
EAI Endorsed Transactions
on Pervasive Health and Technology Research Article

Towards PTSD Diagnosis Through ECG Anomaly
Detection based on Autoencoders
Vasileios Skaramagkas1,2,∗, Ioannis Kyprakis1,2, Georgia S. Karanasiou3,4, Dimitris I. Fotiadis3,4,
Manolis Tsiknakis1,2

1Biomedical Informatics and eHealth Laboratory, Dept. of Electrical and Computer Engineering, Hellenic
Mediterranean University, Heraklion, 71410 Crete, Greece
2Institute of Computer Science, Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013
Crete, Greece
3Unit of Medical Technology Intelligent Information Systems, University of Ioannina, Ioannina, 45110, Greece
4Biomedical Research Institute, Foundation for Research and Technology Hellas (FORTH), Ioannina, 45110, Greece

Abstract

INTRODUCTION: Post-Traumatic Stress Disorder (PTSD) is a debilitating mental health condition that
can develop after exposure to traumatic events, often resulting in symptoms that severely impair daily
functioning. Current diagnostic methods largely rely on subjective assessments, highlighting the need for
objective, non-invasive tools to improve diagnostic precision.
OBJECTIVES: This study aims to develop and validate an innovative deep learning approach using
autoencoder neural networks to detect PTSD through analysis of electrocardiography (ECG) signals. The goal
is to provide a reliable and sophisticated diagnostic method that bridges computational and clinical domains.
METHODS: We employed autoencoder neural networks to analyze ECG data collected from wearable heart
zone sensors. This unsupervised learning model was trained to detect subtle anomalies in the ECG signals that
may serve as biomarkers for PTSD. The methodology was evaluated using data collected from individuals with
and without PTSD symptoms.
RESULTS: The proposed model demonstrated strong potential as an objective diagnostic tool, successfully
identifying patterns in ECG signals associated with PTSD. The analysis confirmed the model’s ability to
distinguish PTSD-related anomalies with 83% accuracy.
CONCLUSION: This research introduces a novel, non-invasive diagnostic methodology for PTSD using deep
learning and wearable ECG data. The findings support the model’s value as a potential objective biomarker,
contributing to more precise psychiatric diagnostics and expanding the role of machine learning in healthcare.
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1. Introduction
The field of medical diagnostics has seen a transfor-
mative change with the introduction of sophisticated
data analysis methods, namely in the domain of mental
health conditions like Post-Traumatic Stress Disorder
(PTSD). PTSD is a mental disorder that arises from
a significant psychological trauma of a threatening or
catastrophic nature and is characterised by recurrent
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exposure to components of a traumatic incident, accom-
panied by feelings of worry, panic, wrath, guilt, and
a strong urge to avoid stimuli linked to the source
of stress [1]. Its prevalence is notable among indi-
viduals with chronic diseases, including breast cancer,
where treatment-induced cardiac toxicity can exacer-
bate PTSD symptoms, affecting patients’ overall quality
of life [2]. The current method of diagnosing PTSD
relies on self-reports, which may be susceptible to inac-
curacies, particularly in individuals, including children
and adults, who display avoidance signs [3].
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Given the intricate nature of the problem, it is cru-
cial to employ inventive methods to achieve precise
and unbiased detection. To this goal, machine learning
methods have been taught to accurately assess the sever-
ity of PTSD by analysing signals, such as electroen-
cephalography (EEG), and extracting relevant infor-
mation [4]. Additionally, electrocardiography (ECG),
a readily accessible and non-invasive technology that
can be obtained even from wearable devices, provides
valuable insights into the complex interaction between
the heart and the neurological system. In PTSD, these
variations in ECG rhythms have the potential to func-
tion as biomarkers for the condition, providing a new
and unbiased diagnostic tool [5].

Within the rapidly growing domain of deep learning
(DL) applications in medical diagnostics [6, 7], there
is a noticeable deficiency: the absence of models
explicitly tailored to identify PTSD through the analysis
of ECG data, especially in populations with co-
existing conditions like breast cancer [8]. Although
there has been notable progress in creating advanced
DL models for diagnosing different mental disorders
[9], PTSD has not received the same amount of
focus, especially when it comes to using ECG inputs.
The absence of ECG analysis in diagnosing PTSD
is significant, considering its ability to uncover the
physiological foundations linked to this condition [10].
This highlights a promising yet unexplored approach
for an objective and non-intrusive diagnosis, which
could complement the existing dependence on self-
reported symptoms and clinical evaluations.

This work aims to capitalize on recent novel
computational approaches with clinical diagnoses for
PTSD, in order to address the existing gap. Our
objective is to utilise autoencoders to analyse ECG
data and create a model that can detect the tiny
irregularities which can be characteristic of PTSD,
particularly for breast cancer patients dealing with
complex health challenges. This technique not only
provides the potential to improve the precision of PTSD
identification, but also makes a valuable contribution
to the wider field of diagnosing psychiatric disorders,
where there is a pressing demand for objective
biomarkers.

We introduce a complete methodology that utilises
autoencoder-based anomaly identification for the analy-
sis of ECG data. Our approach is founded on a thorough
understanding of both the clinical aspects of PTSD
and the technological complexities of machine learning
models. Our model, validated with an extensive dataset
from wearable devices, offers insights into enhancing
PTSD diagnosis in patients with breast cancer [11].

2. Related Work

2.1. PTSD Diagnosis Based on Machine Learning
Machine learning approaches have been developed
alongside traditional interview-based and evidence-
based diagnostic methods to diagnose symptoms of
PTSD [12]. Convolutional Neural Networks (CNN)
have been employed to diagnose PTSD by analysing
keywords extracted from Twitter [13]. Their approach
achieved 91.00% accuracy within the group of cancer
survivors. Lekkas et al. [14] conducted an experiment
on female trauma witnesses, focusing on the duration of
their absence from home. By inputting the information
from the global positioning system (GPS) into an XGB
classifier, they obtained AUC value 0.82 and accuracy
rate 77.00%. Finally, a recent study successfully
employed RF classifiers to examine medical records for
automated diagnosis of PTSD, resulting in impressive
accuracy rate 99.00% and AUC 0.89 [15].

Moreover, multiple research papers have explored
the diagnosis of PTSD by employing machine learning
methods on neuroimaging data. In [16], researchers
employed a deep learning approach to achieve
diagnostic accuracy 71.20%. They utilised neural
fingerprints from important brain regions. Zhu et al.
developed a deep learning graph-theoretic approach to
distinguish between PTSD and trauma exposed non-
PTSD groups. They achieved an accuracy of 80.00%
by analysing brain network graphs [17]. Furthermore,
Gong et al. employed a SVM classifier using gray
and white matter metrics. They achieved an accuracy
of 91.00% in differentiating individuals with PTSD
from healthy controls. Additionally, they achieved an
accuracy of 67.00% in separating those exposed to
trauma but without PTSD. This demonstrated the
effectiveness of magnetic resonance imaging (MRI) data
in identifying PTSD [18].

2.2. Autoencoders Towards the Detection of Mental
Disorders
Autoencoders are employed in the domain of mental
disorders for several objectives. In a recent study, a
novel autoencoder model that utilises variational mode
decomposition and mutual information techniques to
identify depression from speech data in the DAIC-
WOZ dataset was presented [19]. The proposed model
achieved accuracy 78.95% and f1-score 0.76. Moreover,
scientists in [20] utilised an autoencoder, to precisely
forecast missing responses in depression research. The
findings demonstrated the superior accuracy of this
approach compared to alternative models, enabling
its application in accurately forecasting patients’
depression status with minimal error rate 2.85%.

Regarding other mental disorders, Sewani et al. [21]
developed a combination of unsupervised autoencoder
and supervised CNN in order to deliver a proficient
diagnosis of autism spectrum disorder, particularly
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Figure 1. Architecture of the built autoencoder model used for ECG anomaly detection.

for children. Their model yielded high level of per-
formance, obtaining accuracy 84.05% and AUC value
0.78. A CNN-based autoencoder was also developed in
[22] to forecast individuals with suicidal tendency by
analysing their structural brain imaging. The findings
indicated that a specific arrangement of brain structures
in various areas can effectively differentiate those with
suicidal thoughts from those without such thoughts and
healthy controls, with 85.00% accuracy. The effective-
ness of a 3D convolutional autoencoder (3D-CAE) in
extracting features associated with schizophrenia, with-
out relying on diagnostic labels was examined in [23].
The features obtained using 3D-CAE preserved their
correlation with clinical data and it was found that the
developed model might potentially be used to extract
features to predict medication dosage and symptom
severity in schizophrenia. These studies illustrate the
effectiveness of autoencoders in comprehending and
tackling mental problems.

3. Methodology
3.1. Dataset description
ECG signals were obtained from 42 patients in two clin-
ical centers in Greece (No. 683/22-11/2022, 31557/27-
12-2022) and one in Cyprus (No. EEBK/EP/2022/58)
during the period 06.2023 - 12.2023 in the framework
within the CARDIOCARE’s Clinical Study [11]. The
study aims to improve patients’ participation in their
care process and improve their physical condition and
psychological adaptation to the disease by implement-
ing an individualised care plan. This plan is based on
monitoring the patient’s health status using a mobile
platform including a smartwatch, a heart zone sensor,
and a mobile phone (mobile-Health monitoring sys-
tem), as well as to collect new biomarkers.

In this context, each patient was provided with
a Polar H10 Heart Rate Sensor and was instructed
to perform a 30 min. long ECG every two weeks.
ECG signals were recorded from the Polar belt at
a 146 Hz and were uploaded as 5 min. segments
on the CARDIOCARE platform through a mobile
app. Moreover, the patients completed the IES-R
questionnaire during their tactical visits at the clinical
centers. In total 5,285 5 min. ECG segments were
uploaded on the platform during the 6-month period
and were used for the preprocessing stage as described
in 3.2. Additionally, based on their answers, the 10
patients with IES-R scores of 33 and above were labeled
as class 1: "likely PTSD" and the rest 32 with scores
below 33 as class 0: "no or few PTSD symptoms".

3.2. Data Acquisition and Preprocessing

We imported long-term ECG signals using the Python
data analysis tool, Pandas. After loading the data,
preprocessing was essential in preparing the dataset for
analysis. Initially, we utilised a data cleaning procedure
and eliminated noise and the baseline wander from
the ECGs. Next, we divided the ECGs from each
patient into separate heartbeats, 100-point length each,
by utilising neurokit2 [24]. Subsequently, the dataset
was partitioned into two distinct subsets: the feature
set, which encompasses the ECG signal data, and the
label set, which encompasses the related labels. To
reduce the impact of varying sizes and distributions
in the data, we implemented normalisation procedures.
The MinMaxScaler from Scikit-Learn was employed to
standardise the data, which is crucial for optimal model
training and analysis.
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3.3. Dataset Partitioning
The preprocessed data were divided into separate
training and testing sets. The dataset was partitioned
using Scikit-Learn’s train_test_split function, with 80%
assigned for training and 20% set aside for testing. The
random state parameter was configured to guarantee
the replicability of our findings. The processing stage
included the categorization of our data into normal
(class 0) and anomalous (class 1) groups for both
training and testing, according to the label set, as
described in detail in section 3.1. Finally, our data
comprised of a total of 70,095 heartbeat samples:
46,025 normal training, 11,557 normal testing, and
12,513 anomalous testing samples respectively. It is
important to mention that the normal samples belong
to the 32 patients with no sings of PTSD, whereas the
anomalous to the rest 10 patients who is likely to have
PTSD, according to IES-R.

3.4. Model Architecture and Training
The focal point of our methodology revolved around
the development and training of an autoencoder model.
The autoencoder, a type of neural network, was
designed to learn efficient encodings of the input ECG
data. Its architecture (Fig. 1) consists of an encoder
and a decoder, with a critical bottleneck layer. The
encoder employs a series of four dense layers, each
consisting of 64, 32, 16, and 8 neurons respectively,
all utilising "ReLU" activations. This process effectively
reduces the dimensionality of the input data from
its original 100 to 8. Moreover, the 8-neuron layer
serves as the bottleneck of the model, capturing the
most compact representation of the input data. The
decoder subsequently restores the data by progressively
increasing its dimensionality through layers containing
16, 32, and 64 neurons, culminating in a final layer that
matches the input size and utilises "sigmoid" activation.

The training process of our autoencoder model was
performed using TensorFlow and Keras. The model is
configured to use early stopping through a callback that
monitors the validation loss, ceasing training if there’s
no improvement for two consecutive epochs. This is
set up to minimize loss, a common practice to avoid
overfitting.

3.5. Performance Evaluation
After the training session, we assessed the model’s
performance on the anomalous group’s data. The
evaluation measures were centred on the model’s
capacity to precisely recreate the ECG data and detect
anomalies that are suggestive of PTSD. Specifically,
the model initially forecasts the restoration of the
normal test data, producing results that ideally should
nearly mirror the original inputs if the model is

functioning effectively. Next, the mean absolute error
(MAE) is calculated between these reconstructions and
the actual normal test results. This MAE serves as a
metric for the reconstruction error of each sample.
The threshold is established by determining the 90th

percentile of these reconstruction errors. Subsequently,
this threshold is employed to identify anomalies by
forecasting the reconstructions for the anomalous
dataset and computing their MAE. Instances from the
anomalous dataset that possess a reconstruction error
over the threshold are very probable to be anomalies,
as their error is larger than that of the bulk of the
normal data. Ultimately, the model’s efficacy is assessed
based on its accuracy in properly detecting abnormal
heartbeats as well as the f1-score.

4. Results
4.1. Impact of Event Scale - Revised (IES-R)
The IES-R is a commonly employed psychological
tool developed to evaluate the personal discomfort
resulting from traumatic situations [25]. The self-report
measure assesses three primary elements of PTSD:
hyperarousal, intrusion, and avoidance, encountered
within the previous seven days. The scale comprises 22
items, with each item being evaluated on a five-point
scale that ranges from 0 ("not at all") to 4 ("extremely").
The IES-R yields a total score ranging from 0 - 88, where
33 is the optimal threshold for a likely diagnosis of
PTSD.

4.2. Experimental setup and implementation
The implementation and experiments were carried
out in a virtual environment using Python version
3.9.7, installed on a personal computer equipped with
a GTX GeForce 750 Ti GPU, an Intel(R) Core(TM)
i7-6700 CPU with a clock speed of 3.40 GHz, and
32 GB of RAM. To create, train, and evaluate the
autoencoder model, many frameworks and libraries are
utilised, such as TensorFlow-GPU version 2.5.0 with the
Keras-GPU frontend. The model employs a MAE loss
function and an Adam optimizer with initial learning
rate 10−4. The loss of the model is calculated and its
weights are adjusted during training. Furthermore, the
suggested model underwent training with minibatches
having size 128 for duration 8 epochs, resulting in a
completion time of around 2 minutes. Furthermore,
NumPy is employed for a multitude of mathematical
computations, including the manipulation of array
shapes and the concatenation.

4.3. Experimental Results
Fig. 2 exhibits six ECG traces categorised into two
groups: regular (normal) and abnormal (anomalous)
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Figure 2. Indicative normal and anomalous ECG heartbeats along with the model’s reconstruction. Each ECG belongs to a different
patient (3 with no sings of PTSD, 3 with likely PTSD). Due to the resulting large error, the algorithm correctly detects an anomaly

Figure 3. Histograms of normal and anomaly losses along with
the computed threshold.

ECG heartbeats that denote to 6 different patients.
Three typical ECGs are displayed for each group. The
graphs display the original ECG input signal in blue
and its reconstruction using the model in orange. The
light orange shaded region reflects the discrepancy
between the input and the decoder’s output, often
known as reconstruction error. In the normal ECGs, the
reconstruction faithfully replicates the input, leading to
a relatively minimal reconstruction error. Nevertheless,
in the anomalous ECGs, noticeable disparities between
the actual data and the reconstructed data are apparent,
especially at the highest points, leading to more
pronounced error margins. Therefore, the model’s
capacity to identify anomalies is demonstrated by the

higher reconstruction error observed in the anomalous
ECG graphs, which aligns with the anticipated
behaviour of an anomaly detection method.

After the model training process, we calculated the
threshold based on the normal test data reconstruction
error which was found to be 0.0016, as described in
Section 3.5. Fig. 3 depicts a histogram that compares
the distribution of reconstruction loss for normal and
anomalous ECG data after being processed by our
model. The black histogram depicts the loss attributed
to normal data, whereas the green histogram illustrates
the loss incurred by anomalies. A vertical red line,
serves as a threshold value that distinguishes between
the two. Losses beyond this level are likely to be
regarded as anomalies, given that they deviate from
the typical range for normal data. The graph indicates
that the selected threshold successfully differentiates
between normal and anomalous data, as the majority of
anomaly losses are observed to exceed this threshold.
Notably, our model achieved 82.64% accuracy in
detecting anomalous ECG heartbeats based on the
computed threshold as well as f1-score 0.82.

5. Discussion
This study’s findings illustrate the efficacy of
autoencoder-based models in identifying physiological
anomalies linked to PTSD through ECG data. The
autoencoder achieved a detection accuracy of 82.64%
and an f1-score of 0.82 in differentiating abnormal
heartbeats from those of patients devoid of PTSD
symptoms, according to IES-R thresholds. The results
indicate that minor alterations in ECG morphology,
likely indicative of autonomic dysregulation frequently
associated with PTSD, may be accurately detected and
recognized using unsupervised learning algorithms.
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The efficacy of the suggested method contributes
to the expanding literature endorsing the application
of machine learning in mental health diagnostics,
especially in instances when subjective self-reporting
may prove inadequate or incorrect. In contrast to
conventional diagnostic methods that predominantly
utilize questionnaires like the IES-R or structured
interviews, the ECG-based anomaly detection model
offers an objective, non-invasive alternative that may
be implemented using wearable technology. This is
particularly significant in at-risk groups, such as
older breast cancer patients, when comorbidities,
weariness, or emotional distress may hinder precise
self-evaluation.

The architecture’s dependence on standard (non-
PTSD) data for training significantly improves its gener-
alizability in anomaly detection contexts, where acquir-
ing extensive, well-annotated clinical datasets is fre-
quently problematic. Utilizing solely the normal class
for model training, the method builds a physiological
baseline to identify variations that may suggest PTSD.
This anomaly-based approach is consistent with the
clinical goal of early warning and monitoring rather
than definitive diagnostic classification.

Nonetheless, several limitations must be acknowl-
edged. The sample size, while adequate for preliminary
assessment, was comparatively limited (n=42), exhibit-
ing an imbalance between the PTSD (n=10) and non-
PTSD (n=32) cohorts. This may constrain the statis-
tical power and generalizability of the findings. The
dependence on IES-R as a benchmark entails intrin-
sic constraints linked to subjective self-report instru-
ments, notwithstanding its clinical validity. Subsequent
research should focus on corroborating results with
larger, more heterogeneous populations and includ-
ing further objective measures of PTSD, like hormone
biomarkers or multimodal physiological data (e.g.,
EEG, GSR).

Moreover, the model’s existing framework presup-
poses a binary classification (presumably PTSD vs non-
PTSD), thus oversimplifying the continuum of PTSD
severity and symptomatology. Integrating continuous
severity scores or multi-class outputs may improve ther-
apeutic relevance and customisation. Finally, although
anomaly detection is effective for recognizing anoma-
lies, its interpretation necessitates meticulous contex-
tualization to prevent overdiagnosis, especially in indi-
viduals with concomitant cardiovascular diseases that
may independently affect ECG patterns.

6. Conclusions
In this work, we presented a study that demonstrates
a robust autoencoder model designed specifically for
detecting anomalies in ECG data, with the potential to
identify irregularities connected to PTSD. Particularly

relevant to the focus on elderly multimorbid patients
with breast cancer, the findings demonstrate that the
model successfully differentiates between normal and
anomalous ECG signals, supported by the validation
of a distinct threshold based on the histograms of
reconstruction errors. This strategy shows potential for
advancing the diagnosis of PTSD using non-invasive
methods, by taking use of ECG data, easily obtained
even from wearable devices.

This research adds to the existing knowledge in the
field of using machine learning for diagnosing mental
health conditions and highlights the possibility of using
it in a wider range of clinical settings. Subsequent
research might prioritise enhancing the model using
larger datasets and investigating real-time anomaly
detection, perhaps providing substantial advantages for
promptly intervening and monitoring PTSD symptoms.
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