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Abstract

The fundamental goal of this work is to prepare and carry out diabetes prediction using various Machine Learning techniques
and conduct output analysis of those techniques to find the best classifier with the highest accuracy. This study use the Pima
Indian Diabetes Dataset and applied the Machine Learning classification methods like Random Forest (RF), Support Vector
Machine (SVM), and Logistic Regression (LR) for diabetes prediction. The performance of each algorithm is analysed to
determine the one with the best accuracy. The dataset includes details like pregnancies, glucose levels, blood pressure, and

other important health information. The focus of this study is to unify FP-Growth algorithm with ML algorithm in order to
predict diabetes. The FP-Growth is used to extract the frequent items for data pre-processing before prediction. LR algorithm
stands out with high accuracy, showing promise in predicting type 2 diabetes when using the risk factors identified by FP-
Growth algorithm. The results help guide future research and make it easier to choose the best algorithms, especially ones
that are fast, for medical decision support systems. LR algorithm stands out with high accuracy, showing promise in
predicting type 2 diabetes when using the risk factors identified by FP-Growth algorithm.
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1. Introduction Concurrently, another distinct type, known as type
one diabetes or juvenile diabetes, is characterized by the
pancreas's diminished or complete lack of insulin
production. The coexistence of these two diabetes types
contributes to the intricate landscape of global health
challenges, underscoring the imperative need for
comprehensive strategies to address the multifaceted

dimensions of this pervasive and escalating health

Globally, an estimated 422 million individual’s
grapple with the repercussions of diabetes, with a notable
concentration observed in less economically developed
countries, as reported by the World Health Organization
(WHO). Recent data from 2023, provided by WHO,
paints a stark picture with an annual death toll of

approximately 1.5 million people attributed to concern [1]. Various types of diabetes, which can be
complications stemming from diabetes. The rising broadly categorized into four main types. These include:
prevalence of diabetes on a worldwide scale presents an - Type 1 (TIDM): is a chronic autoimmune

increasingly formidable challenge to public health. Type condition characterized by insulin deficiency, resulting in

2 diabetes, predominantly affecting adults, emerges as
the most widespread form. In this variant, the body
encounters difficulties in either effectively utilizing
insulin or producing an adequate amount, leading to
elevated blood sugar levels. Over the past three decades,
the incidence of type 2 diabetes has displayed a
concerning upward trajectory, affecting diverse
populations across countries with varying income levels.

elevated blood sugar levels (hyperglycaemia). Over the
past 25 years, there has been significant progress in our
understanding of type 1 diabetes, encompassing diverse
aspects including its genetic factors, epidemiology,
immune and B-cell phenotypes, and the overall impact of
the disease [2].

- Type 2 (T2DM): arises from insulin resistance,
a condition wherein cells demonstrate insufficient
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responsiveness to insulin. As the disease advances, there
may also be a progression towards insulin insufficiency.
Previously, terms such as 'mon-insulin-based diabetes
mellitus' or 'adult-induced diabetes' have been utilized to
characterize this condition [3].

- Gestational diabetes mellitus (GDM) [4]:
characterized by elevated blood sugar levels first
identified during pregnancy, represents the most
prevalent medical complication during gestation. On a
global scale, GDM affects approximately 15% of
pregnancies, contributing to roughly 18 million births
each year.

Our study expands upon existing research by
conducting a thorough comparative analysis of
classification techniques and association rule mining
algorithms tailored specifically to diabetes datasets.
While previous studies have often focused on individual
algorithms or limited comparisons, our work provides a
comprehensive examination of three widely used
classification methods—SVM, LR, and RF— [5, 6, 7, 8,
9, 10] in the context of diabetes prediction. By assessing
performance metrics and computational efficiency across
these techniques, we offer valuable insights for
researchers and practitioners aiming to make informed
decisions regarding algorithm selection.

The structure of this article is designed to
systematically delve into the realm of data mining within
the context of diabetes analysis. It begins with a related
work section, which provides a comprehensive overview
of existing research, offering insights into prior
approaches and findings. The methodology section
outlines the steps taken to analyse the diabetes dataset
and algorithms employed. The results and discussion
section present the outcomes of the analysis,
accompanied by thorough interpretation and discussion
of the findings. Finally, the conclusion synthesizes the
key insights gleaned from the study, underlining its
implications for both the field of data mining and
diabetes research.

2. State-of-the-Art

DM generally has two categories of models, the
first one is the predictive category, and the second one is
descriptive. Each one of these classes has various
techniques, for the predictive category we have
regression, classification, prediction and time series
analysis [9, 10], in the other hand the major techniques of
the descriptive category are clustering, association rules,
discover sequences and summary analysis [11, 12].

During the past decades, various DM techniques
for diabetes detection are reviewed and discussed [13, 14,
15]. In [16], a review of the application of DM
techniques for diabetes, as well as the corresponding data
sets, methods, software, and technologies, is carried out.
Based on this review, it is concluded that DM has a key
role and bright research future in the field of glycemic
control. DM is used to extract valuable information from
diabetes data, which ultimately helps diabetic patients in

the management of their glycemic control. Likewise, in
[17] a survey is conducted on the application of different
DM techniques, including Artificial Neural Network
(ANN), for the prediction and classification of diabetes.
The survey shows that ANN outperforms the rest of the
techniques with 89% of prediction accuracy. In [18] the
author’s presents a survey on diabetes detection,
classification and prediction by evaluating different
schemes on parameters like, algorithm/models, input data
type, etc. they conclude that a data pre-processing is
needed for accurate detection, classification and
prediction. In a review of existing literature, the most
used models for diabetes prediction are SVM, RF, DT,
and ANN. These Machine Learning (ML) algorithms
were used on small dataset. Hybrid models and ensemble
methods have also been explored [19], which can further
improve the predictive performance of the models.
Finally, other studies have explored the use of DM such
as association’s rules but most researcher’s work have
been worked on small dataset.

3. Proposed method

The main object of this paper is the prediction
of diabetes. Three DM algorithms i.e. LR, RF and SVM
are applied on a massive dataset after extracting the
association rules by using FP-Growth. FP-Growth is one
of the most effective algorithms for mining frequent item
sets, however when the data is large, this method is
constrained by the resource of a single computer and
cannot complete the computing jobs in a fair amount of
time.

Association rules are extracted by looking for
frequents item sets [20]. Frequent item set mining stands
for finding frequent items associations, correlations or
causative structures (the if/then form) within groups of
items or objects in databases such as transaction
databases and other kind of repositories that bring
information. The first task is to find all subsets of items
that occur mutually in numerous transactions. The second
task consist to find all the rules that associate the presence
of one set of items with the presence of another set of
items in the transaction database. In this work, multiple
techniques were used for diabetes prediction, starting
from significant attributes discovery via Principal
Component Analysis (PCA) method, then mining
frequent pattern and association rules extraction using
FP-Growth in order to discover further knowledge from
the association between attributes. Furthermore, a
collection of ML algorithms is used to predict diabetes
from a large data set of diabetes. The flow chart of the
proposed model for diabetes prediction is illustrated in
Figure 1.

4. Selected ML algorithms

4.1. FP-Growth Algorithm
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The process of mining frequent itemsets in FP-

Growth adopts a divide-and-conquer approach. Initially,
FP-Growth condenses the database, transforming
frequent itemsets into an FP-tree while preserving
association information. Association rules has been
oriented towards two objectives:
- Determine the set of frequent itemsets that
appear in the database with support greater than or
identical to minsup (minimum support) where support is
the proportion of transactions that contain the itemset,
calculated using the formula:

Supp (X) = (Number of transactions containing X) /
(Total number of transactions) 1)

- Generate the set of associative rules, from these
frequent itemsets, with a confidence measure greater than
or identical to minconf. This measures the strength of the
association between two itemsets. It is the conditional
probability of finding Y in a transaction, given that X is
present. The formula is:

Conf(X =>Y) = (Number of transactions containing X
and Y) / (Number of transactions containing X)  (2)

where X and Y are the itemsets for which the confidence
ofthe rule X =>Y (meaning “If X, then Y”) is calculated.
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Figure 1. The flow chart of proposed work.

Afterward, the compressed database is partitioned

into a series of conditional databases, eachlinked to a
frequent item. Ultimately, each database undergoes
independent mining. Critical stages in the FP-growth
algorithm involve building the FP-tree and subsequently
extracting valuable information from this tree structure.
The algorithm is detailed in our published paper [21]. It
allows the discovery of frequent itemsets without
generating candidate itemsets. The FP-Growth
Algorithm is described as follows:

Input: Database of transactions, minimum support

threshold (minsup)

Output: Frequent itemsets, association rules

1. Construction of the FP-tree:
Traverse transactions, count the frequency of each
unique item, remove infrequent items, sort the items
based on frequency, and construct an FP-tree.

2. Construction of the Header Table
Create a header table to record the first occurrence of
each item in the tree.

3. Construction of Conditional Sets:
For each item in the header table, extract conditional
paths in the tree.

4. Recurrence to Extract Frequent Sets:
Repeat the process from Step 1 to extract frequent
patterns from conditional sets.

5. Generation of Association Rules:
Generate all possible combinations of items in
frequent patterns, split into antecedent and
consequent patterns, the confidence is calculated, and
the rules are filtered.

6. Return the Final Set of Association Rules
The final output is a set of association rules meeting
the specified criteria.

4.2. Support Vector Machine

Support Vector Machines (SVM) [22] are
renowned for their effectiveness as classification
algorithms in data mining. They function in high-
dimensional spaces by creating a hyperplane that
separates two classes with the maximum margin. The
primary goal of SVM is to find this optimal linear
hyperplane, which enhances predictive accuracy and
precision in classifying data points, making it a widely
used method across various applications.

In SVM, the training data consists of a set of
samples, X={xi,X2,..., Xn}, each defined by n features,
along with corresponding class labels Y={yiy2,...,yn},
where y; canbe -1 or +1 (for example, -1 for non-diabetic
and +1 for diabetic). The objective is to determine a
hyperplane that maximizes the margin, which is the
distance from the hyperplane to the closest points of each
class, known as support vectors. The hyperplane is
expressed mathematically as:

f(x) = wTx+b =0 3)
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where w represents the weight vector and b is the bias
term. Maximizing the margin involves minimizing the
norm of w while satisfying the constraints that ensure
correct classification of the training samples.
Specifically, this is done by ensuring that

yi (Wixi+b) >1 for all i=1,2,.,n 4

To frame this as a convex optimization problem,
we can rewrite it as minimizing (1/2) llwll> with the
aforementioned constraints. In cases where the data is not
linearly separable, kernel functions are used to transform
the data into a higher-dimensional space where a linear
separation is possible. The kernel function K(x;,xj) can
take the form K(xi,xj)=xi'xj. For dataset that cannot be
perfectly separated, slack variables & are introduced,
allowing for some misclassifications. The constraints are
then modified to account for these slack variables,
leading to the formulation

yi(w xitb)>1-&;. 5)

Regularization is incorporated through a parameter C that
balances the trade-off between maximizing the margin
and minimizing misclassification. The objective function
thus becomes

min (1/2) IWlI*+CX&;, (6)

where a smaller C allows for a wider margin but permits
more errors, while a larger C results in a narrower margin
with fewer misclassifications.

To solve for the weights w and bias b,
optimization techniques like the Sequential Minimal
Optimization algorithm are employed. Support vectors,
the points that lie on the margin boundaries, are identified
by those having &=0. When classifying new data points,
the algorithm computes f(x) = w'x+b and assigns a class
label based on the sign of f(x). Specifically, if f(x)>0, the
label is +1, and if f(x)<0, the label is -1.

Finally, the model's performance is evaluated
using metrics like accuracy and cross-validation,
ensuring it generalizes well to unseen data. Overall, SVM
stands out as a powerful tool for classification tasks,
effectively handling complex datasets and delivering
reliable results.

4.3. Random Forest

RF, pioneered by Leo Breiman [23], is a powerful
ensemble learning method that encompasses an ensemble
of unpruned classification or regression trees. These trees
are created by randomly sampling training data, and the
induction process includes the random selection of
features. Leo Breiman's RF [24] introduced in the field of
ML, has gained prominence for its robustness and
versatility. This ensemble learning technique involves
the construction of multiple unpruned decision trees,
collectively forming a "forest." The uniqueness of RF lies
in its approach to tree creation, where the training data is

randomly sampled, and features are selectively chosen
during the induction process. The random sampling of
training data ensures diversity among the individual
trees, preventing overfitting and enhancing the model's
generalization ability. Additionally, the random selection
of features for each tree promotes the exploration of
different aspects of the dataset, contributing to the overall
robustness of the RF algorithm. RF works in theory as:

- Ensemble Learning with Decision Trees: RF
is based on the idea of “bagging” (bootstrap aggregating),
where multiple models (decision trees) are trained on
different random samples of the data. Instead of relying
on a single model, RF combines predictions from
multiple trees to achieve a more robust outcome. Each
tree in a random forest is a standalone model, but
individually, decision trees are prone to overfitting,
especially if they grow deep. RF solves this by creating
numerous such trees, each one trained on a slightly
different dataset subset.

- Bootstrap Sampling: For each tree, RF selects
a random subset of the training data, where sampling is
done with replacement. This means some data points may
be used multiple times, while others might not be
included at all. This process creates variety in the training
data for each tree, reducing the risk of overfitting on any
single dataset.

- Random Feature Selection: In addition to
random sampling of data, RF also randomly selects a
subset of features for each split in a tree. For instance, if
there are 10 features, each split may use only a few of
these, chosen randomly. This feature randomness further
reduces the correlation among trees, making the
ensemble more robust and less sensitive to overfitting.
By using different features and datasets for each tree,
Random Forest achieves diversity among the trees. This
diversity is crucial because it allows each tree to capture
different aspects of the data, helping the ensemble as a
whole to generalize better to new data.

- Majority Voting or Averaging: For
classification (e.g., predicting whether a patient has
diabetes or not), each tree in the forest makes a
prediction, and the forest’s final prediction is determined
by a majority vote across all trees. This aggregation
reduces the variance and makes the model more stable,
as it lessens the impact of individual, potentially biased
trees.

In regression, RF averages the predictions from
all trees to arrive at a final prediction, thus reducing the
impact of any individual tree that might have outliers or
is biased.

4.4. Logistic Regression

LR [25] stands as a pivotal and widely adopted
statistical and data mining technique, cherished by
statisticians and researchers alike. It serves as an
indispensable tool for the analysis and classification of
datasets characterized by binary and proportional
responses. LR has found widespread application in
various fields, contributing significantly to the
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exploration and interpretation of data with binary
outcomes and proportional response structures. The
technique's versatility makes it a cornerstone in statistical
modeling predictive analytics, playing a crucial role in
addressing and complex problems across diverse
domains. The steps of LR are as follows:

- Binary Classification: LR is specifically
designed to predict a binary outcome (0 or 1, diabetic or
non-diabetic in this case) based on one or more predictor
variables.

- Log-Odds and Sigmoid Function: Unlike
Linear Regression, which predicts a continuous value,
Logistic Regression predicts the probability of an
instance belonging to a particular class (e.g., diabetic).
This probability is calculated using the sigmoid (logistic)
function, which outputs a value between 0 and 1,
representing the likelihood of diabetes.

- Logistic Function and Probability
Prediction : The logistic function used in LR is
expressed as:

P(Y=1|X)=1/1+exp—(Bot+P1X1+P2Xo+ - +PuXn) (7

where:
- Y is the target outcome (1 for diabetic, 0 for
non-diabetic).
- X,Xs,...,Xn are the feature variables (like
glucose level, BMI, age).
- Po is the intercept, and PBi,B2,....pn are the
coefficients learned during training.

The model outputs a probability score between 0 and 1.
By setting a threshold (e.g., 0.5), predictions are
classified as diabetic if the probability is above the
threshold, and non-diabetic if below.
- Training the Model: LR uses optimization
algorithms, like Maximum Likelihood Estimation
(MLE), to find the best coefficients § that maximize the
likelihood of correctly classifying each instance in the
training data. In practical implementations, gradient
descent is often used to iteratively adjust the coefficients
to minimize the error between predicted and actual
values.
- Prediction Process : For each patient in the
PIMA dataset, Logistic Regression calculates the
probability of being diabetic based on the input
feature.Using a set threshold (typically 0.5), the
model assigns a final class (diabetic or non-
diabetic). Adjusting the threshold can make the
model more or less sensitive to predicting positive
cases (diabetes), which can be useful depending on
the goal (e.g., reducing false negatives).
- Evaluation and Interpretation: Evaluate the
model using accuracy to understand its effectiveness on
the PIMA dataset. Precision and recall are particularly
important in medical data to balance false positives and
false negatives.

The coefficients § can be interpreted as odds ratios,
which explain the impact of each feature on the

likelihood of being diabetic. For example, a positive
coefficient for glucose level means that as glucose
increases, the likelihood of diabetes also increases.

5. Statistical analysis

5.1. Dataset Description

The data set employed in this study is the PIMA
Indian dataset, made available by the National Institute
of Diabetes contains information of 768 women from a
population near Phoenix, Arizona, USA. This dataset
comprises eight independent variables (features) and one
dependent variable (target) (Table 1).

Table 1. PIMA dataset description

Attributes Description Value Data
interval type
-Pregnancies (P) It shows how many [0-17] numeric
times patient is
pregnant
-Glucose (G) Plasma glucose  [0-199] numeric

concentration over 2 h
in an oral glucose
tolerance test.

-BloodPressure It indicates the patient’s  [0-122] numeric
(BP) Blood Pressure

-SkinThickness It shows skin fold [0-99] numeric
(S) thickness

-Insulin (I) 2-Hour serum insulin  [0-846] numeric
(mu U/ml).

-BMI It indicates Body Mass  [0-67] numeric
Index

DiabetesPedigree It shows family history — [0-2.45] numeric

Function (DPF) of patient.
-Age (A) It shows age of patient [21-81] numeric
-Outcome (O) 1 for diabetes and 0 for  (0,1) binary

non- diabetes.

The dataset includes various medical predictor
variables alongside a target variable, "Outcome,"
indicating diabetes presence. Predictor variables cover
aspects like the number of pregnancies, BMI, insulin
levels, age, among others. Collected from the UCI
Machine Learning Repository, this dataset contains 768
records, with 268 positive diabetes cases. Each row
within the dataset represents a distinct individual, and the
values in each column offer specific insights into that
person's health and medical history. This comprehensive
dataset is a valuable resource for exploring the
relationships between various health-related features and
the occurrence of diabetes. It provides a nuanced
perspective on the health characteristics of different
individuals, enabling a thorough examination of factors
that may contribute to the development or prevalence of
diabetes within the Pima Indian population.

5.2. Dataset Analysis
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Within the statistical summary encapsulated in
the "diabetes" Data Frame, the dataset's richness
becomes apparent. With 768 entries, the absence of null
values not only indicates the completeness of the dataset

sample is approximately 41.8 years, with a standard
deviation of 22.46. The minimum age is 0.08 years
(which seems to be a data entry error) and the maximum
age is 80 years.

but also assures the robustness of subsequent analyses. - Hypertension:  Approximately 8%  of
Delving into the means of the numerical attributes offers individuals in the sample are listed as having
a glimpse into the dataset's central tendencies. For hypertension.

instance, the average number of "Pregnancies" is - Heart disease: Approximately 4% of

approximately 3.85, providing a baseline understanding
of this variable's distribution.

Examining standard deviations becomes crucial
in understanding the variability around the means.
Attributes such as "Insulin”" and "Age" stand out with
notably high standard deviations, pointing to significant
data dispersion within these variables. This variability is
key in assessing the diversity and distribution of values
within each attribute. The range between minimum and
maximum values for each attribute further unveils the
diversity inherent in the dataset. However, anomalies,
like the minimum "Glucose" value of 0, prompt
necessary caution and signal potential missing or invalid
data that necessitate careful scrutiny and validation.

individuals in the sample are listed as having heart
disease.

- BMI (Body Mass Index): The average BMI in
the sample is approximately 27.32, with a standard
deviation of 6.77. The minimum BMI is 10.01 and the
maximum BMI is 95.69.

- HbAlc (glycated hemoglobin) level: The
average HbAlc level in the sample is approximately
5.53, with a standard deviation of 1.07. The minimum
level is 3.50 and the maximum level is 9.00.

- Blood glucose level: The average blood
glucose level in the sample is approximately 138.22,
with a standard deviation of 40.91. The minimum level
is 80 and the maximum level is 300.

- Diabetes: Approximately 9% of individuals in

Table 2. Statistical summary of PIMA diabetes dataset

P G BP S 1 BMI DPF A
count 768 768 768 768 768 768 768 768
min 0,00 0,00 0,00 0,00 0,00 0,00 0,08 21,00
max 17,0 199,0 122,0 99,00 846,0 67,10 2,420 81,00
1st Quartil 1.000 99.0 62.00 0.00 0.00 27.30 02437 24.00
Std 3,00 117,0 72,00 23,00 30,50 32,00 0373 29,00
3rd Quartil 6.000 140.2 80.00 32.00 127.2 36.60 0.6262 41.00
Mean 3,85 120.8 69,10 20,54 79,79 31,99 0,472 3324

The presentation of percentiles, particularly the
first and third quartiles, enriches the statistical narrative
by providing a nuanced view of the data distribution.
These quartiles serve as crucial points, allowing for a
deeper understanding of how data is spread across the
dataset. Examining percentiles becomes particularly
insightful in identifying potential outliers and
understanding the overall structure of the numerical
attributes. In summary, this detailed statistical analysis
not only provides a comprehensive overview of the
PIMA dataset but also lays the groundwork for informed
decision-making in subsequent analyses and modeling
efforts. The richness of the insights derived from
measures of central tendency, variability, and
distributional characteristics empowers researchers and
analysts to extract meaningful conclusions and navigate
the complexities embedded within the dataset presented
in Table 2. These results appear to be from a study or
data analysis on medical and demographic
characteristics. Here is an interpretation of each column:
- Age: The average age of individuals in the

the sample are listed as having diabetes.

Figure 2 presents the distribution of diabetes and
non-diabetes outcomes in the dataset, which is visually
represented in a pie chart, illustrating that approximately
34.9% of individuals have been diagnosed with diabetes,
while the remaining 65.1% do not have diabetes.

M Diabetics W Non diabetics

34,9%

Figure 2. Distribution of Diabetics People
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The histogram and the curve in Figure 3
indicate that most glucose readings are centered on 100,
with fewer readings towards the extremes of the scale (0
and 200). This could represent blood glucose levels
measured in a group of individuals or during repeated
tests for one individual over time.

804

70 4
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&

0 25 50 75 100 125 150 175 200
Glucose Level

Figure 3. Histogram representation of Glucose

The histogram in Figure 4 is useful in
understanding the distribution characteristics of insulin
measurements within the examined dataset. It seems to
indicate that the majority of the measured insulin levels
are relatively low, with fewer occurrences of high insulin
levels.

The histogram of Figure 6 shows that the
majority of blood pressure values are between
approximately 60 and 80, with a clear peak in this range.
There is also a small frequency of very low values (close
to 0), which could be due to measurement errors or a
specific subset of the population.
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Figure 4. Representation of Insulin attribute

Figure 5 represente the histogram of BMI
attribute, this histogram is useful for understanding the
overall BMI distribution of a group and can be an
important tool in public health analysis to assess the
prevalence of underweight, normal weight, overweight,
and obesity within the population sampled.

The customized pair plot, depicted in Figure 7,
offers a comprehensive visual representation of the
correlation a by the 'Outcome' variable. where blue color
indicates diabetes and orange color represent no-
diabetes.
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Figure 5. Histogram representation of BMI
attribute
100 M
80 - il
L1
>
2. \
v
=
o =
o
w «© L]
/

80 100 120

;] 20 40 [ ]
Blood Pressure (mmHg)

Figure 6. Histogram representation of
BloodPressure attribute

From Table 3 we notice some remark such as:
- Grossness and Outcome (0.22): A weak to
moderate positive correlation, suggesting that the
number of pregnancies might be slightly associated with
the diabetes outcome variable.
- Glucose and Outcome (0.47): Here we have a
moderate positive correlation, indicating that higher
glucose levels could be associated with an increased risk
- of diabetes.
- Insulin and Skin Thickness (0.44): There is a
moderate positive correlation between these two
variables, which can be interpreted as an association
between higher insulin levels and greater skin thickness.
- Some other strong correlations are not directly
related to the outcome, such as BMI and Skin Thickness
(0.39), which could indicate a physiological relationship
between body fat and skin thickness.
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Values close to zero represent a very weak or that the relationship between these different health
null linear relationship between the variables. For measures and diabetes is complex and likely not defined
example, BMI and Blood Pressure (0.28) show a weak by simple one-to-one correlations.

positive correlation. Overall, the values generally
indicate that while some variables have stronger
associations with the diabetes outcome, many variables
have weak correlations with each other. This suggests

Table 3. Correlation matrix

P G BP S I BMI DPF A o

BP

BMI
DPF

1.000000 0.129459 0.141282 -0.081672  -0.073535  0.017683 -0.033523  0.544341 0.221898
0.129459 1.000000 0.152590 0.057328 0.331357 0.221071 0.137337 0.263514 0.466581
0.141282 0.152590 1.000000 0.207371 0.088933 0.281805 0.041265 0.239528 0.065068
-0.081672  0.057328 0.207371 1.000000 0.436783 0.392573 0.183928 -0.113970  0.074752
-0.073535  0.331357 0.088933 0.436783 1.000000 0.197859 0.183928 -0.042163 0.130548
0.017683 0.221071 0.281805 0.392573 .197859 1.000000 0.140647 0.036242 0.292695
-0.033523 0.137337 0.041265 0.183928 0.185071 0.140647 1.000000 0.033561 0.173844
0.544341 0.263514 0.239528 -0.113970  -0.042163  0.036242 0.033561 1.000000 0.238356
0.221898 0.466581 0.065068 0.074752 0.130548 0.292695 0.173844 0.238356 1.000000

100+
% so-

0=
1004

n 504

< 50

25+

0.0 2.5 255075
DPF A

50
B

Figure 7. Correlation visualization between different attributs of diabetes dataset
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The ninth significant features used for diabetes
prediction are shown with their correlations in the heat
map illustrated in Figure 8. A heat map is a way to show
the correlation between multiple variables at once. It uses
a matrix of colored cells, where each cell represents the
correlation coefficient between two variables. The
correlation coefficient is a numeric value that ranges from
-1 to 1 and reflects the direction and magnitude of the
correlation. The color and intensity of the cell indicate the
value of the coefficient, with a color scale typically
ranging from blue (Negative) to red (Positive). A heat map
can help you quickly identify variables that are strongly or
weakly correlated and spot outliers or anomalies.
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Figure 8. Diabetes features correlation using the
heat map

6. Data Preparation and Transformation
for Mining

Data pre-processing is an important step to
consider before diving into data mining and analysis. This
involves various techniques to solve issues like missing
values, data reduction and so on in order to improve the
quality of the dataset.

6.1.  Data cleaning

The initial step is to clean the dataset, by
removing duplicated lines and filling in the missing values.
And null values in dataset are replaced by the median value
of each attribute, and that would help resolve the problem
of inconsistencies and ensures a complete dataset. This
method is effective for preserving the dataset's original
distribution, especially when the proportion of missing
data is low.

6.2. Data reduction

This technique aims to give a reduced
representation of dataset without affecting the results.
Dimensionality reduction is employed to reduce the
number of attributes. In this work Principal Component
Analysis (PCA) is used. In general the PCA is a popular
method of dimension reduction, it simplify a complex
dataset from having many variables (the most and the least
significant) and keeps only the significant features in the
dataset. By applying PCA, the following elements are
closely related:

- Pregnancy and age
- Blood glucose and blood pressure (BP)
- BMI, DPF, Insulin levels and skin thickness.

6.3. Data transformation

To effectively utilize the FP-Growth algorithm,
our study resquired mmeticulous preparation and
transformation of the PIMA Database. This well-curated
dataset, which includes records from 768 women of PIMA
descent, contains several critical attributes such as plasma
glucose concentration, diastolic blood pressure, triceps
skin fold thickness, 2-hour serum insulin levels, body mass
index (BMI), diabetes pedigree function, the number of
pregnancies, and age. These attributes are systematically
documented in Table 1, providing a structured overview
that highlights each variable's range. Nevertheless, it is
essential to transform these continuous variables into
categorical intervals, which are crucial for identifying and
leveraging patterns predictive of diabetes in our algorithm.

Guided by rigorous statistical analysis and
substantial domain knowledge, we transformed these
attributes into categorical intervals. This strategic
categorization is designed to distinguish between diabetic
and non-diabetic groups based on specific attributes.

For instance, age was categorized into "Young' [0,
30] and 'Senior' [31, 80] groups to reflect different risk
profiles. This categorization is visualized in Figure 9,
which illustrates the age distribution of diabetic and non-
diabetic individuals. Diabetic patients are denoted with an
orange colour and the symbol "0," while non-diabetic
individuals are marked in blue and represented by the
symbol "1."
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Figure 9. Age distribution of diabetic and non-
diabetic individuals

Blood pressure readings were segmented into low
[0, 40], medium [41, 90], and high [91, 120] categories to
correlate with varying diabetes risks. This distribution is
shown in Figure 10.

Similarly, glucose levels were divided into
normal [0, 125] and high [126, 200], aligning with clinical
thresholds for diabetes diagnosis, as depicted in Figure 11.
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Figure 10. Blood Pressure distribution of diabetic
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Figure 11. Glucose levels distribution of diabetic and
non-diabetic individuals
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Table 4. Categorical transformations for
diabetes prediction

Attributes Categorical intervals
P P1 {0-5}, P2{>5}
G G1{0-125}, G2{>125}
BP B1{0-40}, B2{40-90}, B3{>90}
S S1{0-8}, S2{8-45}, S3{>45}
I 11{0-30}, 12{30-150}, I3{>150}
BMI BMI1{0-30}, BMI2{>30}
D D1{0-0.8}, D2{>0.8}
A Al {0-30}, A2{>30}
O 0 for non-diabetic, and 1 for diabetic

7. Results and Discussion

This section delves into the examination of results.
The outlined approach has been put into practice through
the utilization of Python, within the Jupyter Notebook
environment. The dataset is divided into training and
testing: 70 percent of data for validation and training and
30 percent of data for the testing.

7.1. Analysis of Association Rules

By applying the FP-Growth algorithm, the top 10
association rules extracted from the diabetes dataset,
generated with a minimum support of 0.4 and a confidence
level of 0.5, offer vital insights into factors significantly
associated with diabetes risk. These rules, detailed in Table
5, integrate various patient characteristics such as age,
body mass index, glucose levels, family history, blood
pressure, skin fold thickness, and insulin levels. They
reveal patterns that either increase or decrease the
likelihood of developing diabetes. For instance, Rule 1
indicates that younger patients (Al: age < 30) with a BMI
< 30 (BMI1), fewer pregnancies (P1: < 5), and a lower
family diabetes history (D1: < 0.8) are less likely to have
diabetes. This suggests that traditional risk factors such as
age, obesity, and family history significantly influence the
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onset of diabetes. Additionally, Rule 2 highlights that
patients with high glucose levels (G2: > 125 mg/dl) and a
higher BMI (BMI2: > 30) are at increased risk for diabetes,
aligning with established medical knowledge that links
elevated glucose levels and obesity with heightened
diabetes risk.

To conclude, this analysis offers important
insights into the factors influencing diabetes risk:
- Protective Factors: Younger individuals (< 30
years), those with a lower BMI (< 30), fewer pregnancies
(£5), and a minimal family history of diabetes (< 0.8) are
less likely to develop the condition. These findings
underscore the benefit of early lifestyle management and
awareness of genetic risk in lowering diabetes likelihood.
- Intermediate Risk Indicators: Moderate skinfold
thickness (8-45 mm) and blood pressure (40-90 mm Hg)
appear to maintain a generally low risk profile for diabetes.
On their own, these factors do not strongly indicate
diabetes risk, unless accompanied by other more severe
factors.
- High-Risk Profiles: Higher blood glucose levels
(> 125 mg/dl) alongside a BMI above 30 show a strong
association with diabetes, aligning with clinical
understanding of the relationship between metabolic
imbalance and diabetes development.
- Compound Risk of Hypertension and Obesity:
Those with very high blood pressure (> 90 mm Hg) and a
higher BMI face an especially increased risk for diabetes,
emphasizing the combined impact of hypertension,
obesity, and metabolic health.
- Collectively, these insights enrich current medical
understanding by refining predictive tools and supporting
targeted treatment. They allow healthcare providers to
design personalized management plans that tackle
individual risk factors, thereby improving prevention and
care for diabetes. Additionally, this analysis highlights the
role of advanced data-mining techniques in revealing
complex, multifaceted patterns within medical data.

Table 5. Key Association Rules Identifying Risk and
Protective Factors for Diabetes

nll;(rlrlli)eer Antecedent Consequent Confidence
1 ["BMI1","A1","P1","D1"] ["0" 0,93
2 ["G2", "BMI2"] ["1M 0,90
3 ["G1","s2","P1","D1","B2"] ["0"] 0,89
4 ["A2", "G2", "BMI2"] ["1"] 0,88
5 ["G1","S2","D1"] ["0" 0,85
6 ["A1", "P1", "G1", "S1"] ["0" 0,85
7 ["S3", "G2"] ["1"] 0,85
8 ["13", "G2"] ["1"] 0,83
9 ["B3", "BMI2"] ["1mM 0,80
10 ["G2","BMI2"] ["0" 0,85

7.2. Accuracy analysis

After association rules extraction, we conclude that
factors of risk to have diabetes are mainly BMI, Glucose
levels, Insulin levels, age and heredity. So we used these
factors to predict diabetes by ML algorithms, the metric
used in this study include accuracy and the confusion
matrix. The accuracy (equation 8) is computed by
summing up two correct predictions (True Positives +
True Negatives) and dividing this sum by the total number
of data sets (Positives + Negatives). The optimal accuracy
score is 1.0, while the lowest possible score is 0.0.[25]

_ TP+IN
TP+TN + FN + FP

®)

The confusion matrix (Table 6) displays the predicted
values of the data, distinguishing between True Positives
(TP), True Negatives (TN), False Positives (FP), and False
Negatives (FN). In this context, True Positives signify
correctly identified positive instances, True Negatives
denote correctly identified negative instances, False
Positives represent instances incorrectly classified as
positive, and False Negatives indicate instances incorrectly
classified as negative.

Table 6. Confusion matrix representation

Class designation Actual Class

True False
Predicted Positive TP FP
Class Negative TN FN

Execution time it is a crucial metric in evaluating
the efficiency of an algorithm in terms of how quickly it
can process input data and produce the desired output. The
confusion matrices in Table 7 offer insights into the
performance of three different classification techniques:
SVM, LR, and RF. Looking at the SVM results, it
correctly identified 96 instances as negative and 26
instances as positive. However, it made 11 false positive
errors and 21 false negative errors. This suggests that
while the SVM is effective in correctly classifying
negatives, it struggles with false positives and false
negatives. Moving to LR, it demonstrated a higher number
of true negatives (98) and true positives (29) compared to
the SVM. However, it made 9 false positive errors and 18
false negative errors. LR seems to have a better
performance in terms of false positives but has a notable
number of false negatives.
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Table 7. Performance comparison using
Confusion Matrices

Techniques Confusion Matrix
SVM 96 11
21 26
LR 98 9
18 29
RF 92 15
18 29

The RF model also had a substantial number of
true negatives (92) and true positives (29), but it made 15
false positive errors and 18 false negative errors. The RF
model appears to have a balanced performance, with
strengths and weaknesses similar to both SVM and LR. As
understood and explored, we can observe that while LR
achieved the highest accuracy, the SVM technique was the
most efficient in terms of execution time when applied on
our database (diabetes).

LR emerged as the top performer with an
accuracy of 82.46%. This indicates that the technique
successfullypredicted the outcome variable based on the
input features, displaying its effectiveness in handling the
dataset. SVM, with an accuracy of 79.22%, demonstrated
a slightly lower but still respectable performance. SVM is
known for its ability to handle complex relationships
between variables, and its performance suggests its
suitability for this dataset. RF, with an accuracy of
78.57%, lagged slightly behind LR and SVM. Despite this,
RF is an ensemble method known for its robustness and
stability, leveraging multiple decision trees for
predictions. While RF required considerably more time for
computation, SVM and LR demonstrated shorterexecution
times. The choice among these techniques should consider
the balance between computational efficiency and
predictive performance. SVM's fast execution time might
beadvantageous in scenarios where real-time processing is
crucial, while RF’s time may be acceptable if itsensemble
characteristics contribute significantly to accurate
predictions. LR, falling in between, represents a trade-off
between computational efficiency and accuracy. Figure 13
illustrates the results obtained by different ML algorithms
obtained by Linshan Xie [26] and Tegga et al [27] and our
proposed method. Figure 14 illustrate the comparison
between K-Nearest Neighbors (KNN), Decision Tree
(DT), Logistic Regression (LR), SVM, Naive Bayes (NB)
and our method. Our method uses LR and risk factors
extracted by FP-Growth algorithm.

0.85
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LR SVM
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Figure 13. Accuracy comparison
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Figure 14. Accuracy comparison by different
methods

8. Conclusion

In summary, the selection of a ML model or
association rule-mining algorithm is contingent upon the
specific goals, priorities, and constraints associated with
the given task. LR, RF and SVM each offer distinct trade-
offs between accuracy and computational efficiency. LR is
valued for its simplicity and interpretability, RF for its
robustness and ensemble capabilities, and SVM for its
effectiveness in high-dimensional spaces.

When it comes to association rule mining, the
choice FP-Growth depends on the desired level of
computational intensity. In contrast, FP-Growth takes an
approach, utilizing a tree structure to efficiently mine more
streamlined association rules with a reduced computational
burden.

Ultimately, the decision-making process involves a
careful consideration of the benefits and drawbacks of each
approach against the specific requirements of the task.
Factors such as available computational resources, dataset
complexity, and the balance between interpretability and
computational efficiency should be taken into account. By
aligning the chosen algorithm with these considerations. ,
practitioners can optimize their approach for the successful
accomplishment of their objectives.
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