EAIl Endorsed Transactions

on Scalable Information Systems

Research Article EALLEU

An Artifact-Centric Process Mining Approach for

Learning Style Analysis

Jichua LU, Jun LI?

"Dept of Internet of Things Technology, Hangzhou Polytechnic, Hangzhou, Zhejiang, China
Information Engineering College ,Hangzhou Dianzi University , Hangzhou, Zhejiang, China

Abstract

As an integrated discipline encompassing data mining, machine learning, process modeling and analytics, process mining is
increasingly being applied in the field of education and has emerged as a prominent research topic. Traditional business
process modeling approaches, which are primarily based on control flow rather than data flow, exhibit a limited capacity to
capture a holistic view of critical business data within complex business procedures. This study focuses on the impact of]
data-driven process modeling techniques on the performance of analytical models and proposes an artifact-centric process

mining approach for learning style analysis. Based on the artifact life-cycle model, we extracted sequences of data attribute
operations that encapsulate learning style features. The similarity among different data attribute operation sequences was
quantified. The proposed method was evaluated using the OULAD, a benchmark dataset in the learning analytics domain.
Experimental results demonstrate that the method effectively enhances the performance of learning style prediction models,

with SVM and GBoost algorithms outperforming other modeling approaches.

Keywords: Artifact, Process Mining, learning style analysis, Data Attribute Operation sequence, OULAD.

Received on 25 September 2025, accepted on 19 November 2025, published on 26 November 2025

Copyright © 2025 Jiehua LU et al., licensed to EAIL This is an open access article distributed under the terms of the CC BY-NC-SA
4.0, which permits copying, redistributing, remixing, transformation, and building upon the material in any medium so long as the

original work is properly cited.

doi: 10.4108/eetsis. 10390

1. Introduction

In recent years, the rapid development of digital education
has enabled online learning platforms such as MOOCs and
LMS to accumulate a wvast amount of accessible
educational data. This availability of data offers new
opportunities to analyze students’ behavioral patterns and
learning processes. As a result, learning analytics (LA) has
emerged as a significant field within educational research.
LA encompasses “the measurement, collection, analysis,
and reporting of data related to learners and their contexts”,
with the goal of enhancing the understanding of learning
processes and improving the environments in which they
occur[l]. It is closely connected to academic analytics,
action analytics, and predictive analytics. Since the concept
of LA was formally introduced in 2011, it has developed
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into an interdisciplinary domain that combines educational
theory, data science, and artificial intelligence [2]. Over
recent years, the use of learning analytics in online
educational settings has attracted growing interest from
researchers, with the analysis of learning styles becoming
one of the prominent areas of investigation [3].

The digital transformation of learning environments is
driving a shift in learning style identification from static
questionnaires toward dynamic, data-driven
methodologies. Accordingly, the data-driven identification
and application of learning styles have become a central
focus and a growing trend in learning analytics research.
Traditional learning styles theory, due to its reliance on
static questionnaires and self-reported data, suffers from
inherent limitations in capturing dynamic and
contextualized learning processes. These limitations hinder
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its adaptation to digital learning environments and pose
significant challenges to its predictive validity. The
evolution in business process modeling from a "control-
centric" to a "data-first" paradigm provides a new
methodological pathway to address this dilemma. This
shift moves the field from static inferences based on
discrete surveys and subjective judgments toward a
process-oriented characterization based on continuous
behavioral logs and objective data, thereby establishing a
viable path to fundamentally enhance the precision and
timeliness of learning style analysis.

Building upon this premise, this study proposes an
artifact-centric process mining framework for learning
style analysis that coherently integrates data and process
perspectives. Guided by the artifact life-cycle model, we
extracted sequences of data attribute operations that embed
learning style features. The similarity between these
sequences was then measured to facilitate subsequent
analysis. We conducted experiments using the Open
University Learning Analytics Dataset (OULAD). Several
algorithms, including GBoost, Random Forest, Logistic
Regression, Support Vector Machine, and K-Nearest
Neighbors, were employed to construct predictive models.
Results indicate that the proposed approach significantly
enhances the accuracy of learning style prediction.

The remainder of this paper is organized as follows.
Section 2 reviews related work. Section 3 describes the
methodology of the proposed framework. Section 4 details
the artifact-centric learning process modeling. Section 5
presents the learning style analysis algorithms based on the
artifact life-cycle. Section 6 provides the experimental
results and discussion. Finally, Section 7 concludes the
paper and outlines future work.

2. Related work

This section opens with a survey of recent studies
addressing various methods for analyzing students’
learning styles in online learning environments.
Subsequently, it examines current research trends within
the domain of educational process mining.

2.1. Learning style analysis

With the development and growing maturity of online
learning environments, which facilitate the large-scale
collection of behavioral data, learning style analysis has
garnered significant scholarly interest. The concept of
learning style was first proposed by Herbert Thelen in 1954,
referring to the distinctive personal characteristics that
learners display when interacting with learning tasks [3].
Since its introduction, numerous related theories and
models have emerged.

Classical learning style models—such as Kolb, FSLSM,
and VARK—have been extensively applied and continue
to evolve within online learning environments. Kolb’s
Learning Styles theory classifies learners into four distinct
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categories: converging, diverging, assimilating, and
accommodating [4]. FSLSM evaluates learning styles
through four dimensions: information processing,
perception, input, and understanding [5]. Among the most
widely adopted frameworks in online education is the
VARK model, which categorizes learning preferences into
four sensory modalities: visual, auditory, reading/writing,
and kinesthetic [6].

The digital transformation of learning environments is
shifting learning style identification from static
questionnaires to dynamic, data-driven approaches.
Traditional theory's dependence on static data is
fundamentally inadequate for modeling dynamic and
contextualized learning, severely limiting its predictive
power and applicability in contemporary educational
settings. Consequently, data-driven identification and
application of learning styles have become a major focus
and emerging trend in learning analytics. On the one hand,
researchers are increasingly turning to analysis techniques
such as data mining, neural networks, and heuristic rule-
based methods to analyze learning behaviors captured in
online educational settings [7-9]. A significant challenge
in this area, however, stems from the prevalence of
unstructured data—such as text, images, audio, and
video—which tend to be heterogeneous and incomplete.
This complicates subsequent processes of data fusion,
analysis, and interpretation [10]. On the other hand,
advancements in business process modeling, which serves
as a foundational framework for building learning style
analysis systems, pave the way for capturing and analyzing
behavioral feature data through process mining techniques.

2.2. Educational process mining

Serving as a bridge between data science and process
science [11], Process Mining (PM) has been widely
adopted across various sectors such as manufacturing and
finance to improve overall performance. In the educational
domain, the application of PM, referred to as Educational
Process Mining (EPM), constitutes a specialized branch
[12-13].

Educational Process Mining (EPM) applies data mining
to historical educational data to analyze behavior and
predict performance, while simultaneously constructing
process models from event logs to generate insights for
education management[14]. The primary technique
involves discovering clear process models from event logs
recorded by online learning platforms like MOOCs and
LMS. The resulting models can accurately reconstruct
learners' knowledge acquisition paths, map their resource
interactions, and clarify their strategic choices, thereby
revealing implicit behavioral patterns and learning
characteristics. EPM provides an innovative approach to
learning style analysis. By employing process mining on
educational datasets, several studies have identified
learning behavior patterns and developed predictive
models based on historical learning behaviors [15-17].
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Within EPM, the process occupies a central role, process
modeling is essential to overall performance [18].
Traditional process modeling approaches are primarily
based on control flow rather than data flow, which limits
their ability to capture a comprehensive view of critical
business data within complex procedures. Currently,
business process modeling has shifted from a process-
centric(control-centric) view to a data-centric(data-first)
perspective. A representative example of this evolution is
the emergence of artifact-centric approaches to business
process modeling [19-20]. An artifact is defined as a
specific, identifiable, and self-descriptive unit of
information within a process that encapsulates all data
necessary for process completion [21]. Artifact-centric
business process models emphasize business-relevant data
objects and their lifecycles, placing particular focus on the
data aspects of processes [22]. Currently, some researchers
analyze learning-generated artifacts to evaluate both
learner behaviors and external interventions, thereby

informing their understanding of learning processes[23-25].

In summary, the adoption of artifact-centric process
mining enhances the efficiency of extracting meaningful
learning information, leading to improved understanding of
learning activities, more effective analysis of learning
styles, and more accurate recommendation generation.
Within this approach, artifacts encapsulate relevant data
objects and their lifecycles, recording which tasks trigger
state transitions in the data. The entire business process
model—including its design, analysis, and system
implementation—revolves around these artifacts. This
methodology offers a novel solution to the aforementioned
challenges in learning analytics: unstructured learning style
data can be standardized and encapsulated within
corresponding artifacts, while personalized learning styles
can be tracked by monitoring the lifecycle of each
individual artifact.

3. Methodology

This section delineates the methodology for developing
an  artifact-centric  process model for online
learning(ACPM-OL), which serves as the core analytical
framework for our learning style analysis. The architecture,
as illustrated in fig. 1, comprises three sequential stages: (1)
Learning Feature Extraction and Artifact Definition, (2)
Artifact-Centric Model Construction, and (3) Learning
Style Analysis.

3.1 Learning feature extraction and artifact
definition

The process initiates with data preprocessing and feature
engineering using the OULAD dataset. A set of pivotal
learning features was selected to define the data attributes
of our core artifacts. For instance, features related to
learning interactions—such as sum_click (total
interactions), activity type, and temporal markers
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(day_from, day to)—were mapped directly to define the
Interactive Artifact (see Table 1 for a complete listing).
Similar procedures were applied to define the StudentInfo
Artifact and Assessment  Artifact, ensuring all data
attributes are grounded in the observable learning
behaviors from the dataset.

Artifact information model
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Fig.1. Artifact-centric process mining approach for
learning style analysis model

3.2. Artifact-centric model construction

Subsequently, the ACPM-OL was formally constructed as
a tuple (A, L, R), where A is a set of artifact classes, L is a
set of learning activities, and R is a set of business rules
(see Section 4 for formal definitions). For each artifact
class, a finite-state machine was designed to represent its
lifecycle, capturing the permissible sequence of states (S)
triggered by learning activities. Business rules (A, B,
L) were then formulated to explicitly link these activities to
state transitions. This structured approach transforms raw
event data into a formal, executable process model.

3.3. Learning style analysis based on artifact
lifecycles

The final stage leverages the constructed ACPM-OL for
learning style analysis. We propose a novel similarity
metric that operates on artifact lifecycle instances.
Specifically, for each student, we extract the sequence of
data operations (O) from their artifact lifecycles (as per
Definition 6). The similarity between two students is
computed based on the normalized compression distance
(NCD) between their respective data operation sequences.
This method effectively captures behavioral patterns
encoded in the artifact state transitions. The resulting
similarity matrix is then clustered using the K-means
algorithm and others to identify distinct learning style
groups, which are subsequently cataloged in a learning-
style dictionary.
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4. Artifact-centric learning process
modeling

This section presents a method for artifact-centric learning
process modeling and introduces an artifact-oriented view
for data-centric online learning processes. The relevant
formal definitions are established herein.

4.1. An artifact view for business processes

In the artifact-centric learning process model, an artifact
refers to a data entity that participates in the learning
process. Each artifact comprises a set of data attributes and
distinct states. Transitions between states are triggered by
predefined business rules. The progression of an artifact
from its initial state to its final state constitutes its lifecycle.
Throughout this lifecycle, data attributes are continuously
read, updated, inserted and deleted in response to learning
behaviors.

Definition 1: Artifact Class. An artifact class represents
a category of artifacts that share common data attributes
and state configurations. Formally, an artifact class A is
defined as a tuple (A, S), where:

— A={ay,as,...,ap}, a;(1 £ i < n) is an data attribute;

— S={51,S2,---,Sm}, Si(1 < i < m) is a state.

For example, Table 1 presents the data attributes of the
interactive artifact within the learning process.

Table 1. Data attributes and descriptions of
interactive artifact

Attribute Description

A unique identifier for the instance of

ID_Interactive . . . .
- interactive learning behavior

ID_Stu A unique student identifier

A unique identifier for the VLE

ID_Site !
material

The role type assigned to the

Activity_Type material during student interaction

The start date of the material's

Day_from

current use

The end date of the material's
Day_to

current use

The total count of student
Sum_Click interactions of the material's current

use

Definition 2: Artifact instance. Given artifact class A,
we use a four tuple(id,A,s,a) to express one operate
instance of this class, id is the unique identifier for this
instance, s is current state, a={a;,a,,...,a,} denote each
data attribute’s value of current state.

Definition 3: Learning activity. A learning activity
refers to a data operation within an online learning context
that consumes input from one or more artifacts and
generates an output through the modification of artifact
states.

Definition 4: Business rules. Business rules provide
explicit representations of the internal business logic within
a learning process. Business rule R can be defined as a
triple (A,B,L) where, A and B denote the pre-condition and
post-condition respectively—representing the input and
output data of the rule—that collectively trigger its
execution, and L corresponds to a learning activity to be
carried out.

Each business rule encapsulates a segment of the
business processes in online learning, specifying which
learning behavior is activated and which artifact states are
altered, based on specified pre- and post-conditions. A
single learning behavior may trigger multiple business
rules and involve several artifacts.

Table 2 presents a business rule refers to changes of
states of multiple artifacts. The rule R1 changes for the
Studentinfo artifact from the course selected state to the
VLE interactived state, and simultaneously changes from
the started state to the finished state for the Interactive
artifact.

Table 2. Example of a business rule involving
multiple artifacts

rule name R1

related artifacts Studentinfo, Interactive

Instate(Studentinfo, course selected)
Read(Studentinfo.current_course)
A(pre-condition)  Read(Studentinfo.|D_stu)
Instate(Interactive , started)
Read(Interactive .ID_site)

Instate(Studentinfo, VLE interactived)
Insert(Studentinfo.ID_Site)
Instate(Interactive, finished)

B(post- update(Interactive.ID_stu)

condition) update(Interactive.activity_type)
update(Interactive.day_from)
update(Interactive.day_to)
update(Interactive.sum_click)

L(ngrnlng An interaction with a learning resource

activity)

Definition 5: Artifact-Centric Process Model for Online
Learning, ACPM-OL. We use a triple-tuple (Z,L,R) to
express it, where:

— 7Z={7,,2,,..,Z2,}, Z;(1<i<n) is a Artifact
instance associated with this process;

— L={L;,Ly,....,Lh}, Li(1 £i<m) is a learning
activity for reading or writing operations in Artifact
attributes data;
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— R={Rj,R,,...,Rk}, Rj(1 £i < k) is a business rule
which trigger data interaction and Artifact state transition.

fig. 2 illustrates the interactive learning process from an
artifact-oriented perspective within an online learning
environment, as part of the ACPM-OL. The process
involves three artifacts: the StudentInfo Artifact, the
Interactive Artifact, and the Assessment Artifact. Each
rounded rectangle represents a state of an artifact instance,
and each arrow indicates a business rule that corresponds
to a state transition. Hollow arrows denote business rules
that involve multiple artifacts. As shown, rule R1 triggers
simultaneous state transitions in both the StudentInfo
Artifact and the Interactive Artifact. Concurrently,
corresponding data operations are activated—updating
student information data stored in the StudentInfo Artifact
and recording VLE interaction data within the Interactive
Artifact.

Student Information Data
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Fig.2. An Artifact view of learning interactive process

4.2. Artifact life-cycle

Each artifact possesses a lifecycle that depicts the
evolution of its states throughout the learning process.
During the Artifact life-cycle, data attributes will perform
corresponding data operations on each state change.
Meanwhile, due to the complex control structure of the
business process, the same data attribute may be recorded
synchronously in multiple artifacts.

Definition 6: Artifact Life-cycle Schema. An Artifact
Life-cycle Schema provides a formal representation of the
state transitions inherent to an artifact class, we use a triple-
tuple (Z,T,0) to express it, where:

— Z is a artifact instance of artifact A, which holds its
current state and values of data attributes.

— T represents an ordered set comprising all activities
within a given artifact instance and serves as a ternary
transition relation. TS A.S X A.R X A.S. A transition t=(s;,
1j, sk)ET indicates that the artifact instance transitions from
a source state s; to a target state sywhen the precondition of
business rule r; is satisfied.

— O represents the data operation performed by activity,
An operation o=(dm, tn, p) represents the data operation p
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performed by activity tn on the artifact’s data attribute dm ,
where p € {read, write, add, remove}.

The operations on data attributes triggered by learning
activities can form a ordered data operation sequence,
which also contains the behavioral characteristics of
learning processes. Different learning activities create
different artifact instances and generating different data
operation sequences. Therefore, by extracting the data
operation sequence of each artifact in ACPM-OL, the
learning process can be decomposed into a set of sequences
of data attribute operations.

fig. 3 shows the life-cycle schema of the interactive
artifact. In the figure: t0, t1 represent the names of activities;
below the activity name are the corresponding data
operations. The bottom of the figure is the data slots for
information gathered as an interactive artifact instance
evolves, including the change of status attributes and
details of learning behavior data attributes. During the
evolution of learning activities, corresponding data
operations are recorded in these data slots. Consequently,
given the action trajectory of an artifact instance, the
corresponding data operation sequence can be extracted

from the Life-cycle Schema.

to t1
Add(ID_interactive) Write(Activity_type)
Read(D stu) | *| Write(Day fom) |
Write(sum_click)
Sum Click | ..

[interaciived | .. ] ID_interactive | 1D_stu | Acvity_Type |

Status attributes Learning behavior data attributes

Fig.3. Life-cycle Schema of ACPM-OL.: the
interactive artifact

5. learning style analysis based on
artifact life-cycle

In this section, learning styles are analyzed and predicted
based on the artifact life-cycle model by comparing
similarities among data attribute operation sequences that
contain learning style features.

5.1. Similarity calculations

As previously described, each artifact possesses a lifecycle
that depicts the sequence of activities and associated state
changes throughout the learning process. There are certain
dependencies between the states of different artifacts, the
state transitions may be triggered simultaneously by a
certain business rule. By using the artifact-centric
choreograph approach[26], the states of different artifacts
are captured and combined to form a complex state
transition graph.

Based on the life-cycle schema of ACPM-OL, as
learning activities evolve, the corresponding state
transitions and data operations are recorded. Hence each
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activity sequence has an equivalent state transition
sequence and the corresponding data operation sequence .

Suppose that ;and 3, are two activity sequences, use
formula 1 to calculate their status similarity.

. equal(1B11IB21)
sim_stat( B4, B2) = < et 620 (1)

Where equal(|B,],|B8,]) denotes the number of
matching states at corresponding positions in the two state
sequences, max(|f], |B,|) refers the maximum number
of states contained in the two state sequences.

use formula 2 to calculate their transfer similarity.

. __ common(|B1],1B2])
sim_tran(By, B2) = tran(|B1])+tran(|B2) @)

Where common(|B], |B2]) refers to the frequency of
identical state transition events occurring in both sequences,
tran(|B;|)+tran(|B,|) represents the total number of state
transitions in [3; and f3,.

use formula 3 to calculate their data attributes similarity.

. 3K | adapt(B1l,1B2])
sim_att(B,B;) = ”f 3)

Where K is the number of data operations that read the
same data attributes and performed the same data operation
type, adapt(|B;l,|Bz|) is the semantic similarity of
attribute assignment statements.

The similarity of activity sequences between 3; and 3,
is derived by the combination of status similarity, transfer
similarity and data attributes similarity, and its calculation
formula is as follows:

sim(B4, B2) = w, X sim_stat(By, B2) + w, X
sim_tran(B4, B,) + w3 X sim_att(B4, B,) 4)

where w;, w,, and w5 are weighting coefficients that
sum to 1, with each being greater than or equal to zero.

5.2. Learning style assessment

Online learning generates a large amount of learning
behavior data. In ACPM-OL, each learning behavior of
every learner will produce a activity sequence, which
constitutes their learning activity sequence set. If there are
many activity sequences with high similarity in the activity
sequence set of two learners, then these two learners have
similar learning interest preferences and can be defined as
having the same learning style.

Learning behaviors vary not only across different
students but also within the same student over time. The set
of learning activity sequences is often highly complex, with
multiple potential paths from the initial to the final activity.
Therefore, the evaluation of learning styles must
incorporate temporal factors.

To assess the learning styles of two students (denoted as
Si and S2), the process consists of the following steps:

1. Extract all learning activity sequences for Si and S;

2. Calculate the frequency of each learning activity
sequence. The most frequently occurring sequence is
designated as the key activity sequence, denoted as (34, 35,
while the remaining sequences are classified as ordinary
activity sequences , denoted as B;', B,";
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3. Partition the ordinary activity sequences
into N comparison groups according to time intervals,
labeled as (By;', Byi'), where 1 <i<N;

4. Compute the similarity between the key activity
sequence and each ordinary activity sequence group using
Formula 4

5. Determine the similarity between the learning styles
of the two students using Formula 5.

sim(Sy, S;) = w; X sim(By, B2) +w, X
%N, sim(B1ir,2ir)xfd(ti) 5
max(|B1/].IB21]) )

Where w4, w, represent the weights of the key activity
sequence and ordinary activity sequences respectively.
Since the key activity sequence generally has a greater
impact, so w; > w,;fd(ti) is a time decay factor, where
more recent activity sequences receive larger values;
max(|B;'],IB2']) is the sum of all ordinary activity
sequences.

6. Experiment and evaluations

In this section, we assessed the efficacy of the artifact-
centric learning process modeling approach on the
benchmark dataset OULAD.

6.1. Dataset

Datasets serve as foundational components in data science
and machine learning, with representative and diverse data
being essential for both educational data mining and
learning analytics.

Widely regarded as one of the benchmark datasets in the
field of learning analytics, OULAD’s key feature is its
combination of student demographic details with
aggregated clickstream records from VLE interactions,
which supports behavioral analysis of learning processes
through fine-grained action data [27-28]. Originating from
a curated subset of student records at the Open University
UK (OUUK), OULAD encompasses seven distinct courses
presented over several semesters. It incorporates
demographic profiles and assessment scores for more than
30,000 students, along with detailed VLE interaction logs
that compile daily click events—totaling over 10 million
entries.

OULAD has been extensively used in educational data
mining and learning analytics research, particularly in the
development of predictive modeling frameworks [29]. The
dataset offers a comprehensive range of educational
variables, including demographic attributes, academic
performance indicators, and behavioral traces such as click
patterns, activity types, time engaged, and access
frequency.

6.2 Preprocessing of data

OULAD consists of seven relational tables. But the dataset
doesn’t meet artifact's data collection requirements and
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cannot be directly used by any machine learning algorithm.
Data cleaning and integration were first performed to
manage missing values and mitigate the impact of outliers.
Second step, extract learning features by feature
engineering and aggregate various features by id_student.
The corresponding data attributes of artifacts are set on the
basis of these features. Third step, according to the
characteristics of artifacts’ data attributes, the relational
tables were aggregated and merged into a dataset that can
be processed by ACPM-OL.

After merging the data, scaling and encoding procedures
were applied. Scaling normalizes features to a [0, 1] range
to ensure comparability across different units and
magnitudes, while encoding transforms categorical
features into numerical representations compatible with
machine learning models. Subsequently, applied the K-
means algorithm to cluster the pre-processed dataset. By
using a feature selection algorithm based on the improved
elbow method and silhouette coefficient, the optimal K
value was selected and the data was pre-grouped. After data
preprocessing, seven relational tables are condensed and
converted into three artifact tables.

6.3 Result and discussion

The data of OULAD is widely utilized to the research
on learning analytics, expecially focused on predictive
modeling. The modeling algorithms predominantly
employed include Logistic Regression, K-Nearest
neighbour, random forest, Gradient-Boosted Tree[30-33].

Instead of using raw OULAD, The data preparation
process produced a artifact-centric information model
(ACPM-OL) which was more suitable for learning style
analysis, especially for predictive models. The experiment
is carried out led by the two research questions that were
defined:

1. Does the ACPM-OL approach significantly enhance
the predictive accuracy of learning style models compared
to using the original dataset?

2. Among classical predictive modeling algorithms
applied within the ACPM-OL framework, which one
achieves the highest performance in predicting students’
learning styles?

To address these questions, a series of experiments were
conducted.

For the first research question, an experimental scenario
was designed. The GBoost algorithm was employed as the
classifier. Both the raw OULAD dataset and the ACPM-
OL processed dataset were used as inputs. Two
experimental trials were conducted using 80% to 90% of
each student's data for training, with the remaining 10% to
20% reserved for testing. All three evaluation metrics were
applied to assess model performance.

Table 3. GBoost Model performance under different
input data

2 EA

InfoModel -prf:'ttilzzo g;ecisi recall sf::;re
Raw 10% 0.87 0.89 0.88
Raw 20% 0.85 0.83 0.86
ACPM-OL 10% 0.96 0.98 0.97
ACPM-OL 20% 0.96 0.93 0.94

Table 3 presents the experimental results obtained with
different information models and varying test set sizes. The
choice of information model is shown to significantly
influence the predictive performance of the model. ACPM-
OL model improves the data quality of the prediction
model, significantly improving precision, recall, Flscore.
The stability of the prediction model is also enhanced,
when the proportion of test set changes significantly, the
performance index does not fluctuate greatly.

GBoost:Raw OULAD GBoost:ACPM-OL

Fredicted Predicted

Fig.4. Confusion Matrix Heatmap of the GBoost
model under different input data

Fig. 4 displays the confusion matrix heatmap. The left
panel corresponds to prediction results using the raw
OULAD dataset, while the right panel shows results
obtained with the ACPM-OL processed data. This study
considers four predefined learning styles. The diagonal
entries indicate the number of correctly classified instances,
and it is clearly evident that the model exhibits improved
predictive accuracy when using the ACPM-OL framework.

Table 4. Model performance
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Model TrainAc TestAcc TrainF1 TestF1s
curacy uracy score core
SVM 0971429 0934140 0970735 0.933397

GBoost 1.000000 0.928763  1.000000  0.927910

Random

0.908571 0912634  0.906147  0.911465
Forest

Logistic
Regressi  1.000000 0909946  1.000000  0.911040

on

KNN 0.830588  0.803763  0.823860  0.799008

For the second research question, a corresponding
experimental scenario was constructed. The ACPM-OL
dataset was used as input, the dataset was partitioned into
a training set (90%) and a test set (10%) using a random
stratified split. This approach ensures that the distribution
of the target variable (i.e., the learning styles) is consistent
across both subsets. The random seed was set to 42 for
reproducibility. GBoost and other four -classification
algorithms were employed. As shown in Table 4, the SVM
algorithm achieved the highest performance, with an
accuracy of 93.4% and the highest Fl-score. In contrast,
the KNN algorithm significantly —underperformed
compared to the other models. Although the
parameter n_neighbors was  tuned, no  substantial
improvement was observed.

ROC curves for different prediction models based on ACPM-OL

True Posilive Rate

LogisticRegression ACPM-OL(area = 0.93)

— VM ACPM-OL{area = 0.95)

—— GBoost ACPM-OL(area = 0.85)
a

Fig.5. ROC curves for different prediction models
based on ACPM-OL

The ROC curve serves as a widely used and intuitive
metric for evaluating model performance. fig. 5 presents

the ROC curves of the five models mentioned above. All
curves lie close to the top-left corner, indicating high true
positive rates with low false positive rates, which suggests
good classification capability. Among them, SVM and
GBoost achieved the highest AUC values, both reaching
0.95, demonstrating superior overall discriminative ability.

7. Conclusion and future work

This study examines the impact of data-driven process
modeling techniques on predictive performance by
proposing an artifact-centric process mining approach.
Based on the artifact life-cycle model, learning styles were
analyzed and predicted by measuring similarity among
sequences of data operations that encapsulate learning style
features. OULAD was used for experimental validation.
Results demonstrate that the proposed method significantly
enhances the performance of learning style prediction
models. Among the evaluated algorithms, SVM and
GBoost exhibited superior predictive accuracy compared
to other models. The multidimensional, continuous nature
of the Felder-Silverman model aligns well with digital
learning environments, while the VARK model offers
unique utility for connecting with multimodal resources.
Therefore, our future work will establish FSLSM as the
core framework, integrating VARK to enhance our
analytical dimensions and achieve more precise, dynamic
learning style predictions.
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