing ghosting and 
distortion in the visuals. 

This paper proposes a multimodal-driven, emotion-
controlled facial animation generation model to address 
these challenges. The model takes an expressionless static 
portrait as the target and uses audio, text, and emotional 
portrait images as driving factors. Building on traditional 
audio-driven facial animation generation techniques, it 
controls the facial expressions of the target portrait using 
emotional portrait images. It utilizes text features to assist 
in predicting lip movement changes based on audio, 
thereby generating high-quality lip-synchronized and 
emotion-controlled facial videos. 

The network structure of this method comprises two 
end-to-end modules: the facial feature coordinate 
generation module and the facial video generation module, 
both of which are custom encoder-decoder deep learning 
networks. Additionally, to link these modules, facial 
feature coordinates are used to avoid direct reconstruction 
of target portrait pixels by the driving factors and prevent 
pixel mixing caused by multiple driving factors. Using 
three encoders, the facial feature coordinate generation 
module extracts different feature vectors from four inputs. 
Then, it predicts a sequence of facial coordinate offsets 
corresponding to the audio length through a decoder. After 
adding this to the target portrait feature coordinates, a new 
sequence of facial feature coordinates is generated. The 

facial video generation module uses the generated 
sequence of facial feature coordinates as driving factors to 
control the variation of portrait pixels, resulting in lip-
synchronized and emotion-controlled facial animations. 
The qualitative and quantitative experiments and ablation 
studies conducted in this paper validate the necessity of the 
sub-network modules and the overall effectiveness of the 
model. 

The main contributions of this paper are as follows: 
A novel technical model is designed to generate high-

quality, lip-synchronized and emotion-controlled facial 
animations driven by three modalities of data based on any 
expressionless target portrait. 

A method is proposed to assist audio-driven inputs 
with text features, reducing distortions caused by 
expression changes in the lip region and thereby improving 
the accuracy of lip synchronization in generated facial 
animations. 

The serial structure between modules ensures instant 
usability while preventing interference between multiple 
driving factors, guaranteeing the authenticity of the 
generated animations. 

The paper is structured as follows: it reviews existing 
methods in the Related Work section, followed by a 
detailed Model Description of the proposed multimodal 
approach. The paper then presents Experiments and Results 
Analysis, highlighting qualitative and quantitative results, 
and concludes with the Conclusions and future work. 

2. Related Works

2.1 Facial Animation Generation 
Technology 

With the development of internet technology, the demand 
for high-quality facial animation videos is constantly 
rising. This trend has significantly influenced computer 
vision, computer generation, and computer graphics, 
prompting many technology companies and research 
institutions to use computer and artificial intelligence 
technologies to enhance video content quality, deepen 
creation automation, and reduce labour costs. Facial 
animation generation technology is particularly prominent 
among these [25-29]. 

Over the past five years, the emergence of excellent 
audiovisual databases [30-32] has accelerated the 
development of facial animation generation technology. 
Suwajanakorn et al. [32] synthesized lip movements from 
audio based on Obama's speech video and combined them 
with the original portrait data. Although the video results 
were impressive, the method was limited to specific 
identities and required a long training cycle. In the same 
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year, Chung et al. [33] proposed an encoder-decoder 
network based on Convolutional Neural Networks (CNN) 
[34], advancing research in generating facial animations 
during the image-to-image translation process. Following 
this, Chen et al. [19] proposed a concatenated structure of 
audio transformation and visual generation network 
(ATVGnet), which introduced facial feature coordinates as 
an intermediate representation, generating facial animation 
for any portrait while ensuring lip synchronization. Zhou et 
al. [21] further enhanced the realism of facial animations 
by adding a spontaneous head movement module. 
Additionally, Yu et al. [35] attempted to incorporate text as 
a driving factor on top of existing technologies to achieve 
multimodal complementarity, improving lip 
synchronization in videos. While these methods focus on 
the flexibility of video generation and the accuracy of lip 
synchronization, the input target constrains facial 
expressions, and emotional expression remains relatively 
singular, limiting practical application scenarios. 

2.2 Emotion-Controlled Facial Animation 
Generation Technology 

Facial expressions are one of the important ways humans 
express emotions. Richly animated facial expressions can 
enhance the appeal of human-computer interaction 
interfaces and virtual characters, making them more 
engaging for users. Therefore, most facial animation 
generation technologies proposed in recent years focus on 
generating facial expressions while ensuring lip 
synchronization, and can be categorized into two types 
based on the driven targets. 

Emotion-Controlled Facial Animation Generation 
Technology Based on Portrait Videos: The goal is to 
reshape lip movements and edit facial expressions in the 
target video through driving factors. Ji et al. [14] used 
cross-reconstruction emotional decomposition techniques 
to decouple content features and emotional features from 
the original audio, combining them with portrait features to 
generate emotion-controlled facial feature coordinates. 
Finally, they produced portrait videos using target-adaptive 
face synthesis technology. Although this method addresses 
the issue of limited facial expression variety, its reliance on 
target-specific training reduces flexibility. Recently, Liang 
et al. [15] proposed a Granularly Controlled Audio-Visual 
Talking Heads (GC-AVT) model that comprehensively 
considers fine-grained control of lip movements, head 
poses, and facial expressions in facial animations. This 
model takes four videos as input and uses Generative 
Adversarial Networks (GAN) [36] and masking techniques 
[37] to reconstruct target videos, controlling lip 
movements, head poses, and facial expressions. However, 
the singularity of input modalities and the abundance of 

driving factors result in poor model robustness and overly 
random facial animation realism. Additionally, this method 
has limited capability in handling portraits and 
backgrounds, leading to simplistic scenes and low-
resolution issues. 

Emotion-Controlled Facial Animation Generation 
Technology Based on Portrait Images: This approach aims 
to synthesize lip-synchronized and emotion-controlled 
video segments frame by frame through driving factors. 
Compared to video-driven methods, image-driven methods 
require only one image to complete the generation task, 
offering greater flexibility. However, this flexibility comes 
at the cost of reduced controllability due to the limited input 
information. 

Fang et al. [22] used a custom GAN model to directly 
drive audio synthesis pixel points. While generating facial 
expressions, audio noise also affected the process, severely 
reducing image fidelity. To enhance control over facial 
expressions, Eskimez et al. [23] and Agarwal et al. [38] 
introduced extra driving factors to control facial 
expressions coarse-grained. Eskimez et al. [23] added 
emotional labels, while Agarwal et al. [38] used emotional 
portraits. However, both methods share the common issue 
of dependence on training, and GANs are notoriously 
difficult to train, with poor stability, limiting their practical 
application based on target identities. Ji et al. [24] proposed 
the Emotion-Aware Motion Model (EAMM), which 
addresses the dependency on training in this direction. The 
model controls the identity features, lip movements, facial 
emotions, and head poses of generated videos through four 
inputs. However, due to the interplay of multiple driving 
factors, the overall control difficulty of the model is high, 
leading to ghosting and distortion in portraits, and the 
accuracy of the generated lip movements is relatively low.  

In summary, the technology for generating emotion-
controllable facial animations is still exploratory. Current 
methods struggle to cover all aspects, with significant room 
for improvement in model flexibility, lip-sync accuracy, 
richness of facial expressions, and diversity of head poses. 
This paper adopts a technology route based on portrait 
images to address these issues and introduces additional 
driving factors to control facial expressions. Unlike [23, 
38], this paper requires additional textual information as 
input to provide context and content for assisting audio 
predictions of lip changes. Compared to the multi-target 
control of [24], this study abandons the issue of head pose 
diversity and focuses on model flexibility, lip-sync 
accuracy, and richness of facial expressions. The aim is to 
control facial expressions while minimizing ghosting and 
distortion in the visuals, thereby improving lip-sync 
accuracy. Furthermore, the network framework in this 
paper differs from the methods above by introducing facial 
coordinates as an intermediate representation, dividing the 
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model into two subnetwork modules. This approach avoids 
the direct driving of pixel points, enhancing the robustness 
of the generative model. 

3. Model Description 

This paper proposes a multimodal-driven, emotion-
controllable facial animation generation model that focuses 
on the impact of facial expression reshaping on lip 
movements, as shown in Figure 1. The model utilizes four 
types of input data, with the target object being a neutral 
portrait image (located at the bottom left of the framework), 
while the other inputs act as driving factors. The driving 
factors include audio, text, and emotional portraits. Audio 
and text driving factors predict and generate lip 

movements, while the emotional picture is used to reshape 
facial expressions. Notably, a single audio signal may lack 
clarity or be affected by noise interference, and this model 
is additionally affected by facial expression reshaping, 
significantly increasing the difficulty of lip-sync compared 
to traditional methods. This paper provides context and 
content understanding through textual information to 
address these issues, helping the audio driving factor more 
accurately capture contextual lip changes to achieve 
multimodal fusion. The text features greatly enhance the 
accuracy of lip-sync predictions, avoiding distortions 
caused by facial expression reshaping and improving the 
realism of the generated videos. 

 
 

 
 

Fig. 1 Framework of the proposed model 

The model is divided into two key modules: the facial 
feature coordinate generation module and the facial video 
generation module. The facial feature coordinate 
generation module generates a sequence of lip-sync and 
emotion-controllable facial coordinate offsets, which serve 
as intermediate features for the model. The facial video 
generation module then converts this predicted feature 
coordinate offset sequence into a facial video of the target 
portrait. A transformation process between the two 
modules is required to ensure seamless integration. The 
brief formulas for these modules are as follows: 

1 1
Emo Id2 ( ):T :TMul Lm , , ,=ΔP A E P P   (1) 

1 1
Id

:T :T= +Q ΔP P   (2) 
1 12 ( ):T :TLm Vid ,=V Q I   (3) 

Where: 2Mul Lm denotes the facial feature coordinate 
generation module; 2Lm Vid   denotes the facial video 
generation module; 1:TA  represents the audio driving 

factor; E  denotes the text driving factor; EmoP represents 
the facial feature coordinates of the emotional driving 

factor; IdP  represents the facial feature coordinates of the 

target portrait; T  denotes the length of the audio; 1:TΔP
represents the predicted facial coordinate offset sequence; 

1:TQ   denotes the facial feature coordinate sequence of the 

target portrait after the offset; I represents the original 

image of the target portrait; 
1:TV denotes the final 

generated video. 

 
3.1 Facial Feature Coordinate Generation 
Module 

The facial feature coordinate generation module adopts a 
GAN framework consisting of a generator and a 
discriminator. The generator consists of three encoders and 
one decoder: the audio-text encoder, the identity encoder, 
the emotion encoder, and the facial feature coordinate 
decoder. The model also includes two discriminators: one 
discriminating the authenticity of the generated coordinates 
(the authenticity discriminator) and another discriminating 
the image frame rate (the image frame rate discriminator). 
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3.1.1 Data Preprocessing 
Before being used as input, the three modalities of data 
undergo different preprocessing steps. Specifically, the 
portrait images need to utilize a pre-trained facial feature 
keypoint recognition algorithm [39] to obtain facial feature 

coordinates IdP EmoP with a dimension of 68×3, reducing 
the complex pixel points into a unified representation. 
Additionally, the detected coordinates need to be 
normalised to minimize the differences between different 
target portrait coordinates. The audio data is processed 
using Python's Libros package, converting the audio 
driving factor 1:TA into Mel Frequency Cepstral 

Coefficients (MFCC) 1
MFCC
:TA with a dimension of (T ,40) to 

suit the subsequent network structure better and enhance 
lip-sync accuracy. The text data requires using the open-
source deep learning toolkit Merlin to extract text feature 
vectors with a dimension of (T , 425). 

 
3.1.2 Encoder Network Structure 
The audio-text encoder aims to extract multimodal latent 
features that drive lip changes from audio and text features, 
thereby predicting the changes in facial coordinate 
sequences. This encoder consists of two network models: a 
Long Short-Term Memory (LSTM) network [40] and a 
Self-Attention mechanism [41]. The preprocessed audio 
driving factor's Mel Frequency Cepstral Coefficients

1
MFCC
:TA  are input into the LSTM to extract audio feature 

vectors 1:T
aF with a dimension of (T , 256). To improve the 

accuracy of lip movement predictions and enhance the 
overall effectiveness of the driving factors, this paper 
employs the encoder structure of the Transformer model 
[41]. The goal is to capture long-term dependencies 

between the audio feature vector 1:T
aF and the text feature 

vector 1:T
eF through Self-Attention while improving the 

model's overall performance through the complementarity 
of different modalities. Specifically, after linearly merging 

the audio feature vector 1:T
aF and the text feature vector

1:T
eF , the result is input into the Self-Attention mechanism 

encoder Atten  to extract common features, resulting in 

latent audio-text features 1:T
lF with a dimension of (T 256). 

The specific formulas for the audio-text encoder are as 
follows: 

1 1 1
MFCC( ( ), ):T :T :T

l eAtten LSTM=F A F   (4) 

The identity encoder FC takes the facial feature 

coordinates IdP of the target portrait as input, aiming to 

capture and extract the identity features IdF  of the target 
portrait. This encoder uses a fully connected network with 
five layers, with dimensions of (204, 256), (256, 256), 
(256, 256), (256, 256), and (256, 256). A Leaky Rectified 
Linear Unit (LeakyReLU) with a slope of 0.2 is used as the 
activation function after each fully connected layer to 
introduce non-linearity. The specific formulas for the 
identity encoder are as follows. 

Id Id( )FC=F P   (5) 

The emotion encoder 
'FC takes the facial feature 

coordinates EmoP  of the emotional portrait as input, aiming 

to extract the emotional features EmoF  of the emotional 
picture and thereby reshape the facial expressions of the 
target portrait. Similar to the identity encoder, this network 
also uses a fully connected network with five layers. The 
specific formulas for the emotion encoder are as follows: 

Emo Emo( )'FC=F P   (6) 

3.1.3 Decoder Network Structure 

The facial feature coordinate decoder 
''FC takes the latent 

audio-text features 1:T
lF , identity features IdF , and 

emotional features EmoF  as input, aiming to predict the 
facial coordinates aligned with the audio text through the 
latent audio-text features and reshape the facial expression 
coordinates of the target portrait using the emotional 
features. [42] develops a multimodal intelligent model to 
recognize four specific emotions in drivers, which can 
impact driving performance. By analyzing motor activity 
signals and facial geometry images using machine learning, 
the model achieves 96% accuracy in a simulated 
environment. It combines data from driver behaviour and 
facial features, processed through a CNN, to accurately 
classify emotions, confirming a significant link between 
motor activity, behaviour, facial geometry, and induced 
emotions. 

First, the identity and emotional features are 
concatenated frame by frame with the latent audio-text 
features to obtain total latent features with a dimension of (
T , 768). The total latent features are then fed frame by 
frame into a fully connected network with five layers, with 
dimensions of (768, 512), (512, 256), (256, 256), (256, 
256), and (256, 204), to obtain the facial coordinate offset 
sequence 1:TΔP . Adding this 1:TΔP to the target portrait 

IdP results in a lip-synchronized and emotion-controllable 

5
EAI Endorsed Transactions 

on Scalable Information Systems 
| Volume 12 | Issue 4 | 2025 | 



Zhenyu Qiu et al. 

 

facial feature coordinate sequence 1:TQ . The specific 
formulas for the facial feature coordinate decoder are as 
follows. 

1 1
Id Emo Id( , , ):T '' :T

lFC= +Q F F F P   (7) 

3.1.4 Discriminator Network Structure 
The authenticity discriminator follows the design 
philosophy of GANs, aiming to discern the authenticity of 
the generated facial coordinates. This discriminator 
employs a five-layer fully connected neural network, with 
dimensions of (204, 256), (256, 256), (256, 128), (128, 64), 
and (64, 1) for each layer. Except for the last layer, each 
layer uses a Leaky ReLU activation function with a slope 
of 0.2 to rectify the linear units. Additionally, to optimize 
the discriminator further, this paper sets a loss function for 
the discriminator to impose further constraints on the 
model. The specific formula is as follows: 

DR 1t
R R

ˆL log D log D= + −（ ） （ （ ）)tQ Q   (8) 

Where tQ represents the predicted frame facial feature 

coordinates ˆ tQ , the reference frame facial feature 

coordinates RD , the authenticity discriminator, and DRL
the authenticity discriminator loss function. 

The image frame rate discriminator aims to enhance 
the coherence and smoothness of the predicted facial 
feature coordinate sequence, preventing excessive jitter 
between adjacent frames. This discriminator consists of 
three three-layer fully connected networks. The first two 
networks input the facial coordinates of corresponding 
frames, capturing their feature vectors with dimensions of 
(204, 256), (256, 128), and (128, 64) for each layer. The 
extracted features are then concatenated and input into the 
third network, capturing the correlation between them, with 
dimensions of (128, 64), (64, 32), and (32, 1) for each layer. 
Similar to the authenticity discriminator, this discriminator 
utilizes the Leaky ReLU activation function. The specific 
formula for the discriminator loss function is as follows: 

( ) ( )( )log log 1DF F F
ˆ ˆ ˆL D , D ,= + −t+1 t t+1 tQ Q Q Q

 (9) 

Where 1tˆ +Q   represents the 1t + reference frame facial 

feature coordinates FD , the image frame rate 

discriminator, and DFL the image frame rate discriminator 
loss function. 

3.1.5 Loss Functions 
To further optimize the quality of the generated feature 
coordinates, this paper adds two additional loss functions 

to the authenticity discriminator loss function DRL and the 

image frame rate discriminator loss function DFL , 
focusing on the generation effects of the model's lip 
coordinates. These include a facial coordinate loss function 

FL aimed at improving the facial expression in the image 

and a lip coordinate loss function LL aimed at optimizing 
lip synchronization. 

Specifically, the facial coordinate loss function FL is 
designed to enhance the accuracy and authenticity of facial 
coordinates by minimizing the Euclidean distance between 
the predicted coordinates and the reference coordinates, 
which is a common approach in this area of research. The 
specific calculation formula is as follows: 

2

21 1

T N
t ,i t ,i

F
t i

ˆL Q Q
= =

= −∑∑   (10) 

Where ,t iQ  represents the predicted facial feature 

coordinates at index 𝑖𝑖 for the frame; ,ˆ t iQ  denotes the 
reference facial feature coordinates at index 𝑖𝑖 for the frame; 
T means the length of the audio; and N represents the total 
number of index points for the facial coordinates. 

The changes in the lip region coordinates will be more 
complex to align and match the audio and text driving 
factors. To address this, this paper adds a lip coordinate loss 

function LL . This function ensures the detail of the changes 
in the lip region by calculating the Laplacian distance 
between the predicted coordinates and the reference 
coordinates [43], thus improving the lip synchronization 
effect. The calculation formula is as follows: 

2

21 1

T M
t ,i t ,i

L lip lip
t i

ˆL ( Q ) ( Q )
= =

= −∑∑ L L   (11) 

Where
,t i

lipQ  represents the predicted lip feature coordinates 

at index 𝑖𝑖 for the frame; 
,ˆ t i

lipQ denotes the reference lip 

feature coordinates at index 𝑖𝑖 for the frame; L indicates the 
Laplacian distance; and M  represents the total number of 
index points for the lip coordinates, which is 20. 

The authenticity discriminator loss function DRL  and 

the image frame rate discriminator loss function DFL  have 
been previously introduced. The overall loss function 
formula for the model is as follows: 

2M L F L DR DFL L L L Lα α β β= + + +   (12) 

Where 2M LL   represents the total loss function for the facial 
feature coordinate generation module, and the weights for 

each sub-loss function are denoted as { }0 1 0 01. , .α β= =  
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3.2 Facial Video Generation Module 

The facial video generation module utilizes the concept of 
image translation, aiming to transform the input images 
into target images using an end-to-end algorithm. This 
module comprises both a generator and a discriminator. 
The generator adopts a U-Net structure [44], with skip 
connections and a U-shaped convolutional neural network. 
The U-Net can capture local detail features and overall 
facial characteristics from the portrait images, offering 
advantages such as efficient training, high speed, and 
strong scalability. The discriminator serves as an image 
quality discriminator to enhance the quality of the 
generated images. 

3.2.1 Data Preprocessing 
In this paper, the predicted facial feature coordinate 

sequences 1:TQ are converted into image data, specifically 
by sequentially connecting the indices of the facial 
coordinates for each frame by region and using predefined 
colours to draw a sequence of RGB images with 
dimensions （T 256，256，3）. Subsequently, the target 
portrait I , also a three-channel image, is added frame by 
frame to this image sequence, resulting in a six-channel 
image sequence with dimensions （T 256，256，6）. 

3.2.2 Generator Network Structure 
The generator adopts a traditional nine-layer U-Net 
structure comprising four encoder layers, one middle layer, 
and four decoder layers. The encoder layers consist of 
convolutional and pooling layers that progressively reduce 
the size of the feature maps while extracting high-level 
features from the images. The middle layer consists of 
multiple convolutional layers, aiming to maintain the size 
of the feature maps and extract richer features. The decoder 
layers consist of transposed convolutional layers and 
convolutional layers that gradually increase the size of the 
feature maps to generate outputs that match the dimensions 
of the input images. Furthermore, skip connections 
between the encoder and decoder layers link low-level and 
high-level features for feature sharing and fusion. The 
specific formula is shown in (3). 

3.2.3 Discriminator Network Structure 
The image quality discriminator aims to improve the image 
quality of the generated videos and maintain the 
consistency of the target portrait's identity. This 
discriminator is composed of a five-layer 2D-CNN, with 
the output channel numbers 64, 128, 256, 512, and 512 for 
the five layers, respectively. The convolutional kernel has 
a stride of 2 and a size of 3×3. The outputs are then 
flattened and fed into a two-layer fully connected network 

to distinguish the authenticity of the frame. Similarly, 
except for the last layer, each layer employs a LeakyReLU 
activation function with a slope of 0.2. The discriminator 
loss function is as follows. 

( ) ( )( )log log 1t t
DQ Q Q

ˆL D D= + −V V   (13) 

where 
tV represents the t  frame image of the generated 

video ˆ tV , the t  frame image of the reference video QD , the 

image quality discriminator, and DQL  the image quality 

discriminator loss function. 

3.2.4 Loss Function 
This module, based on the image quality discriminator loss 
function DQL , additionally incorporates a perceptual loss 

function VGGL  to enhance the quality of the generated 

images. The perceptual loss function VGGL utilizes a pre-
trained 19-layer convolutional neural network [45], VGG-
19 (Visual Geometry Group 19), to extract features from 
the generated and reference videos and compute the 
distance between these features. This module's perceptual 
loss function formula and the total loss function formula 
are shown as follows. 

( ) ( )
1VGGL θ θ= −t tV V   (14) 

2L V VGG DQL L Lλ= +   (15) 

whereθ  represents the pre-trained VGG-19 network VGGL
, the perceptual loss function 2L VL , the total loss function 

of the facial video generation module, and 0.01λ =  the 
weight of the loss functions. 

4. Experiments And Results Analysis 

4.1 Experimental Setup 

The method presented in this paper employs a serial 
structure, with the two network modules trained separately. 
Due to the differing designs and purposes of the modules, 
this study utilized the Multi-view Emotional Audiovisual 
Dataset (MEAD) [31] and VoxCeleb2 [30] audiovisual 
databases for training the network modules. The facial 
feature coordinate generation module utilized the MEAD 
[31] database, a high-resolution emotional audiovisual 
dataset featuring 60 participants from different continents 
and encompassing 8 types of facial emotions and 
corresponding audio-text materials. A subset of 43 frontal 
poses of portraits from this database was used for training, 
testing, and validation of the model. The facial video 
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generation module utilized the VoxCeleb2 [30] audiovisual 
database, a diverse identity audiovisual dataset. The 
original videos were downloaded via URLs provided by 
VoxCeleb2, collecting approximately 2,000 identity 
sources for the model training, testing, and validation. 

The framework was implemented using PyTorch 1.8.0 
and CUDA 11.1. Four Nvidia Tesla V100S GPUs, each 
equipped with 32GB of memory, were used to train both 
modules. The model's learning rate is set to 0.0001, and the 
total training duration is approximately 24 hours. 

4.2 Qualitative Experiments 

To effectively demonstrate the generation quality of the 
model, this study designed qualitative experiments and 
compared the results with state-of-the-art methods. The 
selected comparison methods include ATVGnet [19], 
MakeItTalk [21], and EAMM [24]. Two target portraits 
were randomly chosen from the audiovisual databases 
MEAD [31] and VoxCeleb2 [30]. Notably, both ATVGnet 
[19] and MakeItTalk [21] require only the target portrait 
and audio driving factors as input, while the method 
proposed in this paper additionally requires an emotional 
picture and text driving factors. The emotional portraits 

used in this qualitative experiment were all selected from 
the happy emotion portraits in MEAD [31]. Furthermore, 
EAMM [24] required input of the target portrait, head pose 
sequences, audio driving factors, and video driving factors; 
the additional head pose sequences and video driving 
factors were also sourced from MEAD [31]. 

The results of the qualitative experiments are shown 
in Figure 2, where GT represents the ground truth data. 
ATVGnet [19] produces relatively realistic lip shapes. 
However, the generated visuals are limited to the facial 
subject, resulting in somewhat stiff expressions. 
MakeItTalk [21] could control slight head rotations to some 
extent, and the lip movements are fairly aligned, but the 
facial expressions remain constrained by the input target 
portrait. EAMM [24] considered lip movements, head 
poses, and facial expressions, but its strict input 
requirements resulted in less stable generation effects and 
average practical usability. In contrast to the methods 
above, the animations generated by the process in this 
paper exhibit vivid facial expressions, accurate mouth 
shapes, and higher lip-sync quality, showing less 
discrepancy from the real data. This experiment 
demonstrated the effectiveness of the multimodal approach 
proposed in this paper. 

 

Fig. 2 Results of Qualitative Experiments 

4.3 Quantitative Experiments 
The quantitative experiments compared methods based on 
ATVGnet [19], MakeItTalk [21], EAMM [24], and real 
data while also including baseline methods from the 
MEAD [31] audiovisual database. The experimental 
subjects were selected from both MEAD [31] and 
VoxCeleb2 [30] audiovisual databases, utilizing evaluation 

metrics. The Lip Landmarks Distances (L-LD) were used 
to assess the synchronization of lip shapes with audio. In 
contrast, the Face Landmarks Distances (F-LD) were used 
to evaluate the accuracy of facial expressions. The Peak 
Signal-to-Noise Ratio (PSNR) [46], Structural Similarity 
Index Measure (SSIM) [47], and Fréchet Inception 
Distance (FID) were used to evaluate the quality of the 
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generated video images. [48] present TellMeTalk, a 
method for generating expressive talking face videos using 
multimodal inputs. It overcomes the limitations of existing 
approaches by combining audio and text, modelling spatial 
features with advanced techniques, adding natural head 
movements and expressions, and reducing artefacts with a 
face restoration module. This approach is robust across 
identities, languages, and expressions. Among these, lower 
L-LD, F-LD, and FID values indicated better performance, 
while higher values of PSNR and SSIM indicated better 
performance. Notably, the head pose variations in the 
VoxCeleb2 [30] audiovisual database were significant, and 
the feature coordinates extracted from the real data were 
rotated to unify the poses. Due to differences in methods, 
the number of video frames varied, so this study aligned the 
frame counts across all methods. [49] presents PC-Talk, a 
framework that improves lip-audio alignment and emotion 
control in talking face generation. It enables precise editing 
of speaking styles, lip movement scale, and emotional 
expressions with adjustable intensity and multi-emotion 
combinations. PC-Talk achieves state-of-the-art 
performance on the HDTF and MEAD datasets. 

The results of the quantitative experiments are shown 
in Table 1. The L-LD metric outperforms existing methods 
on both datasets, further confirming the effectiveness of lip 
motion generation under the joint modulation of audio and 

text multimodal factors. The F-LD metric also shows some 
improvement over existing methods, demonstrating the 
effectiveness of the emotional portrait facial reshaping 
function. In the MEAD dataset, compared to existing facial 
animation generation methods such as MakeItTalk and 
EAMM, the L-LD of this model is reduced by 5.93% and 
33.52%, respectively. In comparison, the F-LD is reduced 
by 7.00% and 8.79%. Comparing the performance metrics 
of the three-generation models, the proposed method 
slightly surpasses the existing techniques, benefiting from 
the reliability and flexibility of the facial video generation 
module. [50] examines how various facial animation 
factors influence emotional representation in virtual 
characters for VR communication. While prior research 
focused on lip-syncing, we investigated the impact of facial 
expressions, head movements, and overall appearance in 
conveying emotions. Using 24 voice samples from 12 
speakers, we conducted six perceptual experiments with 20 
participants to assess the effectiveness of facial cues in 
expressing emotion and intensity. Our findings suggest that 
facial expressions, head movements, and appearance are 
crucial for emotional expression, while lip-syncing plays a 
lesser role. These results can help improve virtual character 
development for more authentic emotional communication 
in VR. 

 

Table.1 Results of Quantitative Experiments 

Methods MEAD VoxCeleb2 
L-LD F-LD PSNR/dB SSIM FID L-LD F-LD PSNR/dB SSIM FID 

ATVGnet 3.31 3.86 28.55 0.60 67.60 4.55 5.37 28.41 0.52 66.63 
MakeItTalk 2.53 3.57 28.94 0.69 17.34 3.64 4.82 28.76 0.55 34.58 

MEAD 2.61 3.40 28.61 0.68 22.52 — — — — — 
EAMM 3.58 3.64 28.69 0.63 23.66 3.26 4.84 28.62 0.53 33.17 

Real Data 0.00 0.00 — 1.00 0.00 0.00 0.00 — 1.00 0.00 
Proposed 
Method 

2.38 3.32 29.07 0.71 17.18 3.05 4.79 28.79 0.56 31.75 

4.4 Ablation Experiment 

To further validate the effectiveness of the multimodal 
driving factors in this model, an ablation experiment that 
includes two model variants was designed to understand 
better the impact of each driving factor on model 
performance. The first variant, the audio-text variant, 
utilized audio and text as inputs while removing the 

emotional encoder from the facial feature coordinate 
generation module. This aimed to determine the 
importance of this model's emotional portrait driving 
factor. The second variant, the audio-emotional portrait 
variant, employed audio and emotional portraits as inputs, 
reconstructing the audio-text encoder in the facial feature 
coordinate generation module by directly concatenating 
features after extracting audio feature vectors with LSTM. 
This variant aimed to evaluate the significance of the text-
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driving factor for this model. The ablation experiment was 
conducted on the MEAD[31] and VoxCeleb2[30] datasets, 
using L-LD as the evaluation metric. 

The quantitative results of the ablation experiment, 
shown in Table 2, indicate that the audio-text variant 
achieved the highest L-LD, followed by the proposed 
method. In contrast, the audio-emotional portrait variant 
yielded relatively lower results. The primary reasons for 
this phenomenon are as follows. First, under the combined 
influence of audio and text, the latent features extracted by 
the audio-text encoder are more effective, leading to a more 

accurate representation of the mouth's shape in the 
generated facial feature coordinates, resulting in a higher 
lip-sync rate. Therefore, the audio-text variant and the 
proposed method demonstrated excellent L-LD 
performance. Second, although the emotional encoder can 
extract emotional latent features from emotional portraits, 
incorporating emotion into the video inevitably causes 
some offsets in the lip feature coordinates, causing the 
proposed method to lag slightly behind the audio-text 
variant. 

Table. 2 Results of Ablation Experiments 

Methods 
L-LD 

MEAD VoxCeleb2 
Audio-Text Variant 2.36 3.02 
Audio-Emotional 
Portrait Variant 

2.59 3.35 

Proposed Method 2.38 3.05 

The visualization results of the ablation experiment, 
shown in Figure 3, indicate that the audio-text variant 
demonstrates excellent lip-sync performance. However, 
the emotional expressions are limited to the input target, 
demonstrating the necessity of the emotional portrait 
driving factor. On the other hand, the audio-emotional 
portrait variant satisfies the basic lip movements while 
altering the emotional expression of the target portrait. 
However, it also causes some portraits to exhibit excessive 

lip displacement. It may result in blurriness and confusion 
due to over-remodeling facial expressions, as indicated by 
the red box in Figure 3. The experimental results validate 
the effectiveness of the proposed method, which, based on 
emotional portrait-driven facial expression remodelling, 
utilizes the joint driving of audio and text to constrain the 
generation of facial feature coordinates to a certain extent. 
The proposed method improves lip-sync accuracy and 
enhances the video's realism. 

 

Fig. 3 Visualization of ablation experiments
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5. Conclusions 

In response to the challenges posed by facial expression 
reconstruction on lip-syncing, this study proposes a 
multimodal-driven, emotion-controlled facial animation 
generation model. The proposed model is designed to work 
with expressionless target portraits and can produce high-
quality lip-syncing and emotionally responsive facial 
animations driven by audio, text, and emotional portrait 
data. The text features provide contextual and content 
understanding, aiding in predicting audio-driven lip 
movements and avoiding distortions caused by facial 
expression reconstruction. This significantly enhances the 
accuracy of lip-syncing and the realism of the generated 
videos. However, the model currently does not account for 
head pose in facial animations, which represents a 
limitation that will be addressed as one of the research 
goals in future work. 
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★Matrix and vector variable symbols are indicated in bold italics using Times New Roman font: 

Variable Symbol Meaning Remarks 
1:TA  Audio Driving Factor Vector 

E  Text Driving Factor Vector 

EmoP  Facial Feature Coordinates of Emotional Driving Factor Matrix 

IdP  Facial Feature Coordinates of Target Portrait Matrix 

1:TΔP  Predicted Facial Coordinate Offset Sequence Matrix 
1:TQ  Facial Feature Coordinate Sequence of Offset Target Portrait Matrix 

I  Original Image of Target Portrait Matrix 
1:TV  

Final Generated Video Matrix 

1:T
MFCCA  Mel-Frequency Cepstral Coefficients of Audio Driving Factor Vector 

1:T
eF  Text Feature Vector Vector 

1:T
aF  Audio Feature Vector Vector 

1:T
lF  Audio-Text Latent Features Vector 

IdF  Identity Features of Target Portrait Vector 

EmoF  Emotional Features of Emotional Portrait Vector 

tQ  Predicted t  Frame Facial Feature Coordinates Matrix 

ˆ tQ  Reference t  Frame Facial Feature Coordinates Matrix 

ˆ t+1Q  Reference 1t +  Frame Facial Feature Coordinates Matrix 

tV  t  Frame Image of Generated Video Matrix 
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ˆ tV  t  Frame Image of Reference Video Matrix 
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