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Abstract 

As an integrated discipline encompassing data mining, machine learning, process modeling and analytics, process mining is 
increasingly being applied in the field of education and has emerged as a prominent research topic. Traditional business 
process modeling approaches, which are primarily based on control flow rather than data flow, exhibit a limited capacity to 
capture a holistic view of critical business data within complex business procedures. This study focuses on the impact of 
data-driven process modeling techniques on the performance of analytical models and proposes an artifact-centric process 
mining approach for learning style analysis. Based on the artifact life-cycle model, we extracted sequences of data attribute 
operations that encapsulate learning style features. The similarity among different data attribute operation sequences was 
quantified. The proposed method was evaluated using the OULAD, a benchmark dataset in the learning analytics domain. 
Experimental results demonstrate that the method effectively enhances the performance of learning style prediction models, 
with SVM and GBoost algorithms outperforming other modeling approaches. 
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1. Introduction

In recent years, the rapid development of digital education 
has enabled online learning platforms such as MOOCs and 
LMS to accumulate a vast amount of accessible 
educational data. This availability of data offers new 
opportunities to analyze students’ behavioral patterns and 
learning processes. As a result, learning analytics (LA) has 
emerged as a significant field within educational research. 

LA encompasses “the measurement, collection, analysis, 
and reporting of data related to learners and their contexts”, 
with the goal of enhancing the understanding of learning 
processes and improving the environments in which they 
occur[1]. It is closely connected to academic analytics, 
action analytics, and predictive analytics. Since the concept 
of LA was formally introduced in 2011, it has developed  
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into an interdisciplinary domain that combines educational 
theory, data science, and artificial intelligence [2]. Over 
recent years, the use of learning analytics in online 
educational settings has attracted growing interest from 
researchers, with the analysis of learning styles becoming 
one of the prominent areas of investigation [3]. 

The digital transformation of learning environments is 
driving a shift in learning style identification from static 
questionnaires toward dynamic, data-driven 
methodologies. Accordingly, the data-driven identification 
and application of learning styles have become a central 
focus and a growing trend in learning analytics research. 
Traditional learning styles theory, due to its reliance on 
static questionnaires and self-reported data, suffers from 
inherent limitations in capturing dynamic and 
contextualized learning processes. These limitations hinder 
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its adaptation to digital learning environments and pose 
significant challenges to its predictive validity. The 
evolution in business process modeling from a "control-
centric" to a "data-first" paradigm provides a new 
methodological pathway to address this dilemma. This 
shift moves the field from static inferences based on 
discrete surveys and subjective judgments toward a 
process-oriented characterization based on continuous 
behavioral logs and objective data, thereby establishing a 
viable path to fundamentally enhance the precision and 
timeliness of learning style analysis. 

Building upon this premise, this study proposes an 
artifact-centric process mining framework for learning 
style analysis that coherently integrates data and process 
perspectives. Guided by the artifact life-cycle model, we 
extracted sequences of data attribute operations that embed 
learning style features. The similarity between these 
sequences was then measured to facilitate subsequent 
analysis. We conducted experiments using the Open 
University Learning Analytics Dataset (OULAD). Several 
algorithms, including GBoost, Random Forest, Logistic 
Regression, Support Vector Machine, and K-Nearest 
Neighbors, were employed to construct predictive models. 
Results indicate that the proposed approach significantly 
enhances the accuracy of learning style prediction. 

The remainder of this paper is organized as follows. 
Section 2 reviews related work. Section 3 describes the 
methodology of the proposed framework. Section 4 details 
the artifact-centric learning process modeling. Section 5 
presents the learning style analysis algorithms based on the 
artifact life-cycle. Section 6 provides the experimental 
results and discussion. Finally, Section 7 concludes the 
paper and outlines future work. 

2. Related work

This section opens with a survey of recent studies 
addressing various methods for analyzing students’ 
learning styles in online learning environments. 
Subsequently, it examines current research trends within 
the domain of educational process mining. 

2.1. Learning style analysis 

With the development and growing maturity of online 
learning environments, which facilitate the large-scale 
collection of behavioral data, learning style analysis has 
garnered significant scholarly interest. The concept of 
learning style was first proposed by Herbert Thelen in 1954, 
referring to the distinctive personal characteristics that 
learners display when interacting with learning tasks [3]. 
Since its introduction, numerous related theories and 
models have emerged.  

Classical learning style models—such as Kolb, FSLSM, 
and VARK—have been extensively applied and continue 
to evolve within online learning environments. Kolb’s 
Learning Styles theory classifies learners into four distinct 

categories: converging, diverging, assimilating, and 
accommodating [4]. FSLSM evaluates learning styles 
through four dimensions: information processing, 
perception, input, and understanding [5]. Among the most 
widely adopted frameworks in online education is the 
VARK model, which categorizes learning preferences into 
four sensory modalities: visual, auditory, reading/writing, 
and kinesthetic [6]. 

The digital transformation of learning environments is 
shifting learning style identification from static 
questionnaires to dynamic, data-driven approaches. 
Traditional theory's dependence on static data is 
fundamentally inadequate for modeling dynamic and 
contextualized learning, severely limiting its predictive 
power and applicability in contemporary educational 
settings. Consequently, data-driven identification and 
application of learning styles have become a major focus 
and emerging trend in learning analytics. On the one hand, 
researchers are increasingly turning to analysis techniques 
such as data mining, neural networks, and heuristic rule-
based methods to analyze learning behaviors captured in 
online educational settings [7–9]. A significant challenge 
in this area, however, stems from the prevalence of 
unstructured data—such as text, images, audio, and 
video—which tend to be heterogeneous and incomplete. 
This complicates subsequent processes of data fusion, 
analysis, and interpretation [10]. On the other hand, 
advancements in business process modeling, which serves 
as a foundational framework for building learning style 
analysis systems, pave the way for capturing and analyzing 
behavioral feature data through process mining techniques. 

2.2. Educational process mining 

Serving as a bridge between data science and process 
science [11], Process Mining (PM) has been widely 
adopted across various sectors such as manufacturing and 
finance to improve overall performance. In the educational 
domain, the application of PM, referred to as Educational 
Process Mining (EPM), constitutes a specialized branch 
[12–13]. 

Educational Process Mining (EPM) applies data mining 
to historical educational data to analyze behavior and 
predict performance, while simultaneously constructing 
process models from event logs to generate insights for 
education management[14]. The primary technique 
involves discovering clear process models from event logs 
recorded by online learning platforms like MOOCs and 
LMS. The resulting models can accurately reconstruct 
learners' knowledge acquisition paths, map their resource 
interactions, and clarify their strategic choices, thereby 
revealing implicit behavioral patterns and learning 
characteristics. EPM provides an innovative approach to 
learning style analysis. By employing process mining on 
educational datasets, several studies have identified 
learning behavior patterns and developed predictive 
models based on historical learning behaviors [15–17]. 
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Within EPM, the process occupies a central role, process 
modeling is essential to overall performance [18]. 
Traditional process modeling approaches are primarily 
based on control flow rather than data flow, which limits 
their ability to capture a comprehensive view of critical 
business data within complex procedures. Currently, 
business process modeling has shifted from a process-
centric(control-centric) view to a data-centric(data-first) 
perspective. A representative example of this evolution is 
the emergence of artifact-centric approaches to business 
process modeling [19-20]. An artifact is defined as a 
specific, identifiable, and self-descriptive unit of 
information within a process that encapsulates all data 
necessary for process completion [21]. Artifact-centric 
business process models emphasize business-relevant data 
objects and their lifecycles, placing particular focus on the 
data aspects of processes [22]. Currently, some researchers 
analyze learning-generated artifacts to evaluate both 
learner behaviors and external interventions, thereby 
informing their understanding of learning processes[23-25]. 

In summary, the adoption of artifact-centric process 
mining enhances the efficiency of extracting meaningful 
learning information, leading to improved understanding of 
learning activities, more effective analysis of learning 
styles, and more accurate recommendation generation. 
Within this approach, artifacts encapsulate relevant data 
objects and their lifecycles, recording which tasks trigger 
state transitions in the data. The entire business process 
model—including its design, analysis, and system 
implementation—revolves around these artifacts. This 
methodology offers a novel solution to the aforementioned 
challenges in learning analytics: unstructured learning style 
data can be standardized and encapsulated within 
corresponding artifacts, while personalized learning styles 
can be tracked by monitoring the lifecycle of each 
individual artifact. 

3. Methodology

This section delineates the methodology for developing
an artifact-centric process model for online 
learning(ACPM-OL), which serves as the core analytical 
framework for our learning style analysis. The architecture, 
as illustrated in fig. 1, comprises three sequential stages: (1) 
Learning Feature Extraction and Artifact Definition, (2) 
Artifact-Centric Model Construction, and (3) Learning 
Style Analysis. 

3.1 Learning feature extraction and artifact 
definition 

The process initiates with data preprocessing and feature 
engineering using the OULAD dataset. A set of pivotal 
learning features was selected to define the data attributes 
of our core artifacts. For instance, features related to 
learning interactions—such as sum_click (total 
interactions), activity_type, and temporal markers 

(day_from, day_to)—were mapped directly to define the 
Interactive Artifact (see Table 1 for a complete listing). 
Similar procedures were applied to define the StudentInfo 
Artifact and Assessment Artifact, ensuring all data 
attributes are grounded in the observable learning 
behaviors from the dataset. 

Fig.1. Artifact-centric process mining approach for 
learning style analysis model 

3.2. Artifact-centric model construction 
Subsequently, the ACPM-OL was formally constructed as 
a tuple (A, L, R), where A is a set of artifact classes, L is a 
set of learning activities, and R is a set of business rules 
(see Section 4 for formal definitions). For each artifact 
class, a finite-state machine was designed to represent its 
lifecycle, capturing the permissible sequence of states (S) 
triggered by learning activities. Business rules (λ, β, 
L) were then formulated to explicitly link these activities to
state transitions. This structured approach transforms raw
event data into a formal, executable process model.

3.3. Learning style analysis based on artifact 
lifecycles 

The final stage leverages the constructed ACPM-OL for 
learning style analysis. We propose a novel similarity 
metric that operates on artifact lifecycle instances. 
Specifically, for each student, we extract the sequence of 
data operations (O) from their artifact lifecycles (as per 
Definition 6). The similarity between two students is 
computed based on the normalized compression distance 
(NCD) between their respective data operation sequences. 
This method effectively captures behavioral patterns 
encoded in the artifact state transitions. The resulting 
similarity matrix is then clustered using the K-means 
algorithm and others to identify distinct learning style 
groups, which are subsequently cataloged in a learning-
style dictionary. 
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4. Artifact-centric learning process
modeling

This section presents a method for artifact-centric learning 
process modeling and introduces an artifact-oriented view 
for data-centric online learning processes. The relevant 
formal definitions are established herein. 

4.1. An artifact view for business processes 

In the artifact-centric learning process model, an artifact 
refers to a data entity that participates in the learning 
process. Each artifact comprises a set of data attributes and 
distinct states. Transitions between states are triggered by 
predefined business rules. The progression of an artifact 
from its initial state to its final state constitutes its lifecycle. 
Throughout this lifecycle, data attributes are continuously 
read, updated, inserted and deleted in response to learning 
behaviors. 

Definition 1: Artifact Class. An artifact class represents 
a category of artifacts that share common data attributes 
and state configurations. Formally, an artifact class A is 
defined as a tuple (A, S), where: 

— A={a1,a2,…,an}, ai(1 ≤ i ≤ n) is an data attribute; 
— S={s1,s2,…,sm}, si(1 ≤ i ≤ m) is a state. 
For example, Table 1 presents the data attributes of the 

interactive artifact within the learning process. 

Table 1. Data attributes and descriptions of 
interactive artifact 

Attribute Description 

ID_Interactive A unique identifier for the instance of 
interactive learning behavior 

ID_Stu A unique student identifier 

ID_Site A unique identifier for the VLE 
material 

Activity_Type The role type assigned to the 
material during student interaction 

Day_from The start date of the material's 
current use 

Day_to The end date of the material's 
current use 

Sum_Click 
The total count of student 
interactions of the material's current 
use 

Definition 2: Artifact instance. Given artifact class A, 
we use a four tuple(id,A,s,a) to express one operate 
instance of this class, id is the unique identifier for this 
instance, s is current state, a={a1,a2,…,an} denote each 
data attribute’s value of current state. 

Definition 3: Learning activity. A learning activity 
refers to a data operation within an online learning context 
that consumes input from one or more artifacts and 
generates an output through the modification of artifact 
states. 

Definition 4: Business rules. Business rules provide 
explicit representations of the internal business logic within 
a learning process. Business rule R can be defined as a 
triple (λ,β,L) where, λ and β denote the pre-condition and 
post-condition respectively—representing the input and 
output data of the rule—that collectively trigger its 
execution, and L corresponds to a learning activity to be 
carried out. 

Each business rule encapsulates a segment of the 
business processes in online learning, specifying which 
learning behavior is activated and which artifact states are 
altered, based on specified pre- and post-conditions. A 
single learning behavior may trigger multiple business 
rules and involve several artifacts. 

Table 2 presents a business rule refers to changes of 
states of multiple artifacts. The rule R1 changes for the 
Studentinfo artifact from the course selected state to the 
VLE interactived state, and simultaneously changes from 
the started state to the finished state for the Interactive 
artifact. 

Table 2. Example of a business rule involving 
multiple artifacts 

rule name R1 

related artifacts Studentinfo, Interactive 

λ(pre-condition) 

Instate(Studentinfo, course selected) 
Read(Studentinfo.current_course) 
Read(Studentinfo.ID_stu) 
Instate(Interactive , started) 
Read(Interactive .ID_site) 

β(post-
condition) 

Instate(Studentinfo, VLE interactived) 
Insert(Studentinfo.ID_Site) 
Instate(Interactive, finished) 
update(Interactive.ID_stu) 
update(Interactive.activity_type) 
update(Interactive.day_from) 
update(Interactive.day_to) 
update(Interactive.sum_click) 

L(learning 
activity) An interaction with a learning resource 

Definition 5: Artifact-Centric Process Model for Online 
Learning, ACPM-OL. We use a triple-tuple (Z,L,R) to 
express it, where: 

— Z={ Z1 , Z2 ,…, Zn }, Zi(1 ≤ i ≤ n ) is a Artifact 
instance associated with this process; 

— L={ L1 , L2 ,…, Lm }, Li(1 ≤ i ≤ m ) is a learning 
activity for reading or writing operations in Artifact 
attributes data; 
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— R={Ri,R2,…,Rk}, Ri(1 ≤ i ≤ k) is a business rule 
which trigger data interaction and Artifact state transition. 

fig. 2 illustrates the interactive learning process from an 
artifact-oriented perspective within an online learning 
environment, as part of the ACPM-OL. The process 
involves three artifacts: the StudentInfo Artifact, the 
Interactive Artifact, and the Assessment Artifact. Each 
rounded rectangle represents a state of an artifact instance, 
and each arrow indicates a business rule that corresponds 
to a state transition. Hollow arrows denote business rules 
that involve multiple artifacts. As shown, rule R1 triggers 
simultaneous state transitions in both the StudentInfo 
Artifact and the Interactive Artifact. Concurrently, 
corresponding data operations are activated—updating 
student information data stored in the StudentInfo Artifact 
and recording VLE interaction data within the Interactive 
Artifact. 
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Fig.2. An Artifact view of learning interactive process 

4.2. Artifact life-cycle 

Each artifact possesses a lifecycle that depicts the 
evolution of its states throughout the learning process. 
During the Artifact life-cycle, data attributes will perform 
corresponding data operations on each state change. 
Meanwhile, due to the complex control structure of the 
business process, the same data attribute may be recorded 
synchronously in multiple artifacts. 

Definition 6: Artifact Life-cycle Schema. An Artifact 
Life-cycle Schema provides a formal representation of the 
state transitions inherent to an artifact class, we use a triple-
tuple (Z,T,O) to express it, where: 

— Z is a artifact instance of artifact A, which holds its 
current state and values of data attributes. 

— T represents an ordered set comprising all activities 
within a given artifact instance and serves as a ternary 
transition relation. T⊆ A. S × A. R × A. S. A transition t=(si, 
rj, sk)⊆T indicates that the artifact instance transitions from 
a source state si to a target state skwhen the precondition of 
business rule rj  is satisfied. 

— O represents the data operation performed by activity, 
An operation o=(dm, tn, ρ) represents the data operation ρ 

performed by activity tn on the artifact’s data attribute dm , 
where ρ ⊆ {read, write, add, remove}. 

The operations on data attributes triggered by learning 
activities can form a ordered data operation sequence, 
which also contains the behavioral characteristics of 
learning processes. Different learning activities create 
different artifact instances and  generating different data 
operation sequences. Therefore, by extracting the data 
operation sequence of each artifact in ACPM-OL, the 
learning process can be decomposed into a set of sequences 
of data attribute operations. 

fig. 3 shows the life-cycle schema of the interactive 
artifact. In the figure: t0, t1 represent the names of activities; 
below the activity name are the corresponding data 
operations. The bottom of the figure is the data slots for 
information gathered as an interactive artifact instance 
evolves, including the change of status attributes and 
details of learning behavior data attributes. During the 
evolution of learning activities, corresponding data 
operations are recorded in these data slots. Consequently, 
given the action trajectory of an artifact instance, the 
corresponding data operation sequence can be extracted 
from the Life-cycle Schema.  

 

start endAdd(ID_interactive)
Read(ID_stu) 

t0

Learning behavior data attributesStatus attributes

Write(Activity_type)
Write(Day_from)
Write(sum_click)

t1

ID_interactive ID_stu Activity_Typeinteractived ... Sum_Click ...

...

...

 
 

Fig.3.  Life-cycle Schema of ACPM-OL: the 
interactive artifact 

5. learning style analysis based on 
artifact life-cycle 

In this section, learning styles are analyzed and predicted 
based on the artifact life-cycle model by comparing 
similarities among data attribute operation sequences that 
contain learning style features. 

5.1. Similarity calculations 

As previously described, each artifact possesses a lifecycle 
that depicts the sequence of activities and associated state 
changes throughout the learning process. There are certain 
dependencies between the states of different artifacts, the 
state transitions may be triggered simultaneously by a 
certain business rule. By using the artifact-centric 
choreograph approach[26], the states of different artifacts 
are captured and combined to form a complex state 
transition graph. 

Based on the life-cycle schema of ACPM-OL, as 
learning activities evolve, the corresponding state 
transitions and data operations are recorded. Hence each 
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activity sequence has an equivalent state transition 
sequence and the corresponding data operation sequence . 

Suppose that β1and  β2 are two activity sequences, use 
formula 1 to calculate their status similarity. 

sim_stat( β1, β2) = equal(|β1|,|β2|)
max(|β1|,|β2|)

                       (1) 
Where equal(|β1|, |β2|)  denotes the number of 

matching states at corresponding positions in the two state 
sequences, max(|β1|, |β2|)  refers  the maximum number 
of states contained in the two state sequences. 

use formula 2 to calculate their transfer similarity. 
sim_tran(β1, β2) = common(|β1|,|β2|)

tran(|β1|)+tran(|β2|)
                 (2) 

Where common(|β1|, |β2|) refers to the frequency of 
identical state transition events occurring in both sequences, 
tran(|β1|)+tran(|β2|) represents the total number of state 
transitions in β1 and β2. 

use formula 3 to calculate their data attributes similarity. 

sim_att(β1, β2) = ∑ adapt(|β1|,|β2|)K
i=1

K
                   (3) 

Where K is the number of data operations that read the 
same data attributes and performed the same data operation 
type, adapt(|β1|, |β2|)  is the semantic similarity of 
attribute assignment statements. 

The similarity of activity sequences between β1 and β2 
is derived by the combination of status similarity, transfer 
similarity and data attributes similarity, and its calculation 
formula is as follows: 

sim(β1, β2) = ω1 × sim_stat(β1, β2) + ω2 ×
sim_tran(β1, β2) + ω3 × sim_att(β1, β2)                 (4) 

where ω1 , ω2 , and ω3  are weighting coefficients that 
sum to 1, with each being greater than or equal to zero. 

5.2. Learning style assessment 

Online learning generates a large amount of learning 
behavior data. In ACPM-OL, each learning behavior of 
every learner will produce a activity sequence, which 
constitutes their learning activity sequence set. If there are 
many activity sequences with high similarity in the activity 
sequence set of two learners, then these two learners have 
similar learning interest preferences and can be defined as 
having the same learning style. 

Learning behaviors vary not only across different 
students but also within the same student over time. The set 
of learning activity sequences is often highly complex, with 
multiple potential paths from the initial to the final activity. 
Therefore, the evaluation of learning styles must 
incorporate temporal factors. 

To assess the learning styles of two students (denoted as 
S₁ and S₂), the process consists of the following steps: 

1. Extract all learning activity sequences for S₁ and S₂; 
2. Calculate the frequency of each learning activity 

sequence. The most frequently occurring sequence is 
designated as the key activity sequence, denoted as β1, β2, 
while the remaining sequences are classified as ordinary 
activity sequences , denoted as β1′, β2′; 

3. Partition the ordinary activity sequences 
into N comparison groups according to time intervals, 
labeled as (β1i′, β2i′), where 1 ≤ i ≤ N; 

4. Compute the similarity between the key activity 
sequence and each ordinary activity sequence group using 
Formula 4 

5. Determine the similarity between the learning styles 
of the two students using Formula 5. 

sim(S₁, S2) = ω1 × sim(β1,β2)＋ω2 ×
∑ sim(β1i′,β2i′)×fd(ti)N
i=1

max(|β1′|,|β2′|)
                                  (5) 

Where ω1,ω2 represent the weights of the key activity 
sequence and ordinary activity sequences respectively. 
Since the key activity sequence generally has a greater 
impact, so ω1 > ω2;fd(ti) is a time decay factor, where 
more recent activity sequences receive larger values; 
max(|β1′|, |β2′|)  is the sum of all ordinary activity 
sequences. 

6. Experiment and evaluations 

In this section, we assessed the efficacy of the artifact-
centric learning process modeling approach on the 
benchmark dataset OULAD. 

6.1. Dataset  

Datasets serve as foundational components in data science 
and machine learning, with representative and diverse data 
being essential for both educational data mining and 
learning analytics. 

Widely regarded as one of the benchmark datasets in the 
field of learning analytics, OULAD’s key feature is its 
combination of student demographic details with 
aggregated clickstream records from VLE interactions, 
which supports behavioral analysis of learning processes 
through fine-grained action data [27-28]. Originating from 
a curated subset of student records at the Open University 
UK (OUUK), OULAD encompasses seven distinct courses 
presented over several semesters. It incorporates 
demographic profiles and assessment scores for more than 
30,000 students, along with detailed VLE interaction logs 
that compile daily click events—totaling over 10 million 
entries. 

OULAD has been extensively used in educational data 
mining and learning analytics research, particularly in the 
development of predictive modeling frameworks [29]. The 
dataset offers a comprehensive range of educational 
variables, including demographic attributes, academic 
performance indicators, and behavioral traces such as click 
patterns, activity types, time engaged, and access 
frequency. 

6.2 Preprocessing of data 

OULAD consists of seven relational tables. But the dataset 
doesn’t meet artifact's data collection requirements and 
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cannot be directly used by any machine learning algorithm. 
Data cleaning and integration were first performed to 
manage missing values and mitigate the impact of outliers. 
Second step, extract learning features by feature 
engineering and aggregate various features by id_student. 
The corresponding data attributes of artifacts are set on the 
basis of these features. Third step, according to the 
characteristics of artifacts’ data attributes, the relational 
tables were aggregated and merged into a dataset that can 
be processed by  ACPM-OL.  

After merging the data, scaling and encoding procedures 
were applied. Scaling normalizes features to a [0, 1] range 
to ensure comparability across different units and 
magnitudes, while encoding transforms categorical 
features into numerical representations compatible with 
machine learning models. Subsequently, applied the K-
means algorithm to cluster the pre-processed dataset. By 
using a feature selection algorithm based on the improved 
elbow method and silhouette coefficient, the optimal K 
value was selected and the data was pre-grouped. After data 
preprocessing, seven relational tables are condensed  and 
converted into three artifact tables. 

6.3 Result and discussion 

The data of OULAD is widely utilized to the research 
on learning analytics, expecially focused on predictive 
modeling. The modeling algorithms predominantly 
employed include Logistic Regression, K-Nearest 
neighbour, random forest, Gradient-Boosted Tree[30-33]. 

Instead of using raw OULAD, The data preparation 
process produced a artifact-centric information model 
(ACPM-OL) which was more suitable for  learning style 
analysis, especially for predictive models. The experiment 
is carried out led by the two research questions that were 
defined: 

1. Does the ACPM-OL approach significantly enhance 
the predictive accuracy of learning style models compared 
to using the original dataset? 

2. Among classical predictive modeling algorithms 
applied within the ACPM-OL framework, which one 
achieves the highest performance in predicting students’ 
learning styles? 

To address these questions, a series of experiments were 
conducted. 

For the first research question, an experimental scenario 
was designed. The GBoost algorithm was employed as the 
classifier. Both the raw OULAD dataset and the ACPM-
OL processed dataset were used as inputs. Two 
experimental trials were conducted using 80% to 90% of 
each student's data for training, with the remaining 10% to 
20% reserved for testing. All three evaluation metrics were 
applied to assess model performance. 

Table 3. GBoost Model performance under different 
input data 

InfoModel TestPro
portion 

precisi
on recall    f1-

score 

Raw 10% 0.87 0.89 0.88 

Raw 20% 0.85 0.83 0.86 

ACPM-OL 10% 0.96 0.98 0.97 

ACPM-OL 20% 0.96 0.93 0.94 

Table 3 presents the experimental results obtained with 
different information models and varying test set sizes. The 
choice of information model is shown to significantly 
influence the predictive performance of the model. ACPM-
OL model improves the data quality of the prediction 
model, significantly improving precision, recall, F1score. 
The stability of the prediction model is also enhanced, 
when the proportion of test set changes significantly, the 
performance index does not fluctuate greatly. 

Fig.4. Confusion Matrix Heatmap of the GBoost 
model under different input data 

Fig. 4 displays the confusion matrix heatmap. The left 
panel corresponds to prediction results using the raw 
OULAD dataset, while the right panel shows results 
obtained with the ACPM-OL processed data. This study 
considers four predefined learning styles. The diagonal 
entries indicate the number of correctly classified instances, 
and it is clearly evident that the model exhibits improved 
predictive accuracy when using the ACPM-OL framework. 

Table 4. Model performance 
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Model TrainAc
curacy 

TestAcc
uracy 

TrainF1
score 

TestF1s
core 

SVM 0.971429 0.934140 0.970735 0.933397 

GBoost 1.000000 0.928763 1.000000 0.927910 

Random 
Forest 0.908571 0.912634 0.906147 0.911465 

Logistic 
Regressi
on 

1.000000 0.909946 1.000000 0.911040 

KNN 0.830588 0.803763 0.823860 0.799008 

For the second research question, a corresponding 
experimental scenario was constructed. The ACPM-OL 
dataset was used as input, the dataset was partitioned into 
a training set (90%) and a test set (10%) using a random 
stratified split. This approach ensures that the distribution 
of the target variable (i.e., the learning styles) is consistent 
across both subsets. The random seed was set to 42 for 
reproducibility. GBoost and other four classification 
algorithms were employed. As shown in Table 4, the SVM 
algorithm achieved the highest performance, with an 
accuracy of 93.4% and the highest F1-score. In contrast, 
the KNN algorithm significantly underperformed 
compared to the other models. Although the 
parameter n_neighbors was tuned, no substantial 
improvement was observed. 

Fig.5. ROC curves for different prediction models 
based on ACPM-OL 

The ROC curve serves as a widely used and intuitive 
metric for evaluating model performance. fig. 5 presents 

the ROC curves of the five models mentioned above. All 
curves lie close to the top-left corner, indicating high true 
positive rates with low false positive rates, which suggests 
good classification capability. Among them, SVM and 
GBoost achieved the highest AUC values, both reaching 
0.95, demonstrating superior overall discriminative ability. 

7. Conclusion and future work

This study examines the impact of data-driven process 
modeling techniques on predictive performance by 
proposing an artifact-centric process mining approach. 
Based on the artifact life-cycle model, learning styles were 
analyzed and predicted by measuring similarity among 
sequences of data operations that encapsulate learning style 
features. OULAD was used for experimental validation. 
Results demonstrate that the proposed method significantly 
enhances the performance of learning style prediction 
models. Among the evaluated algorithms, SVM and 
GBoost exhibited superior predictive accuracy compared 
to other models. The multidimensional, continuous nature 
of the Felder-Silverman model aligns well with digital 
learning environments, while the VARK model offers 
unique utility for connecting with multimodal resources. 
Therefore, our future work will establish FSLSM as the 
core framework, integrating VARK to enhance our 
analytical dimensions and achieve more precise, dynamic 
learning style predictions. 
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