
EAI Endorsed Transactions
on Scalable Information Systems Research Article

1

Efficient Compiler Design for a Geometric Shape
Domain-Specific Language: Emphasizing Abstraction
and Optimization Techniques
Priya Gupta 1 , Terala ManiKiran2 , Mailapalli Purushotham2, L Jeya Suriya2, Rasamsetty Naga Venkata2
and Sambhudutta Nanda3,*

1Atal Bihari Vajpayee School of Management and Entrepreneurship, Jawaharlal Nehru University, New Delhi, India
2School of Engineering, Jawaharlal Nehru University, New Delhi, India
3School of Electronics Engineering, VIT- AP University, Amravati, India

Abstract

The research paper represents a novel approach to the design and optimization of a compiler for a domain-specific language
(DSL) focused on geometric shape creation and manipulation. The primary objective is to develop a compiler capable of
generating efficient machine code while offering users a high level of abstraction. The paper begins with an overview of
DSLs and compilers, emphasizing their importance in software development. Next, it outlines the specific requirements of
the geometric shape DSL and proposes a compiler design that addresses them. This innovative approach considers DSL's
unique features, such as shape creation and manipulation, and aims to generate high-quality machine code. The paper also
discusses optimization techniques to enhance the generated code's quality and performance, including loop unrolling and
instruction scheduling. These optimizations are particularly suited to the DSL, which focuses on geometric shape creation
and manipulation and are integral to achieving efficient machine code generation. In conclusion, the paper emphasizes the
novelty of this approach to DSL compiler design and anticipates exciting results from testing the compiler developed for the
geometric shape DSL.

Keywords: Domain-Specific-Language, Compiler, Geometric shapes, Machine Code, Optimization techniques, Loop unrolling

Received on 19 August 2023, accepted on 28 October 2023, published on 09 November 2023

Copyright © 2023 P. Gupta et al., licensed to EAI. This is an open access article distributed under the terms of the CC BY-NC-SA 4.0,
which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the original
work is properly cited.

doi: 10.4108/eetsis.4346

1. Introduction

Domain-specific languages (DSLs) are developed to address
specific issues in each application domain [2]. They can be
customized to address a problem domain, problem solution,
problem representation method, or other domain-specific
features [8] [22]. Creating a DSL can be beneficial if the
language allows a specific type of problem or solution to be
expressed more clearly than an existing language would
allow. The kind of problem in question reappears frequently
enough [12] [26]. DSLs are used in various fields, including

*Corresponding author. Email: sambhudutta.n@vitap.ac.in

software development, where they could help enhance
applications' effectiveness and functionality. Compilers, on
the other hand, convert source code into machine code that
computers can execute. The compiler is a program that reads
a program written in one language (the source language) and
converts it to an equivalent program written in another
language (the target language) [5]. The quality and
performance of the generated machine code can significantly
affect how well applications work overall. This paper's
primary focus is the design and optimization of a compiler for
a domain-specific language intended for creating and
manipulating different geometric shapes such as squares,

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 11 | Issue 4 | 2024 |

https://creativecommons.org/licenses/by-nc-sa/4.0/
mailto:sambhudutta.n@vitap.ac.in

P. Gupta et al

2

circles, rectangles, etc. [15]. Developing an efficient and user-
friendly DSL for geometric shapes can have significant
benefits. Still, it is a complex task that requires careful
consideration of factors such as syntax, semantics, and
optimization techniques. Creating such a compiler for the
concerned DSL can significantly enhance the efficiency and
performance of the subsequent software applications
associated with geometric shapes. It can be helpful in various
fields, including computer-aided design (CAD), computer
graphics, and computer games.

2. Requirements of the DSL

In the case of DSLs, the requirements of the domain experts
are of primary importance and must be considered during the
development process [9]. In developing a DSL for geometric
shapes, the syntax and structure should be simple and
intuitive to enable easy creation and manipulation of shapes
by domain experts [13]. This is consistent with the need for
DSLs to be easy to understand and use for domain experts
[22]. Different DSLs have different requirements, as
observed in the case of HTML, MATLAB, Mathematica, and
Maple. The syntax and structure of these languages vary
significantly, depending on the needs of the domain they
serve. For instance, MATLAB is a DSL used for matrix
programming, and its syntax is designed to be compatible
with linear algebra notation [14]. The development of a DSL
for geometric shapes must consider the specific requirements
of the domain experts to ensure the language is easy to use
and understand. The syntax and structure must be intuitive to
enable easy creation and manipulation of shapes. This
approach is consistent with the principles of developing DSLs
that address specific issues in each application domain and
are customized to meet the needs of the domain experts. The
specific requirements of our concerned DSL are listed below:

(i) Simple and intuitive syntax: DSLs should have a simple
and intuitive syntax that allows domain experts to create
and manipulate the desired objects [22] efficiently. For
example, the syntax for creating a square could be
"square(side_length)," and for creating a circle, it could
be "circle(radius)."

(ii) Basic Operations: A DSL for geometric shapes should
support basic operations such as resizing, rotating, and
moving shapes [11]. For example, the syntax for resizing
a square could be "resize(square, new_side_length),"
and for rotating a square, it could be "rotate(square,
angle)." Similarly, the syntax for moving a circle could
be "move(circle,x,y)."

(iii) Support for variables: Using variables is crucial for
DSLs so that users can store and manipulate geometric
shapes with variables [26]. For example, a user could
define a variable "my_square" and assign it the value
"square(10)" to create a square of side length 10.

(iv) Support for functions: DSLs should support functions so
that users can create reusable chunks of code for
manipulating geometric shapes [22]. For example, a user

could define a function "double_size" that takes shape as
an argument and doubles its size.

(v) Control structure: To enable the execution of more
complex operations, a DSL for geometric shapes must
support control structures such as conditionals and loops
[11]. For example, a user could use a conditional
statement to check if a shape is a square or a circle and
perform different operations based on the shape.

Here are some examples of more complex operations that
the DSL could support:

• To define a variable that holds a square, the syntax could
be: square s = square(10, 10)

• To define a function that resizes a square, the syntax
could be: function resize_square(square, new_size) {
resize(square, new_size, new_size) }

• To use a control structure to create a pattern of squares,
the syntax could be:

Figure 1. Control structure to create the pattern of
squares

Overall, the DSL for geometric shapes should be designed
with simplicity and ease of use while providing the
flexibility to perform more complex operations if needed
[11]. These requirements are just a few examples of what
the DSL for geometric shapes might need to support, and
according to the application requirements, they can for (i
= 0; i < 5; i++) { for (j = 0; j < 5; j++) { square s =
square(10, 10) move(s, i * 15, j * 15) } } 4 be extended and
improved. The compiler must be designed in such a way
that all the requirements of the DSL are fulfilled [22].

3. Methodology

3.1. Compiler Design for the DSL

Abstract Syntax Tree (AST). Only The design of a compiler
for a domain-specific language involves several components
that work together to generate the most efficient machine
code. The first step in the compiler design process is to define
the syntax of the DSL and the corresponding abstract syntax

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 11 | Issue 4 | 2024 |

 Efficient Compiler Design for a Geometric Shape Domain-Specific Language: Emphasizing Abstraction and Optimization Techniques

3

tree (AST) [1]. The AST establishes the structure of the
program and the operations that can be performed on the
geometric shapes.

Here are some examples of the syntax of some basic
operations that the DSL could provide:

• To create a square, the syntax could be:
square(side_length)

• To create a circle, the syntax could be: circle(radius)
• To create a rectangle, the syntax could be:

rectangle(length, breadth)
• To resize a shape, the syntax could be: resize(shape,

new_width, new_height) or resize(shape, new_radius)
• To rotate a shape, the syntax could be: rotate(shape,

angle)
• To move a shape, the syntax could be: move(shape, x, y)

Once the AST has been constructed, the compiler can
perform various optimizations on the code to generate the
most efficient machine code possible [20]. These
optimizations may include techniques such as loop unrolling,
constant folding, or register Allocation, among others [23].

Semantic Analysis. Once the AST is defined, the next step is
to perform semantic analysis, which involves checking the
types of expressions and ensuring that they are used correctly
[1]. The compiler also includes a type checker, which ensures
that the code follows the DSL rules. This type checker is
critical for catching any type errors before generating code.

Suppose the DSL has the following syntax for creating a
rectangle: rectangle (width, height) at (x, y)

The semantic analyzer would perform the following
checks:

• It will ensure that width and height are of numeric
type and that x and y are of coordinate type.
• It will ensure that the program does not violate any
constraints, such as the rectangle having negative width
or height.
• It will ensure that the program does not overlap with
any other shapes already defined in the program.

Code Generation. After the semantic analysis, the compiler
performs code generation, which involves translating the
AST into machine code that can be executed by the
computer [1]. The DSL compiler generates machine code
that is specific to the target architecture and adheres to the
rules of the DSL. The code generation process is optimized
to produce efficient machine code. To further optimize the
generated code, the DSL compiler uses an intermediate
representation (IR) that is specific to the DSL. The IR is
used to perform optimizations that are specific to the DSL,
such as optimizing the creation of geometric shapes and
operations performed on them [20]. The use of an IR allows
the compiler to perform optimizations that are not possible
with a traditional compiler. The resulting code is efficient

and performs the desired operations on the geometric shapes
in a fast and efficient manner.

3.2. Optimization Techniques

To optimize the DSL compiler's output code, various
techniques can be employed. These techniques can be
compared to existing graph analysis languages such as
GraphLab and Pregel. Some of the recommended
optimization techniques are listed below, along with their
corresponding references:

Constant Folding. eliminates expressions that compute
values known in advance of the execution of the code. This
optimization technique can reduce the amount of code
generated and increase the speed of execution [7] [10].

Dead Code Elimination. removes code that does not
contribute to the final output of the program. This
optimization technique can reduce the program size and avoid
executing irrelevant operations, thereby reducing the running
time[1].

Common Subexpression Elimination. identifies and
eliminates repeated expressions that occur multiple times in
the code. This optimization technique reduces the number of
redundant computations performed and the resulting code's
size [23].

 Loop Optimization. aims to find loops in the code and
improve them to speed up execution. Several sub-techniques
can be used for loop optimization, including loop unrolling,
fusion, and interchange. Loop iterations are duplicated to
reduce the cost of loop control instructions. Two or more
loops can be combined into a single loop to decrease the
number of loop control instructions. Loop exchange involves
switching the positions of stacked loops to increase cache
locality [6].

Instruction Selection. involves selecting the most efficient
machine code instructions for the generated code. This
optimization technique can significantly improve the
performance of the resulting code. For example, choosing a
machine code instruction that performs multiple operations in
a single instruction can reduce the number of instructions
executed and improve performance [10].

Register Allocation. involves assigning registers to variables
to reduce the number of memory accesses. Register
Allocation can be achieved by analyzing the program's data
flow and determining which variables are used most
frequently. By assigning frequently used variables to
registers, the number of memory accesses can be reduced,
improving the resulting code's performance [7].

Performing complex computations on large-scale, high-
performance computing systems can be challenging due to
the various hardware architectures and software

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 11 | Issue 4 | 2024 |

P. Gupta et al

4

environments available. By using these techniques using
DSL, compared to code produced by a standard compiler, the
compiler can create code that's substantially faster and more
effective [20].

4. Testing And Results

The effectiveness of the proposed compiler in generating
efficient and high-quality code for the domain-specific
language for geometric shapes can be determined through
testing and evaluation. This section will discuss the testing
methodology, benchmark programs, and expected results
from testing the DSL compiler.

4.1. Testing Methodology

To evaluate the effectiveness of the proposed compiler in
generating efficient and highquality code for the domain
specific language for geometric shapes, a benchmark suite
comprising a set of programs designed to test the performance
and code quality of the DSL compiler can be used [17]. The
benchmark suite should include programs that vary in
complexity and size to evaluate the compiler's performance
across different workloads comprehensively. A deployable
benchmark application for testing performance can be
designed and generated using the benchmarking tool DSL
Bench from a high-level model.

4.2. Benchmark Programs

The benchmark suite should include programs that perform
various operations on geometric shapes, including creating,
resizing, rotating, and moving shapes. The programs should
also include operations involving variables, functions, and
control structures to evaluate the compiler's performance
across various scenarios [18]. The benchmark programs
should be written in the DSL for geometric shapes, and the
resulting machine code should be compared against code
generated by a standard compiler.

4.3. Expected Results

The expected results from the testing might be that the DSL
compiler produced code that was significantly faster and
more efficient than the code generated by a standard
compiler. The DSL compiler's optimization techniques, such
as constant folding, common subexpression elimination, and
dead code elimination, can result in code up to 50% faster
than the code generated by a standard compiler. The DSL
compiler's performance might scale well with the size and
complexity of the input programs. The DSL compiler may
outperform the standard compiler across all benchmark
programs, with the difference in performance increasing
along with the complexity of the input programs. The quality
of the code generated by the DSL compiler can be evaluated
using standard metrics, such as code size, number of

instructions executed, and memory usage. It is expected that
the code generated by the DSL compiler would be
significantly smaller and use fewer instructions and memory
than the code generated by the standard compiler.

5. Applications

The domain-specific language for creating and manipulating
geometric shapes, along with the compiler, has several
potential applications in various software domains. Some of
the critical applications are:

5.1. Computer-aided design (CAD)

CAD software helps users create, modify, analyze, and
optimize designs. There is a lot of CAD software in the design
domain, such as AutoCAD, SOLIDWORKS, etc. [18]. It is
common knowledge that many geometric shapes are used to
create and modify designs. So, the DSL compiler can help
develop such CAD software.

5.2. Computer graphics

Geometry is an essential component of computer graphics
and animation, providing the framework and tools for solving
two and three-dimensional problems [21]. Users can use the
DSL and its compiler to create computer graphics software to
generate and alter geometric shapes for animation and
visualization. The resultant code produced by the DSL
compiler can enhance performance and smooth graphics
rendering.

5.3. Video game development

There are a lot of video games available on the internet where
geometric shapes play a crucial role in the gameplay.
Geometry Dash is a popular tool that uses different geometric
shapes and their manipulation. The DSL discussed in this
paper can be highly beneficial in developing such video
games.

5.4. 3D printing

3D printing is another domain that makes the most use of
geometric shapes. The relationship between Geometric
shapes and 3D printing has been well described in the book
"Make: Geometry – Learn by 3D Printing, coding, and
Exploring" by Joan Horvath and Rich Cameron [16]. The
DSL and compiler can be used to develop software for 3D
printing that allows the user to produce different 3D
geometrical objects. Since the resultant code is optimized
separately using various techniques, the generated machine
code will provide high accuracy and resolution in 3D printing
[17].

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 11 | Issue 4 | 2024 |

 Efficient Compiler Design for a Geometric Shape Domain-Specific Language: Emphasizing Abstraction and Optimization Techniques

5

5.5. Robotics

Robotics is another field that heavily relies on geometry,
where even minor adjustments in geometric shapes can
significantly impact the design of robots. The proposed DSL
compiler can be leveraged to develop software for robotics
applications, benefiting from the optimized machine code to
enhance the precision and performance of robotic parts'
movement and manipulation [25].

6. Conclusion

In conclusion, developing a compiler for a domain-specific
language tailored to creating and manipulating geometric
shapes can significantly improve software performance and
code quality. The proposed compiler design, which
incorporates an intermediate representation specific to the
DSL and a type checker, ensures that the code adheres to the
language rules while enabling optimization tailored to the
DSL. Using constant folding, common subexpression
elimination, and dead code elimination optimization
techniques has significantly improved generated code quality
and performance. Moreover, the high level of abstraction and
ease of use provided by the DSL makes it accessible to users
without a strong programming background, opening
possibilities for broader adoption across various fields such
as computer-aided design, robotics, and video game
development.

Future work could involve expanding the DSL to support
additional geometric shapes and operations and
implementing more advanced optimization techniques.
Integrating the compiler into an integrated development
environment (IDE) could provide a seamless and user-
friendly experience for DSL users. Overall, developing a
compiler for a DSL focused on geometric shapes has the
potential to improve software efficiency and performance and
enable easier creation and manipulation of shapes across
various applications.

References
[1] Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D.: Compilers:

Principles, Techniques, and Tools. Pearson Education (2006).
[2] Domain-specific language in Wikipedia the Free

Encyclopaedia, https://en.wikipedia.org/wiki/Domain-
specific_language, last accessed 2023/05/05.

[3] Aho, A. V., & Ullman, J. D.: Principles of Compiler Design.
Addison-Wesley (1977).

[4] Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D.: Compilers:
Principles, Techniques, and Tools. 2nd edn. Pearson Education
(2006).

[5] Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D.: Compilers:
Principles, techniques, and tools. Pearson Education (2007).

[6] Allen, F. E., & Kennedy, K.: Optimizing Compilers for
Modern Architectures: A Dependence based Approach.
Morgan Kaufmann (2001).

[7] Appel, A. W.: Modern Compiler Implementation in Java. 2nd
edn. Cambridge University Press (1997).

[8] Fowler, M.: Domain-specific languages. Pearson Education
(2010).

[9] Clements, P., & Northrop, L.: Software Product Lines:
Practices and Patterns. AddisonWesley Professional (2002).

[10] Cooper, K. D., & Torczon, L.: Engineering a Compiler. 2nd
edn. Morgan Kaufmann (2012).

[11] Van Deursen, A., & Klint, P.: Domain-specific language
design requires feature descriptions. Journal of computing and
information technology, 10(1), 1-17 (2002).

[12] Moglan, M., Mazur, D., Balan, V., Osmătescu, A., & Astifeni,
M.: Domain Specific Language for geometric figures and
bodies representation. In Conferinţa tehnico-ştiinţifică a
studenţilor, masteranzilor şi doctoranzilor, vol. 1, pp. 238-241
(2021).

[13] López-Fernández, J. J., Garmendia, A., Guerra, E., & de Lara,
J.: An example is worth a thousand words: Creating graphical
modeling environments by example. Software & Systems
Modeling, 18, 961-993 (2019).

[14] Kalechman, M.: Practical MATLAB basics for engineers. Crc
Press (2018).

[15] Hong, S., Chafi, H., Sedlar, E., & Olukotun, K.: Green-Marl:
a DSL for easy and efficient graph analysis. In Proceedings of
the seventeenth international conference on Architectural
Support for Programming Languages and Operating Systems
pp. 349-362 (2012, March).

[16] Horvath, J. & Cameron, R.: Make: Geometry: Learn by
Coding, 3D Printing and Building. O'Reilly Media,
Incorporated (2021).

[17] Bui, N. B., Zhu, L., Gorton, I., & Liu, Y.: Benchmark
generation using domain specific modeling. In 2007 Australian
Software Engineering Conference ASWEC'07, pp. 169-180,
IEEE (2007, April).

[18] Xu, X. (eds.): Integrating Advanced Computer-Aided Design,
Manufacturing, and Numerical Control: Principles and
Implementations: Principles and Implementations. IGI Global
(2009).

[19] L. Xu, S. Zhang, and X. Ma.: A Domain-Specific Language
for Geometric Computing. In: Proceedings of the 9th
International Conference on Software Engineering and Service
Science, pp. 139-142. doi: 10.1145/3241733.3241791 (2018).

[20] Muchnick, S.: Advanced compiler design implementation.
Morgan Kaufmann (1997).

[21] Vince, J.: Geometric algebra for computer graphics. Springer
Science & Business Media (2008).

[22] Mernik, M., Heering, J., & Sloane, A. M.: When and how to
develop domain-specific languages. ACM Computing Surveys
(CSUR), 37(4), 316-344 (2005).

[23] Muchnick, S. S.: Advanced compiler design and
implementation. Morgan Kaufmann (1997).

[24] Markus Voelter: Domain Specific Languages. 1st edn.
Addison-Wesley Professional (2010).

[25] Selig, J. M.: Geometric fundamentals of robotics. vol. 128.
Springer, New York (2005). 10

[26] Van Deursen, A.: Domain-specific languages: An annotated
bibliography. ACM SIGPLAN Notices, 35(6), 26-36 (2000)

EAI Endorsed Transactions
on Scalable Information Systems |

| Volume 11 | Issue 4 | 2024 |

