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Abstract 
The fundamental goal of this work is to prepare and carry out diabetes prediction using various Machine Learning techniques 
and conduct output analysis of those techniques to find the best classifier with the highest accuracy. This study use the Pima 
Indian Diabetes Dataset and applied the Machine Learning classification methods like Random Forest (RF), Support Vector 
Machine (SVM), and Logistic Regression (LR) for diabetes prediction. The performance of each algorithm is analysed to 
determine the one with the best accuracy. The dataset includes details like pregnancies, glucose levels, blood pressure, and 
other important health information. The focus of this study is to unify FP-Growth algorithm with ML algorithm in order to 
predict diabetes. The FP-Growth is used to extract the frequent items for data pre-processing before prediction. LR algorithm 
stands out with high accuracy, showing promise in predicting type 2 diabetes when using the risk factors identified by FP-
Growth algorithm. The results help guide future research and make it easier to choose the best algorithms, especially ones 
that are fast, for medical decision support systems. LR algorithm stands out with high accuracy, showing promise in 
predicting type 2 diabetes when using the risk factors identified by FP-Growth algorithm. 
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1. Introduction

Globally, an estimated 422 million individual’s
grapple with the repercussions of diabetes, with a notable 
concentration observed in less economically developed 
countries, as reported by the World Health Organization 
(WHO). Recent data from 2023, provided by WHO, 
paints a stark picture with an annual death toll of 
approximately 1.5 million people attributed to 
complications stemming from diabetes. The rising 
prevalence of diabetes on a worldwide scale presents an 
increasingly formidable challenge to public health. Type 
2 diabetes, predominantly affecting adults, emerges as 
the most widespread form. In this variant, the body 
encounters difficulties in either effectively utilizing 
insulin or producing an adequate amount, leading to 
elevated blood sugar levels. Over the past three decades, 
the incidence of type 2 diabetes has displayed a 
concerning upward trajectory, affecting diverse 
populations across countries with varying income levels. 

Concurrently, another distinct type, known as type 
one diabetes or juvenile diabetes, is characterized by the  
pancreas's diminished or complete lack of insulin 
production. The coexistence of these two diabetes types 
contributes to the intricate landscape of global health 
challenges, underscoring the imperative need for 
comprehensive strategies to address the multifaceted 
dimensions of this pervasive and escalating health 
concern [1]. Various types of diabetes, which can be 
broadly categorized into four main types. These include: 
- Type 1 (T1DM): is a chronic autoimmune
condition characterized by insulin deficiency, resulting in 
elevated blood sugar levels (hyperglycaemia). Over the
past 25 years, there has been significant progress in our
understanding of type 1 diabetes, encompassing diverse
aspects including its genetic factors, epidemiology,
immune and β-cell phenotypes, and the overall impact of
the disease [2].
- Type 2 (T2DM): arises from insulin resistance,
a condition wherein cells demonstrate insufficient
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responsiveness to insulin. As the disease advances, there 
may also be a progression towards insulin insufficiency. 
Previously, terms such as 'non-insulin-based diabetes 
mellitus' or 'adult-induced diabetes' have been utilized to 
characterize this condition [3]. 
- Gestational diabetes mellitus (GDM) [4]:
characterized by elevated blood sugar levels first
identified during pregnancy, represents the most
prevalent medical complication during gestation. On a
global scale, GDM affects approximately 15% of
pregnancies, contributing to roughly 18 million births
each year.

Our study expands upon existing research by 
conducting a thorough comparative analysis of 
classification techniques and association rule mining 
algorithms tailored specifically to diabetes datasets. 
While previous studies have often focused on individual 
algorithms or limited comparisons, our work provides a 
comprehensive examination of three widely used 
classification methods—SVM, LR, and RF— [5, 6, 7, 8, 
9, 10] in the context of diabetes prediction. By assessing 
performance metrics and computational efficiency across 
these techniques, we offer valuable insights for 
researchers and practitioners aiming to make informed 
decisions regarding algorithm selection. 

The structure of this article is designed to 
systematically delve into the realm of data mining within 
the context of diabetes analysis. It begins with a related 
work section, which provides a comprehensive overview 
of existing research, offering insights into prior 
approaches and findings. The methodology section 
outlines the steps taken to analyse the diabetes dataset 
and algorithms employed. The results and discussion 
section present the outcomes of the analysis, 
accompanied by thorough interpretation and discussion 
of the findings. Finally, the conclusion synthesizes the 
key insights gleaned from the study, underlining its 
implications for both the field of data mining and 
diabetes research. 

2. State-of-the-Art

DM generally has two categories of models, the 
first one is the predictive category, and the second one is 
descriptive. Each one of these classes has various 
techniques, for the predictive category we have 
regression, classification, prediction and time series 
analysis [9, 10], in the other hand the major techniques of 
the descriptive category are clustering, association rules, 
discover sequences and summary analysis [11, 12]. 

     During the past decades, various DM techniques 
for diabetes detection are reviewed and discussed [13, 14, 
15].  In [16], a review of the application of DM 
techniques for diabetes, as well as the corresponding data 
sets, methods, software, and technologies, is carried out. 
Based on this review, it is concluded that DM has a key 
role and bright research future in the field of glycemic 
control. DM is used to extract valuable information from 
diabetes data, which ultimately helps diabetic patients in 

the management of their glycemic control. Likewise, in 
[17] a survey is conducted on the application of different
DM techniques, including Artificial Neural Network
(ANN), for the prediction and classification of diabetes.
The survey shows that ANN outperforms the rest of the
techniques with 89% of prediction accuracy. In [18] the
author’s presents a survey on diabetes detection,
classification and prediction by evaluating different
schemes on parameters like, algorithm/models, input data 
type, etc. they conclude that a data pre-processing is
needed for accurate detection, classification and
prediction.  In a review of existing literature, the most
used models for diabetes prediction are SVM, RF, DT,
and ANN. These Machine Learning (ML) algorithms
were used on small dataset. Hybrid models and ensemble
methods have also been explored [19], which can further
improve the predictive performance of the models.
Finally, other studies have explored the use of DM such
as association’s rules but most researcher’s work have
been worked on small dataset.

3. Proposed method

The main object of this paper is the prediction 
of diabetes. Three DM algorithms i.e. LR, RF and SVM 
are applied on a massive dataset after extracting the 
association rules by using FP-Growth.  FP-Growth is one 
of the most effective algorithms for mining frequent item 
sets, however when the data is large, this method is 
constrained by the resource of a single computer and 
cannot complete the computing jobs in a fair amount of 
time. 

Association rules are extracted by looking for 
frequents item sets [20]. Frequent item set mining stands 
for finding frequent items associations, correlations or 
causative structures (the if/then form) within groups of 
items or objects in databases such as transaction 
databases and other kind of repositories that bring 
information. The first task is to find all subsets of items 
that occur mutually in numerous transactions. The second 
task consist to find all the rules that associate the presence 
of one set of items with the presence of another set of 
items in the transaction database. In this work, multiple 
techniques were used for diabetes prediction, starting 
from significant attributes discovery via Principal 
Component Analysis (PCA) method, then mining 
frequent pattern and association rules extraction using 
FP-Growth in order to discover further knowledge from 
the association between attributes. Furthermore, a 
collection of ML  algorithms is used to predict diabetes 
from a large data set of diabetes. The flow chart of the 
proposed model for diabetes prediction is illustrated in 
Figure 1. 

4. Selected ML algorithms

4.1. FP-Growth Algorithm 
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  The process of mining frequent itemsets in FP-
Growth adopts a divide-and-conquer approach. Initially, 
FP-Growth condenses the database, transforming 
frequent itemsets into an FP-tree while preserving 
association information. Association rules has been 
oriented towards two objectives: 
- Determine the set of frequent itemsets that
appear in the database with support greater than or
identical to minsup (minimum support)  where support is
the proportion of transactions that contain the itemset,
calculated using the formula:

Supp (X) = (Number of transactions containing X) / 
(Total number of transactions)                                                  (1) 

- Generate the set of associative rules, from these
frequent itemsets, with a confidence measure greater than 
or identical to minconf. This measures the strength of the
association between two itemsets. It is the conditional
probability of finding Y in a transaction, given that X is
present. The formula is:

Conf(X => Y) = (Number of transactions containing X 
and Y) / (Number of transactions containing X)       (2)        

where X and Y are the itemsets for which  the confidence 
of the rule X => Y (meaning “If X, then Y”) is calculated. 

Afterward, the compressed database is partitioned 

into a series of conditional databases, each linked to a 
frequent item. Ultimately, each database undergoes 
independent mining. Critical stages in the FP-growth 
algorithm involve building the FP-tree and subsequently 
extracting valuable information from this tree structure. 
The algorithm is detailed in our published paper [21]. It 
allows the discovery of frequent itemsets without 
generating candidate itemsets. The FP-Growth 
Algorithm is described as follows: 

Input: Database of transactions, minimum support 
threshold (minsup) 
Output: Frequent itemsets, association rules 
1. Construction of the FP-tree:

Traverse transactions, count the frequency of each
unique item, remove infrequent items, sort the items
based on frequency, and construct an FP-tree.

2. Construction of the Header Table
Create a header table to record the first occurrence of
each item in the tree.

3. Construction of Conditional Sets:
For each item in the header table, extract conditional
paths in the tree.

4. Recurrence to Extract Frequent Sets:
Repeat the process from Step 1 to extract frequent
patterns from conditional sets.

5. Generation of Association Rules:
Generate all possible combinations of items in
frequent patterns, split into antecedent and
consequent patterns, the confidence is calculated, and
the rules are filtered.

6. Return the Final Set of Association Rules
The final output is a set of association rules meeting 
the specified criteria. 

4.2. Support Vector Machine 

Support Vector Machines (SVM) [22] are 
renowned for their effectiveness as classification 
algorithms in data mining. They function in high-
dimensional spaces by creating a hyperplane that 
separates two classes with the maximum margin. The 
primary goal of SVM is to find this optimal linear 
hyperplane, which enhances predictive accuracy and 
precision in classifying data points, making it a widely 
used method across various applications. 

In SVM, the training data consists of a set of 
samples, X={x1,x2,..., xn},  each defined by n features, 
along with corresponding class labels Y={y1,y2,...,yn}, 
where yi  can be -1 or +1 (for example, -1 for non-diabetic 
and +1 for diabetic). The objective is to determine a 
hyperplane that maximizes the margin, which is the 
distance from the hyperplane to the closest points of each 
class, known as support vectors. The hyperplane is 
expressed mathematically as:    

 f(x) = wTx+b =0             (3) 

    Data cleaning by the median 

Data reduction by Principal 
component Analysis 

Data transformation by the 
binning method 

Rules through FP-Growth
  

End 

Figure 1. The flow chart of proposed work.
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where w represents the weight vector and b is the bias 
term. Maximizing the margin involves minimizing the 
norm of w while satisfying the constraints that ensure 
correct classification of the training samples. 
Specifically, this is done by ensuring that 

    yi (wTxi+b) ≥1 for all i=1,2,.,n            (4) 

To frame this as a convex optimization problem, 
we can rewrite it as minimizing (1/2) ∥w∥2 with the 
aforementioned constraints. In cases where the data is not 
linearly separable, kernel functions are used to transform 
the data into a higher-dimensional space where a linear 
separation is possible. The kernel function K(xi,xj) can 
take the form K(xi,xj)=xi⋅xj. For dataset that cannot be 
perfectly separated, slack variables ξi  are introduced, 
allowing for some misclassifications. The constraints are 
then modified to account for these slack variables, 
leading to the formulation 

 yi(wTxi+b)≥1−ξi.       (5) 

Regularization is incorporated through a parameter C that 
balances the trade-off between maximizing the margin 
and minimizing misclassification. The objective function 
thus becomes  

     min (1/2) ∥w∥2+C∑ξi,                              (6) 

where a smaller C allows for a wider margin but permits 
more errors, while a larger C results in a narrower margin 
with fewer misclassifications. 

To solve for the weights w and bias b, 
optimization techniques like the Sequential Minimal 
Optimization algorithm are employed. Support vectors, 
the points that lie on the margin boundaries, are identified 
by those having ξi=0. When classifying new data points, 
the algorithm computes f(x) = wTx+b and assigns a class 
label based on the sign of f(x). Specifically, if f(x)>0, the 
label is +1, and if f(x)<0, the label is -1. 

Finally, the model's performance is evaluated 
using metrics like accuracy and cross-validation, 
ensuring it generalizes well to unseen data. Overall, SVM 
stands out as a powerful tool for classification tasks, 
effectively handling complex datasets and delivering 
reliable results. 

4.3. Random Forest 

RF, pioneered by Leo Breiman [23], is a powerful 
ensemble learning method that encompasses an ensemble 
of unpruned classification or regression trees. These trees 
are created by randomly sampling training data, and the 
induction process includes the random selection of 
features. Leo Breiman's RF [24] introduced in the field of 
ML, has gained prominence for its robustness and 
versatility. This ensemble learning technique involves 
the construction of multiple unpruned decision trees, 
collectively forming a "forest." The uniqueness of RF lies 
in its approach to tree creation, where the training data is 

randomly sampled, and features are selectively chosen 
during the induction process. The random sampling of 
training data ensures diversity among the individual 
trees, preventing overfitting and enhancing the model's 
generalization ability. Additionally, the random selection 
of features for each tree promotes the exploration of 
different aspects of the dataset, contributing to the overall 
robustness of the RF algorithm. RF works in theory as: 
- Ensemble Learning with Decision Trees: RF
is based on the idea of “bagging” (bootstrap aggregating), 
where multiple models (decision trees) are trained on
different random samples of the data. Instead of relying
on a single model, RF combines predictions from
multiple trees to achieve a more robust outcome. Each
tree in a random forest is a standalone model, but
individually, decision trees are prone to overfitting,
especially if they grow deep. RF solves this by creating
numerous such trees, each one trained on a slightly
different dataset subset.
- Bootstrap Sampling: For each tree, RF selects

a random subset of the training data, where sampling is 
done with replacement. This means some data points may 
be used multiple times, while others might not be 
included at all. This process creates variety in the training 
data for each tree, reducing the risk of overfitting on any 
single dataset. 
- Random Feature Selection: In addition to

random sampling of data, RF also randomly selects a 
subset of features for each split in a tree. For instance, if 
there are 10 features, each split may use only a few of 
these, chosen randomly. This feature randomness further 
reduces the correlation among trees, making the 
ensemble more robust and less sensitive to overfitting. 
By using different features and datasets for each tree, 
Random Forest achieves diversity among the trees. This 
diversity is crucial because it allows each tree to capture 
different aspects of the data, helping the ensemble as a 
whole to generalize better to new data. 
- Majority Voting or Averaging: For
classification (e.g., predicting whether a patient has
diabetes or not), each tree in the forest makes a
prediction, and the forest’s final prediction is determined
by a majority vote across all trees. This aggregation
reduces the variance and makes the model more stable,
as it lessens the impact of individual, potentially biased
trees.

In regression, RF averages the predictions from 
all trees to arrive at a final prediction, thus reducing the 
impact of any individual tree that might have outliers or 
is biased. 

4.4. Logistic Regression 

LR [25] stands as a pivotal and widely adopted 
statistical and data mining technique, cherished by 
statisticians and researchers alike. It serves as an 
indispensable tool for the analysis and classification of 
datasets characterized by binary and proportional 
responses. LR has found widespread application in 
various fields, contributing significantly to the 
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exploration and interpretation of data with binary 
outcomes and proportional response structures. The 
technique's versatility makes it a cornerstone in statistical 
modeling predictive analytics, playing a crucial role in 
addressing and complex problems across diverse 
domains. The steps of LR are as follows: 
- Binary Classification: LR is specifically
designed to predict a binary outcome (0 or 1, diabetic or
non-diabetic in this case) based on one or more predictor
variables.
- Log-Odds and Sigmoid Function: Unlike
Linear Regression, which predicts a continuous value, 
Logistic Regression predicts the probability of an 
instance belonging to a particular class (e.g., diabetic). 
This probability is calculated using the sigmoid (logistic) 
function, which outputs a value between 0 and 1, 
representing the likelihood of diabetes. 
- Logistic Function and Probability
Prediction : The logistic function used in LR is 
expressed as: 

    P(Y=1∣X)=1/1+exp−(β0+β1X1+β2X2+⋯+βnXn)       (7) 

where: 
- Y is the target outcome (1 for diabetic, 0 for

non-diabetic).
- X1,X2,…,Xn are the feature variables (like

glucose level, BMI, age).
- β0 is the intercept, and β1,β2,…,βn  are the

coefficients learned during training.

The model outputs a probability score between 0 and 1. 
By setting a threshold (e.g., 0.5), predictions are 
classified as diabetic if the probability is above the 
threshold, and non-diabetic if below. 
- Training the Model: LR uses optimization
algorithms, like Maximum Likelihood Estimation
(MLE), to find the best coefficients β that maximize the
likelihood of correctly classifying each instance in the
training data. In practical implementations, gradient
descent is often used to iteratively adjust the coefficients
to minimize the error between predicted and actual
values.
- Prediction Process : For each patient in the
PIMA dataset, Logistic Regression calculates the
probability of being diabetic based on the input
feature.Using a set threshold (typically 0.5), the
model assigns a final class (diabetic or non-
diabetic). Adjusting the threshold can make the
model more or less sensitive to predicting positive
cases (diabetes), which can be useful depending on
the goal (e.g., reducing false negatives).
- Evaluation and Interpretation: Evaluate the
model using accuracy to understand its effectiveness on
the PIMA dataset. Precision and recall are particularly
important in medical data to balance false positives and
false negatives.

The coefficients β can be interpreted as odds ratios, 
which explain the impact of each feature on the 

likelihood of being diabetic. For example, a positive 
coefficient for glucose level means that as glucose 
increases, the likelihood of diabetes also increases. 

5. Statistical analysis

5.1. Dataset Description 

The data set employed in this study is the PIMA 
Indian dataset, made available by the National Institute 
of Diabetes contains information of 768 women from a 
population near Phoenix, Arizona, USA. This dataset 
comprises eight independent variables (features) and one 
dependent variable (target) (Table 1).  

The dataset includes various medical predictor 
variables alongside a target variable, "Outcome," 
indicating diabetes presence. Predictor variables cover 
aspects like the number of pregnancies, BMI, insulin 
levels, age, among others. Collected from the UCI 
Machine Learning Repository, this dataset contains 768 
records, with 268 positive diabetes cases. Each row 
within the dataset represents a distinct individual, and the 
values in each column offer specific insights into that 
person's health and medical history. This comprehensive 
dataset is a valuable resource for exploring the 
relationships between various health-related features and 
the occurrence of diabetes. It provides a nuanced 
perspective on the health characteristics of different 
individuals, enabling a thorough examination of factors 
that may contribute to the development or prevalence of 
diabetes within the Pima Indian population. 

5.2. Dataset Analysis 

Table 1. PIMA dataset description 

Attributes Description Value 
interval 

Data 
type 

-Pregnancies (P) It shows how many
times patient is 
pregnant 

[0-17] numeric 

-Glucose (G) Plasma glucose 
concentration over 2 h 
in an oral glucose 
tolerance test. 

[0-199] numeric 

-BloodPressure
(BP)

It indicates the patient’s 
Blood Pressure 

[0-122] numeric 

-SkinThickness 
(S)

It shows skin fold 
thickness 

[0-99] numeric 

-Insulin (I) 2-Hour serum insulin
(mu U/ml).

[0-846] numeric 

-BMI It indicates Body Mass 
Index 

[0-67] numeric 

DiabetesPedigree 
Function (DPF) 

It shows family history 
of patient. 

[0-2.45] numeric 

-Age (A) It shows age of patient [21-81] numeric 
-Outcome (O) 1 for diabetes and 0 for 

non- diabetes. 
(0,1) binary 
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Within the statistical summary encapsulated in 
the "diabetes" Data Frame, the dataset's richness 
becomes apparent. With 768 entries, the absence of null 
values not only indicates the completeness of the dataset 
but also assures the robustness of subsequent analyses. 
Delving into the means of the numerical attributes offers 
a glimpse into the dataset's central tendencies. For 
instance, the average number of "Pregnancies" is 
approximately 3.85, providing a baseline understanding 
of this variable's distribution. 

Examining standard deviations becomes crucial 
in understanding the variability around the means. 
Attributes such as "Insulin" and "Age" stand out with 
notably high standard deviations, pointing to significant 
data dispersion within these variables. This variability is 
key in assessing the diversity and distribution of values 
within each attribute. The range between minimum and 
maximum values for each attribute further unveils the 
diversity inherent in the dataset. However, anomalies, 
like the minimum "Glucose" value of 0, prompt 
necessary caution and signal potential missing or invalid 
data that necessitate careful scrutiny and validation. 

The presentation of percentiles, particularly the 
first and third quartiles, enriches the statistical narrative 
by providing a nuanced view of the data distribution. 
These quartiles serve as crucial points, allowing for a 
deeper understanding of how data is spread across the 
dataset. Examining percentiles becomes particularly 
insightful in identifying potential outliers and 
understanding the overall structure of the numerical 
attributes. In summary, this detailed statistical analysis 
not only provides a comprehensive overview of the 
PIMA dataset but also lays the groundwork for informed 
decision-making in subsequent analyses and modeling 
efforts. The richness of the insights derived from 
measures of central tendency, variability, and 
distributional characteristics empowers researchers and 
analysts to extract meaningful conclusions and navigate 
the complexities embedded within the dataset presented 
in Table 2. These results appear to be from a study or 
data analysis on medical and demographic 
characteristics. Here is an interpretation of each column: 
- Age: The average age of individuals in the

sample is approximately 41.8 years, with a standard 
deviation of 22.46. The minimum age is 0.08 years 
(which seems to be a data entry error) and the maximum 
age is 80 years. 
- Hypertension: Approximately 8% of
individuals in the sample are listed as having
hypertension.
- Heart disease: Approximately 4% of
individuals in the sample are listed as having heart
disease.
- BMI (Body Mass Index): The average BMI in
the sample is approximately 27.32, with a standard
deviation of 6.77. The minimum BMI is 10.01 and the
maximum BMI is 95.69.
- HbA1c (glycated hemoglobin) level: The
average HbA1c level in the sample is approximately
5.53, with a standard deviation of 1.07. The minimum
level is 3.50 and the maximum level is 9.00.
- Blood glucose level: The average blood
glucose level in the sample is approximately 138.22,
with a standard deviation of 40.91. The minimum level
is 80 and the maximum level is 300.
- Diabetes: Approximately 9% of individuals in

the sample are listed as having diabetes. 

Figure 2 presents the distribution of diabetes and 
non-diabetes outcomes in the dataset, which is visually 
represented in a pie chart, illustrating that approximately 
34.9% of individuals have been diagnosed with diabetes, 
while the remaining 65.1% do not have diabetes. 

Figure 2. Distribution of Diabetics People 

34,9%
65,1%

Diabetics Non diabetics

Table 2.  Statistical summary of  PIMA diabetes dataset 

P G BP S I BMI DPF A 

count 768 768 768 768 768 768 768 768 

min 0,00 0,00 0,00 0,00 0,00 0,00 0,08 21,00 

max 17,0 199,0 122,0 99,00 846,0 67,10 2,420 81,00 

1st Quartil 1.000 99.0 62.00 0.00 0.00 27.30 0.2437 24.00 

Std 3,00 117,0 72,00 23,00 30,50 32,00 0,373 29,00 

3rd Quartil 6.000 140.2 80.00 32.00 127.2 36.60 0.6262 41.00 

Mean 3,85 120,8 69,10 20,54 79,79 31,99 0,472 33,24 
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The histogram and the curve in Figure 3 
indicate that most glucose readings are centered on 100, 
with fewer readings towards the extremes of the scale (0 
and 200). This could represent blood glucose levels 
measured in a group of individuals or during repeated 
tests for one individual over time. 

Figure 3.  Histogram representation of Glucose 

The histogram in Figure 4 is useful in 
understanding the distribution characteristics of insulin 
measurements within the examined dataset. It seems to 
indicate that the majority of the measured insulin levels 
are relatively low, with fewer occurrences of high insulin 
levels. 

The histogram of Figure 6 shows that the 
majority of blood pressure values are between 
approximately 60 and 80, with a clear peak in this range. 
There is also a small frequency of very low values (close 
to 0), which could be due to measurement errors or a 
specific subset of the population.   

Figure 4. Representation of Insulin attribute

Figure 5 represente the  histogram of BMI 
attribute, this histogram is useful for understanding the 
overall BMI distribution of a group and can be an 
important tool in public health analysis to assess the 
prevalence of underweight, normal weight, overweight, 
and obesity within the population sampled. 

The customized pair plot, depicted in Figure 7, 
offers a comprehensive visual representation of the 
correlation a by the 'Outcome' variable. where blue color 
indicates diabetes and orange color represent no-
diabetes. 

Figure 5.  Histogram representation of BMI 
attribute 

Figure 6.  Histogram representation of 
BloodPressure attribute 

From Table 3 we notice some remark such as: 
- Grossness and Outcome (0.22): A weak to
moderate positive correlation, suggesting that the
number of pregnancies might be slightly associated with
the diabetes outcome variable.
- Glucose and Outcome (0.47): Here we have a
moderate positive correlation, indicating that higher
glucose levels could be associated with an increased risk
- of diabetes.
- Insulin and Skin Thickness (0.44): There is a
moderate positive correlation between these two
variables, which can be interpreted as an association
between higher insulin levels and greater skin thickness.
- Some other strong correlations are not directly
related to the outcome, such as BMI and Skin Thickness
(0.39), which could indicate a physiological relationship
between body fat and skin thickness.
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Values close to zero represent a very weak or 
null linear relationship between the variables. For 
example, BMI and Blood Pressure (0.28) show a weak 
positive correlation. Overall, the values generally 
indicate that while some variables have stronger 
associations with the diabetes outcome, many variables 
have weak correlations with each other. This suggests 

that the relationship between these different health 
measures and diabetes is complex and likely not defined 
by simple one-to-one correlations.  

Table 3. Correlation matrix 

P G BP S I BMI DPF A O 

P 1.000000 0.129459 0.141282 -0.081672 -0.073535 0.017683 -0.033523 0.544341 0.221898 

G 0.129459 1.000000 0.152590 0.057328 0.331357 0.221071 0.137337 0.263514 0.466581 

BP 0.141282 0.152590 1.000000 0.207371 0.088933 0.281805 0.041265 0.239528 0.065068 

S -0.081672 0.057328 0.207371 1.000000 0.436783 0.392573 0.183928 -0.113970 0.074752 

I -0.073535 0.331357 0.088933 0.436783 1.000000 0.197859 0.183928 -0.042163 0.130548 

BMI 0.017683 0.221071 0.281805 0.392573 0.197859 1.000000 0.140647 0.036242 0.292695 

DPF -0.033523 0.137337 0.041265 0.183928 0.185071 0.140647 1.000000 0.033561 0.173844 

A 0.544341 0.263514 0.239528 -0.113970 -0.042163 0.036242 0.033561 1.000000 0.238356 

O 0.221898 0.466581 0.065068 0.074752 0.130548 0.292695 0.173844 0.238356 1.000000 

 
\ 
 
 
 

Figure 7. Correlation visualization between different attributs of diabetes dataset 

EAI Endorsed Transactions on 
Pervasive Health and Technology 

| Volume 11 | 2025 | 



                        Analysis of Data Mining Techniques and Algorithms on Diabetes Dataset

   9 

The ninth significant features used for diabetes 
prediction are shown with their correlations in the heat 
map illustrated in Figure 8.    A heat map is a way to show 
the correlation between multiple variables at once. It uses 
a matrix of colored cells, where each cell represents the 
correlation coefficient between two variables. The 
correlation coefficient is a numeric value that ranges from 
-1 to 1 and reflects the direction and magnitude of the
correlation. The color and intensity of the cell indicate the
value of the coefficient, with a color scale typically
ranging from blue (Negative) to red (Positive). A heat map
can help you quickly identify variables that are strongly or
weakly correlated and spot outliers or anomalies.

Figure 8. Diabetes features correlation using the 
heat map 

6. Data Preparation and Transformation
for Mining

Data pre-processing is an important step to 
consider before diving into data mining and analysis. This 
involves various techniques to solve issues like missing 
values, data reduction and so on in order to improve the 
quality of the dataset. 

6.1.  Data cleaning 

The initial step is to clean the dataset, by 
removing duplicated lines and filling in the missing values. 
And null values in dataset are replaced by the median value 
of each attribute, and that would help resolve the problem 
of inconsistencies and ensures a complete dataset. This 
method is effective for preserving the dataset's original 
distribution, especially when the proportion of missing 
data is low. 

6.2.  Data reduction 

This technique aims to give a reduced 
representation of dataset without affecting the results. 
Dimensionality reduction is employed to reduce the 
number of attributes. In this work Principal Component 
Analysis (PCA) is used. In general the PCA is a popular 
method of dimension reduction, it simplify a complex 
dataset from having many variables (the most and the least 
significant) and keeps only the significant features in the 
dataset. By applying PCA, the following elements are 
closely related: 

- Pregnancy and age
- Blood glucose and blood pressure (BP)
- BMI, DPF, Insulin levels and skin thickness.

 6.3.   Data transformation 

To effectively utilize the FP-Growth algorithm, 
our study resquired mmeticulous preparation and 
transformation of the PIMA Database. This well-curated 
dataset, which includes records from 768 women of PIMA 
descent, contains several critical attributes such as plasma 
glucose concentration, diastolic blood pressure, triceps 
skin fold thickness, 2-hour serum insulin levels, body mass 
index (BMI), diabetes pedigree function, the number of 
pregnancies, and age. These attributes are systematically 
documented in Table 1, providing a structured overview 
that highlights each variable's range. Nevertheless, it is 
essential to transform these continuous variables into 
categorical intervals, which are crucial for identifying and 
leveraging patterns predictive of diabetes in our algorithm. 

Guided by rigorous statistical analysis and 
substantial domain knowledge, we transformed these 
attributes into categorical intervals. This strategic 
categorization is designed to distinguish between diabetic 
and non-diabetic groups based on specific attributes. 

For instance, age was categorized into 'Young' [0, 
30] and 'Senior' [31, 80] groups to reflect different risk
profiles. This categorization is visualized in Figure 9,
which illustrates the age distribution of diabetic and non-
diabetic individuals. Diabetic patients are denoted with an
orange colour and the symbol "0," while non-diabetic
individuals are marked in blue and represented by the
symbol "1."
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Figure 9. Age distribution of diabetic and non-
diabetic individuals 

Blood pressure readings were segmented into low 
[0, 40], medium [41, 90], and high [91, 120] categories to 
correlate with varying diabetes risks. This distribution is 
shown in Figure 10.  

 Similarly, glucose levels were divided into 
normal [0, 125] and high [126, 200], aligning with clinical 
thresholds for diabetes diagnosis, as depicted in Figure 11. 

Figure 10. Blood Pressure distribution of diabetic 
and non-diabetic individuals 

Figure 11. Glucose levels distribution of diabetic and 
non-diabetic individuals 

Figure 12. Insulin levels distribution of diabetic and 
non-diabetic Individuals 

7. Results and Discussion

This section delves into the examination of results.
The outlined approach has been put into practice through 
the utilization of Python, within the Jupyter Notebook 
environment. The dataset is divided into training and 
testing: 70 percent of data for validation and training and 
30 percent of data for the testing. 

7.1.   Analysis of Association Rules 

By applying the FP-Growth algorithm, the top 10 
association rules extracted from the diabetes dataset, 
generated with a minimum support of 0.4 and a confidence 
level of 0.5, offer vital insights into factors significantly 
associated with diabetes risk. These rules, detailed in Table 
5, integrate various patient characteristics such as age, 
body mass index, glucose levels, family history, blood 
pressure, skin fold thickness, and insulin levels. They 
reveal patterns that either increase or decrease the 
likelihood of developing diabetes. For instance, Rule 1 
indicates that younger patients (A1: age ≤ 30) with a BMI  
≤ 30 (BMI1), fewer pregnancies (P1: ≤ 5), and a lower 
family diabetes history (D1: ≤ 0.8) are less likely to have 
diabetes. This suggests that traditional risk factors such as 
age, obesity, and family history significantly influence the 

Table 4. Categorical transformations for 
diabetes prediction 

Attributes Categorical intervals 
P P1 {0-5}, P2{>5} 
G G1{0-125}, G2{>125} 

BP B1{0-40}, B2{40-90}, B3{>90} 
S S1{0-8}, S2{8-45}, S3{>45} 
I I1{0-30}, I2{30-150}, I3{>150} 

BMI BMI1{0-30}, BMI2{>30} 
D D1{0-0.8}, D2{>0.8} 
A A1 {0-30}, A2{>30} 
O 0 for non-diabetic, and 1 for diabetic 
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onset of diabetes. Additionally, Rule 2 highlights that 
patients with high glucose levels (G2: > 125 mg/dl) and a 
higher BMI (BMI2: > 30) are at increased risk for diabetes, 
aligning with established medical knowledge that links 
elevated glucose levels and obesity with heightened 
diabetes risk. 

To conclude, this analysis offers important 
insights into the factors influencing diabetes risk: 
- Protective Factors: Younger individuals (≤ 30
years), those with a lower BMI (≤ 30), fewer pregnancies
(≤ 5), and a minimal family history of diabetes (≤ 0.8) are
less likely to develop the condition. These findings
underscore the benefit of early lifestyle management and
awareness of genetic risk in lowering diabetes likelihood.
- Intermediate Risk Indicators: Moderate skinfold
thickness (8-45 mm) and blood pressure (40-90 mm Hg)
appear to maintain a generally low risk profile for diabetes.
On their own, these factors do not strongly indicate
diabetes risk, unless accompanied by other more severe
factors.
- High-Risk Profiles: Higher blood glucose levels
(> 125 mg/dl) alongside a BMI above 30 show a strong
association with diabetes, aligning with clinical
understanding of the relationship between metabolic
imbalance and diabetes development.
- Compound Risk of Hypertension and Obesity:
Those with very high blood pressure (> 90 mm Hg) and a
higher BMI face an especially increased risk for diabetes,
emphasizing the combined impact of hypertension,
obesity, and metabolic health.
- Collectively, these insights enrich current medical
understanding by refining predictive tools and supporting
targeted treatment. They allow healthcare providers to
design personalized management plans that tackle
individual risk factors, thereby improving prevention and
care for diabetes. Additionally, this analysis highlights the
role of advanced data-mining techniques in revealing
complex, multifaceted patterns within medical data.

7.2. Accuracy analysis 

After association rules extraction, we conclude that 
factors of risk to have diabetes are mainly BMI, Glucose 
levels, Insulin levels, age and heredity. So we used these 
factors to predict diabetes by ML algorithms, the metric 
used in this study include accuracy and the confusion 
matrix. The accuracy (equation 8) is computed by 
summing up two correct predictions (True Positives + 
True Negatives) and dividing this sum by the total number 
of data sets (Positives + Negatives). The optimal accuracy 
score is 1.0, while the lowest possible score is 0.0.[25] 

)8(
FPFNTNTP

TNTPACC
+++

+
=

The confusion matrix (Table 6) displays the predicted 
values of the data, distinguishing between True Positives 
(TP), True Negatives (TN), False Positives (FP), and False 
Negatives (FN). In this context, True Positives signify 
correctly identified positive instances, True Negatives 
denote correctly identified negative instances, False 
Positives represent instances incorrectly classified as 
positive, and False Negatives indicate instances incorrectly 
classified as negative. 

Execution time it is a crucial metric in evaluating 
the efficiency of an algorithm in terms of how quickly it 
can process input data and produce the desired output. The 
confusion matrices in Table 7 offer insights into the 
performance of three different classification techniques: 
SVM, LR, and RF. Looking at the SVM results, it 
correctly identified 96 instances as negative and 26 
instances as positive. However, it made 11 false positive 
errors and 21 false negative errors. This suggests that 
while the SVM is effective in correctly classifying 
negatives, it struggles with false positives and false 
negatives. Moving to LR, it demonstrated a higher number 
of true negatives (98) and true positives (29) compared to 
the SVM. However, it made 9 false positive errors and 18 
false negative errors. LR seems to have a better 
performance in terms of false positives but has a notable 
number of false negatives. 

Table 5. Key Association Rules Identifying Risk and 
Protective Factors for Diabetes 

Rule 
number Antecedent Consequent Confidence 

1 ["BMI1","A1","P1","D1"]  ["0"] 0,93 
2 ["G2", "BMI2"] ["1"] 0,90 

3 ["G1","S2","P1","D1","B2"] ["0"] 0,89 
4 ["A2", "G2", "BMI2"] ["1"] 0,88 

5 ["G1","S2","D1"] ["0"] 0,85 
6 ["A1", "P1", "G1", "S1"] ["0"] 0,85 

7 ["S3", "G2"] ["1"] 0,85 
8 ["I3", "G2"] ["1"] 0,83 
9 ["B3", "BMI2"] ["1"] 0,80 

10 ["G2","BMI2"] ["0"] 0,85 

Table 6. Confusion matrix representation 

Class designation Actual Class 

True False 

Predicted 

Class 

Positive TP FP 

Negative TN FN 
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Table 7. Performance comparison using 
Confusion Matrices 

Techniques Confusion Matrix 

SVM 96 11 

21 26 

LR 98 9 

18 29 

RF 92 15 

18 29 

The RF model also had a substantial number of 
true negatives (92) and true positives (29), but it made 15 
false positive errors and 18 false negative errors. The RF 
model appears to have a balanced performance, with 
strengths and weaknesses similar to both SVM and LR. As 
understood and explored, we can observe that while LR 
achieved the highest accuracy, the SVM technique was the 
most efficient in terms of execution time when applied on 
our database (diabetes). 

LR emerged as the top performer with an 
accuracy of 82.46%. This indicates that the technique 
successfully predicted the outcome variable based on the 
input features, displaying its effectiveness in handling the 
dataset. SVM, with an accuracy of 79.22%, demonstrated 
a slightly lower but still respectable performance. SVM is 
known for its ability to handle complex relationships 
between variables, and its performance suggests its 
suitability for this dataset. RF, with an accuracy of 
78.57%, lagged slightly behind LR and SVM. Despite this, 
RF is an ensemble method known for its robustness and 
stability, leveraging multiple decision trees for 
predictions. While RF required considerably more time for 
computation, SVM and LR demonstrated shorter execution 
times. The choice among these techniques should consider 
the balance between computational efficiency and 
predictive performance. SVM's fast execution time might 
be advantageous in scenarios where real-time processing is 
crucial, while RF’s time may be acceptable if its ensemble 
characteristics contribute significantly to accurate 
predictions. LR, falling in between, represents a trade-off 
between computational efficiency and accuracy. Figure 13 
illustrates the results obtained by different ML algorithms 
obtained by Linshan Xie [26] and Tegga et  al [27] and our 
proposed method. Figure 14 illustrate the comparison 
between K-Nearest Neighbors (KNN), Decision Tree 
(DT), Logistic Regression (LR), SVM, Naïve Bayes (NB) 
and our method. Our method uses LR and risk factors 
extracted by FP-Growth algorithm. 

Figure 13. Accuracy comparison 

Figure 14. Accuracy comparison by different 
methods 

8. Conclusion

In summary, the selection of a ML model or
association rule-mining algorithm is contingent upon the 
specific goals, priorities, and constraints associated with 
the given task. LR, RF and SVM each offer distinct trade-
offs between accuracy and computational efficiency. LR is 
valued for its simplicity and interpretability, RF for its 
robustness and ensemble capabilities, and SVM for its 
effectiveness in high-dimensional spaces. 

When it comes to association rule mining, the 
choice FP-Growth depends on the desired level of 
computational intensity. In contrast, FP-Growth takes an 
approach, utilizing a tree structure to efficiently mine more 
streamlined association rules with a reduced computational 
burden.  
           Ultimately, the decision-making process involves a 
careful consideration of the benefits and drawbacks of each 
approach against the specific requirements of the task. 
Factors such as available computational resources, dataset 
complexity, and the balance between interpretability and 
computational efficiency should be taken into account. By 
aligning the chosen algorithm with these considerations. , 
practitioners can optimize their approach for the successful 
accomplishment of their objectives. 
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