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Abstract

Based on the SEIRD model, we consider that when multiple viruses of different virulence coexist, the more
virulent virus can reinfect nodes already infected by the less virulent virus, which we call here Superexposed.
Based on the state transitions, the corresponding differential equations and cost functions are established, then
building the corresponding optimal control problem, where the vaccine efficiency and drug efficiency are
controlled variables. This nonlinear optimal control problem is solved by Pontryagin’s maximum principle
to finding the structure of the optimal control strategies. Based on the definition of the basic regeneration
number, yielding the R0 value for the model, then discussed the final epidemic size. In the numerical analysis
section, we validate the accuracy of the structure, fitting the behavior of each state and the effect of different
parameter values.
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1. Introduction

Research on epidemics, and how to prevent them, is a
subject that has always existed and been conducted[1].
The epidemic model has been continuously refined
from the basic SIS and SIR models[2, 3]. Considering
the impact of patients in the COVID-19 incubation
stage, [4] proposed a new epidemic model - the
Susceptible Quarantined Exposed Infective Removed
(SQEIR) model, to improve the accuracy of the model
compared to traditional models. SE1E2IQR model,
which show the quarantine treatment plays a key
role in controlling the epidemic disease and assessed
the importance of the basic reproductive ratio R0
is proposed in [5]. Mathematical models based on
nonlinear differential equations have been developed
and applied to a variety of basic epidemic modeling
systems who are interested in controlling the evolution
of states[6–8]. The model in this paper is a refinement of
the underlying epidemic model, which involves the idea
of multiple viruses coexisting and super-exposure, then
analyzes and performs optimal control planning, and
finally compares the impact of a general vaccine with
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that of a preemptive vaccine, which is the focus of this
paper.

The first part presents the background of the study.
In the part 2, we consider that when multiple viruses
of different virulence coexist, the virulent virus will
reinfect nodes already infected by the less. A new
epidemic model is constructed on the simple SEIDR
model[6]. This model can be extended to malwares
attacks and information spreading models[7]. In the
part 3, we establish the optimal control problem that
minimizes the total cost in model and solve them. In
the part 4, we introduce the preemptive vaccine, we
will obtain the relationship between the final epidemic
size and the fraction of preemptive vaccine. In the part
5, we verify the accuracy of the theorems, fitting the
behavioral trajectories of the models with differences
and the influence of each parameter. And compare
general vaccinations and preemptive vaccinations,
preemptive vaccines are effective in shortening the
virus transmission cycle, which is the reason why all
types of vaccines should now be administered at the
early childhood stage.

2. Dynamics of the system model
First, the state evolution is determined, and then
a system model is developed. A system consists of
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N nodes with the number of susceptible, exposed,
infected, recovered and dead states at time t as
nS (t), nE(t), nI (t), nR(t) and nD (t), with the corre-
sponding fractions S(t) = nS (t)/N , E(t) = nE(t)/N , I(t) =
nI (t)/N , R(t) = nR(t)/N ,D(t) = nD (t)/N . So for all t, we
have S(t) + E(t) + I(t) + R(t) +D(t) = 1. For type i, at
time t, the fractions of exposure and infection are Ei(t)
and Ii(t), respectively. In our model, we assume that the
nodes of each type are stable and do not change over
time.

A susceptible (S) node is a node that is vulnerable to
virus attack but not infected; an exposed (E) node is a
node that is infected but not capable of propagation; an
infected (I) node is a node that has been contaminated
with virus; a recovered (R) node is a node that is
immune to virus; and a dead (D) node is a node that
has no life[8].

Suppose a more virulent strain comes into contact
with an individual of a less virulent strain, then
the more virulent strain will completely replace the
other strain in that individual. This is known as
Superexposure[9]. That is, if a susceptible node is
infected by a weakly virulent virus to become an
exposed node and it is exposed to a more virulent virus,
then the more virulent virus will replace the weakly
virulent virus to infect the node again. Assume that
there are n classes of viruses with different virulence in
the system, and that the virulence increases as the value
of i gets larger.

A pre-selected group of vaccine-filled nodes is called
a vaccine group[10]. The vaccine group can distribute
vaccines to susceptible nodes to make them immune
to the virus. We assume that the number of vaccine
groups is NR∗V . A pre-selected set of nodes filled with
medicines is called a medicine group. The medicine
group can distribute medicines to the infected nodes
to make them cured. We assume that the number of
medicine groups is NR∗M . The vaccine and medicine
groups are not infected, so they recover themselves
from the beginning.

In our model, we assume µi is contact rate of
susceptible nodes to exposed nodes of type i, ωi is
contact rate of an exposed node of type i and an infected
node of type i, τ is the rate of superexposure that occurs,
δi is the mortality rate of each infected node of type i,
u is the efficiency of the vaccine to cure a susceptible
node, vi is the healing efficiency of i-type infected nodes
by drug treatment, and ω̄i is the self-healing efficiency
of i-type infected nodes, where all parameters belong
to the set [0,1]. Figure 1 a). shows the system state
transitions with three types viruses in the model with
vaccination.

If the total number of nodes (N ) is large, then
S(t), E(t), I(t), R(t) and D(t) converge to the solution of

a)

b)

Figure 1. System state transitions with three types viruses. a)
with vaccination; b) without vaccination.

the following system of differential equations[11]:

Ṡ = − S

 n∑
i=1

µiEi + R∗V u


Ėi =Ei

Sµi + τµi
i−1∑
j=1

Ej − τ
n∑

j=i+1

µjEj −ωiIi


İi =Ii

(
Eiωi − R∗Mvi − ω̄i − δi

)
Ṙ =R∗V Su + R∗M

n∑
i=1

Iivi +
n∑
i=1

Iiω̄i

Ḋ =
n∑
i=1

δiIi ,

(1)

where E(t) =
∑n
i=1 Ei(t), I(t) =

∑n
i=1 Ii(t).

The initial conditions and state constraints are given
by

0 < S0 < 1, 0 < E0 < 1, 0 < I0 < 1, D0 = 0,

S(t) ≥ 0, Ei(t) ≥ 0, Ii(t) ≥ 0, R(t) ≥ 0, D(t) ≥ 0,

S(t) + E(t) + I(t) + R(t) +D(t) = 1.

(2)
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If R∗V u = 0, it is a case where the corresponding
system does not contain vaccination, and the virus
transmission process is carried out according to b) of
Figure 1.

3. Optimal control problem

We mimimize the aggregated system costs (3) for
dynamic system (1) - (2) by properly adjusting u(t) and
vi(t) in the case that t satisfies 0 ≤ u(t) ≤ 1, 0 ≤ vi(t) ≤ 1.
Equation (3) covers the costs incurred by each state
in the system[12]. Since the spread of the virus affects
the evolution of the system, the system incurs a cost
of f (I(t)), g(E(t)), k(D(t)) at each time t. The population
also benefits at the rate of L(R(t)) because the vaccine
eliminates state uncertainty. where f (·), g(·), k(·), L(·)
are all non-decreasing differentiable functions such
that f (0) = g(0) = k(0) = L(0) = 0. We can assume that
f (·), g(·), k(·) can be any function. Assume that each
active group of immune zones consumes resources at
time t at a rate h(u(t)) +

∑n
i=1mi(vi(t)), where h(0) =

mi(0) = 0 and h(x) > 0, mi(x) > 0 if x > 0. The total cost
is given by an expression of the following form, the
constraints are given by equations (1) and (2).

J =

T∫
0

(f (I) + g(E) + k(D) − L(R) + h(u) +
n∑
i=1

mi(vi))dt.

(3)

Consider the Hamiltonian H[13, 14], and the cor-
responding co-state or adjoint functions λS , λEi , λ

I
i , λ

R,
λD , defined as follows:

H(u(t)) = f (I) + g(E) + k(D) − L(R) + h(u) +
n∑
i=1

mi(vi)

− λSS

 n∑
i=1

µiEi + R∗V u

 +
n∑
i=1

λIi Ii
(
Eiωi − R∗Mvi − ω̄i − δi

)
+

n∑
i=1

λEi Ei

Sµi + τµi
i−1∑
j=1

Ej − τ
n∑

j=i+1

µjEj −ωiIi


+ λR

R∗V Su + R∗M

n∑
i=1

Iivi +
n∑
i=1

Iiω̄i

 + λD
n∑
i=1

δiIi .

(4)

Where the adjoint functions λ̇S = −∂H∂S , λ̇
E
i = − ∂H∂Ei ,

λ̇Ii = −∂H∂Ii , λ̇
R = −∂H∂R and λ̇D = −∂H∂D are continuous

functions, we have differential equation,

λ̇S =λS
 n∑
i=1

µiEi + R∗V u

 − n∑
i=1

λEi Eiµi − λ
RR∗V u

λ̇Ei = −
∂g(E)
∂Ei

+ λSSµi − λEi

Sµi + τµi
i−1∑
j=1

Ej − τ
n∑

j=i+1

µjEj

−ωiIi

 − τ n∑
j=i+1

λEj Ejµj + τµi
i−1∑
j=1

λEj Ej − λ
I
i Iiωi

λ̇Ii = −
∂f (I)
∂Ii

+ λEi Eiωi − λ
I
i (Eiωi − R

∗
Mvi − ω̄i − δi)

− λR(R∗Mvi + ω̄i) − λDδi

λ̇R =
∂L(R)
∂R

λ̇D = − ∂k(D)
∂D

,

(5)

along with the final conditions

λS (T ) = 0, λEi (T ) = 0, λIi (T ) = 0, λR(T ) = 0, λD (T ) = 0.
(6)

Then the PMP shows that the optimal control at time
t satisfies the following conditions:

u ∈ argmin
ξ

H(ξ)

vi ∈ argmin
ηi

H(ηi),
(7)

where the minimization is over the space of admissible
controls.

Vector minimization can be expressed as scalar
minimization: 

u(t) ∈ argmin
0≤x≤1

γ(x, t)

vi(t) ∈ argmin
0≤yi≤1

εi(yi , t),
(8)

where, to highlight the impact of u(t) and vi(t) on the
total cost, we define{
γ(x, t) = h(x) − R∗Vφ(t)x
εi(yi , t) = mi(yi) − R∗Mψi(t)yi ,

and
{
φ(t) = S(λS − λR)
ψi(t) = Ii(λ

I
i − λ

R).
(9)

Theorem 1. Assuming the existence of an optimal
control[12]:

• If h(·) (or mi(·)) is concave, then the optimal
control has the following structure:

– u∗(t) = 1 for 0 ≤ t < t1 (or v∗i (t) = 1 for 0 ≤ t <
t1i ),

– u∗(t) = 0 for t1 ≤ t ≤ T (or v∗i (t) = 0 for t1i ≤
t ≤ T ), where t1 ∈ (0, T ) (or t1i ∈ (0, T )).
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• If h(·) (or mi(·)) is strictly convex, then the optimal
control has the following structure:

– u∗(t) = 1 for 0 ≤ t ≤ t1 (or v∗i (t) = 1 for 0 ≤
t ≤ t1i ),

– u∗(t) = 0 for t2 ≤ t ≤ T (or v∗i (t) = 0 for t2i ≤
t ≤ T ),

– u∗(t) (or v∗i (t)) strictly decreases in the
interval (t1, t2) (or (t1i , t

2
i )), where 0 < t1 <

t2 < T (or 0 < t1i < t
2
i < T ).

Proof. According to equations (4) and (9), this time the
Hamiltonian is

H(u(t)) =f (I) + g(E) + k(D) − L(R) − λSS
n∑
i=1

µiEi

+
n∑
i=1

λEi Ei

Sµi + τµi
i−1∑
j=1

Ej − τ
n∑

j=i+1

µjEj −ωiIi


+

n∑
i=1

λIi Ii(Eiωi − ω̄i − δi) + λR
n∑
i=1

Iiω̄i

+ λD
n∑
i=1

δiIi + h(u) − R∗Vφ(t)u

+
n∑
i=1

(mi(vi) − R∗Mψi(t)vi).

(10)

1) Let h(·) (or mi(·)) be a concave function, i.e.,
h
′′
(·) < 0 (or m

′′
i (·) < 0), then the Hamiltonian is a

concave function of u (or vi , i = 1, 2, ..., n). There are
two different possibilities (see Fig.2) for u ∈ [0, 1] (or
vi ∈ [0, 1]) that minimize the Hamiltonian[15],

Figure 2. The case of concave function - h′′ (·) < 0 (or m′′i (·) <
0)

If at the time t
H(0) > H(1)

0 > h(1) − R∗Vφ(t) (or 0 > mi(1) − R∗Mψi(t))

that is, φ(t) > h(1)
R∗V

(
or ψi(t) >

mi (1)
R∗M

)
, then the optimal

control is u∗ = 1 (or v∗i = 1); otherwise u∗ = 0 (or v∗i = 0).
φ(t) (or ψi(t)) is a decreasing function of t, and

Lemmas will prove this. Define φ(t1) = h(1)
R∗V

(
or ψi(t

1
i ) =

mi (1)
R∗M

)
. We have

 φ(t) > h(1)
R∗V
, t ∈ [0, t1)

φ(t) < h(1)
R∗V
, t ∈ [t1, T ].or

 ψi(t) >
mi (1)
R∗M

, t ∈ [0, t1i )

ψi(t) <
mi (1)
R∗M

, t ∈ [t1i , T ].

 (11)

So, {
u∗ = 1, t ∈ [0, t1)
u∗ = 0, t ∈ [t1, T ].(

or
{
v∗i = 1, t ∈ [0, t1i )
v∗i = 0, t ∈ [t1i , T ].

)
(12)

2) Let h(·) (or mi(·)) be a strictly convex function,
i.e., h

′′
(·) > 0 (or m

′′
i (·) > 0), then the Hamiltonian is a

convex function of u (or vi). There are three different
possibilities (see Fig.3) for u ∈ [0, 1] (or vi ∈ [0, 1]) that
minimize the Hamiltonian,

Figure 3. The case of convex function - h′′ (·) > 0 (or m′′i (·) > 0)

If at time t,

∂(h(u) − R∗Vφ(t)u)
∂u

|u=0 = h′(0) − R∗Vφ(t) ≥ 0,

or
∂(mi(vi) − R∗Mψi(t)vi)

∂vi
|vi=0 = m′i(0) − R∗Mψi(t) ≥ 0,


then the optimal control is u∗ = 0 (or v∗i = 0).

If

∂(h(u) − R∗Vφ(t)u)
∂u

|u=1 = h′(1) − R∗Vφ(t) ≤ 0,

or
∂(mi(vi) − R∗Mψi(t)vi)

∂vi
|vi=1 = m′i(1) − R∗Mψi(t) ≤ 0,


then the optimal control is u∗ = 1 (or v∗i = 1).

Otherwise,

∂(h(u) − R∗Vφ(t)u)
∂u

|u=u∗ = 0.

or
∂(mi(vi) − R∗Mψi(t)vi)

∂vi
|vi=v∗i = 0.


we can find such a value u∗ ∈ (0, 1) (or v∗i ∈ (0, 1)).
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φ(t) (or ψi(t)) is a decreasing function of t. Define

φ(t1) = h′(1)
R∗V

, φ(t2) = h′(0)
R∗V

(
or ψi(t

1
i ) =

m′i (1)
R∗M

, ψi(t
2
i ) =

m′i (0)
R∗M

)
. We have


φ(t) ≥ h′(1)

R∗V
, t ∈ [0, t1]

h′(0)
R∗V

< φ(t) < h′(1)
R∗V

, t ∈ (t1, t2)

φ(t) ≤ h′(0)
R∗V

, t ∈ [t2, T ].

or


ψi(t) ≥

m′i (1)
R∗M

, t ∈ [0, t1i ]
m′i (0)
R∗M

< ψi(t) <
m′i (1)
R∗M

, t ∈ (t1i , t
2
i )

ψi(t) ≤
m′i (0)
R∗M

, t ∈ [t2i , T ].

 (13)

So, 
u∗ = 1, t ∈ [0, t1]
u∗ = h′−1(φ(t)), t ∈ (t1, t2)
u∗ = 0, t ∈ [t2, T ].or


v∗i = 1, t ∈ [0, t1i ]
v∗i = m′−1

i (ψi(t)), t ∈ (t1i , t
2
i )

v∗i = 0, t ∈ [t2i , T ].

 (14)

Lemma 1. φ(t) and ψi(t) is a decreasing function of t
1.
Lemma 2. The positivity constraints λEi (t) − λR(t) ≥ 0

and λD (t) − λR(t) ≥ 0 hold for all i = 1, ...,M and all
t ∈ [0, T ).

4. Basic reproduction number

4.1. Calculation of R0

The basic reproduction number, denoted R0, it refers to
the average number of individuals infected by an initial
individual infected with an infectious virus without
the involvement of any vaccination measures, while all
individuals are not immune[16]. Studies have shown
that if R0 < 1, then the disease free equilibrium is
locally asymptotically stable; whereas if R0 > 1, then it
is unstable.

In both models, progression from Ei to Ej (i , j) or
from Ei to Ii is not considered a new infection, but a
progression between infected nodes.

F =
{
SµiEi , i = j

0, otherwise,
(15)

1The proofs of the two lemmas follow the ideas of [M. H. R. Khouzani,
2011] [Elena Gubar, 2018] [Gubar Elena, 2021] [Xiuxiu Liu, 2023].

and

V =


−Eiτ(µi

i−1∑
j=1

Ej −
n∑

j=i+1

µjEj )

+Ii(R
∗
Mvi + ω̄i + δi), i = j

0, otherwise.

(16)

Giving m = n, an equilibrium solution with E = I =
0 has the form x0 = (S0, 0, 0, 0, 0)t . Without loss of
generality, assume S0 = 1 is a disease free equilibrium
(DFE). Then,

F =


µ1 0 0 ... 0
0 µ2 0 ... 0
0 0 µ3 ... 0
...
0 0 0 ... µn

 =
{
µi , i = j

0, otherwise,
(17)

and

V =


R∗Mv1 + ω̄1 + δ1 ... 0

0 ... 0
0 ... 0
...
0 ... R∗Mvn + ω̄n + δn


=

{
R∗Mvi + ω̄i + δi , i = j

0, otherwise.

(18)

with FV −1 non-singular as required. Giving

|V | =
n∏
i=1

(R∗Mvi + ω̄i + δi), (19)

V ∗ =


∏i−1
k=1(R∗Mvk + ω̄k + δk)

·
∏n
k=i+1(R∗Mvk + ω̄k + δk), i = j

0, otherwise,

(20)

and

V −1 =
V ∗

|V |
=
{ 1
R∗Mvi+ω̄i+δi

, i = j

0, otherwise.
(21)

Then,

FV −1 =
{ µi
R∗Mvi+ω̄i+δi

, i = j

0, otherwise.
(22)

FV −1 has the n eigenvalues[17],

R0,i =
µi

R∗Mvi + ω̄i + δi
. (23)

The n eigenvalues correspond to the reproduction
numbers for each strain. The basic reproduction
number for the system is the maximum of them. That
is,

R0 = ρ(FV −1) = max
i∈{1,2,3,...,n}

R0,i . (24)
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4.2. Final epidemic size for model without vaccination
In epidemiological models containing vaccines, we
assume that the vaccine is administered after the virus.
Here, we will introduce a pre-emptive vaccine in an
epidemic model that does not contain vaccine. If R∗V u =
0, according to the corresponding differential equation,
we get

dS
d(R +D)

= −S
n∑
i=1

(
Ei
Ii
R0,i

)
(25)

Integrating the above equation from time 0 to ∞, we
obtain the equation for the final epidemic size R(∞) +
D(∞)[12]:

S(∞) = S(0)e−
∑n
i=1( EiIi

R0,i )[R(∞)+D(∞)−R(0)−D(0)] (26)

Using the initial condition S(0) ≈ 1 and R(0) = D(0) =
0, and the final state I(∞) = E(∞) = 0 and S(∞) = 1 −
R(∞) −D(∞), we obtain:

R(∞) +D(∞) = 1 − S(∞)

= 1 − e−
∑n
i=1( EiIi

R0,i )(R(∞)+D(∞))
(27)

R(∞) +D(∞) is the final epidemic size, it’s the final
fraction of individuals infected during the epidemic
outbreak, which can be calculated numerically from the
above equation. We can see that the final size is positive
when and only when R0,i > 1, and if R0,i < 1, the disease
does not spread.

If we consider preemption by assuming that the
proportion of nodes initially vaccinated is x, then
equation (27) can be rewritten as

R(∞) +D(∞) = 1 − S(∞)

= (1 − x)(1 − e−
∑n
i=1( EiIi

R0,i )(R(∞)+D(∞)))
(28)

Increasing vaccination will reduce final epidemic
size. If x > x′ = 1 − 1

R0,i
, then R(∞) = 0. The threshold x′

is called the "population immunity threshold". When
x is above this threshold, the virus does not spread.
Thus, for vaccine-preventable diseases, herd immunity
can indirectly protect unvaccinated nodes.

5. Numerical investigations
In this section, to verify the theorem, we simulate the
case where three virulent viruses of different virulence
are present in the system. The optimal control of the
Superexposure model with vaccination (when all states
are present and all cost functions are basis functions) is
depicted in Figure 4, where a) is related to the concave
function h(u), b) is related to the convex function h(u),
c) is related to the concave function mi(vi), and d) is
related to the convex function mi(vi). The relevant

parameters are µ1 = 0.52, µ2 = 0.52, µ3 = 0.52, ω1 =
0.85, ω2 = 0.9, ω3 = 0.95, ω̄1 = 0.5, ω̄2 = 0.4, ω̄3 =
0.3, v1 = 0.25, v2 = 0.24, v3 = 0.23, δ1 = 0.02, δ2 =
0.025, δ3 = 0.027, τ = 0.1, u = 0.05, R∗V = 0.1, R∗M = 0.1,
f (I) = 5

∑3
i=1 Ii , g(E) = 6

∑3
i=1 Ei , k(D) = 10D, L(R) =

5R.

a) b)

c) d)

Figure 4. Verification of Theorem. a) h(u) is concave; b) h(u) is
convex; c) mi(vi) are concave; d) mi(vi) are convex. For concave
h(u) and mi(vi) we have used h(u) = 10u , m1(v1) = 5v1,
m2(v2) = 6v2, and m3(v3) = 7v3, and for convex h(u) and
mi(vi) we have used h(u) = 10u2, m1(v1) = 5v2

1 , m2(v2) =
6v2

2 , and m3(v3) = 7v2
3 .

a) b)

Figure 5. Behavioral trajectory of SEIDR & Superexposure
model: a) With vaccination, b) Without vaccination.

Then we confirm our results with some numerical
simulations, The focus of this section is to study the
behavior of the modified model. From Figure 5, we
can see that the number of susceptible nodes decreases
extremely rapidly at the beginning of virus propagation
and has reached a stable state at t = 20. Recovery nodes
and dead nodes will rise steadily in the middle and
late stages of virus transmission and reach a steady
state near t = 100. Exposed and infected nodes behave
similarly, rising to a certain value and then beginning
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to gradually decline until there is no virus transmission
in the population, at which point exposed and infected
nodes are approximately equal to zero. We can clearly
see that the order in which the apparent behaviors
appear in each state is susceptible, exposed, infected,
dead, and cured, consistent with the order of successive
transitions between states. Comparing a) and b), it can
be seen that the presence or absence of a vaccine during
virus transmission affects whether the number of cured
nodes increases significantly during the initial phase of
virus transmission (0 < t < 60).

a) b)

Figure 6. Exposed and Infected fractions

In Figure 6, a) shows the behavioral trajectories of
exposed nodes under three different virulence forces,
and b) shows the behavioral trajectories of infected
nodes under three different virulence forces. Among
them, blue, red and yellow indicate the cases of the 1st,
2nd and 3rd viruses, respectively, and the virulence is
gradually strengthened. It can be seen that the higher
the number of exposures, the higher the number of
corresponding infections.
τ = 0 means that there is no repeated exposure, i.e.,

a node that has been infected by one virus will not
be infected by other viruses. τ = 1 means that when
a node that has been infected by a less virulent virus
is exposed to a more virulent virus, the more virulent
virus will replace the less virulent virus and be infected
again. As can be seen in Figure 7, τ = 0 corresponds to

Figure 7. Cost-τ relationship diagram

Table 1. Effect of vaccine efficacy on final epidemic size

u 0 0.2 0.4 0.6 0.8 1.0

R(∞) 0.738 0.497 0.225 0.005 0.005 0.005
D(∞) 0.062 0.041 0.019 0 0 0
Final

epidemic 0.800 0.538 0.244 0.005 0.005 0.005
size

higher resource consumption, while τ = 1 corresponds
to lower resource consumption.

a) b)

Figure 8. Exposed fractions-τ relationship diagram

The larger the value of τ , the more nodes with
weak virulent infection are converted to strong virulent
infection. In Figure 8, a) shows that as the τ value
increases, the number of nodes exposed by the 1st virus
(i.e., weakly virulent) decreases. b) shows that as the τ
value increases, the number of nodes exposed by the 3rd
virus (i.e., strongly virulent) increases.

In Figure 9, a) explains the virus propagation
process of the model with vaccine, where a vaccine
and medicine are introduced as soon as the virus
appears. All three affect the state transitions of all
nodes simultaneously throughout the virus propagation
process. b) explains the virus propagation process of
the model without vaccine, where a preemptive vaccine
is introduced before the virus emerges to make some
nodes immune. When some nodes are infected, we will
use medicine to make them recovered.

Table 1 show the variation of the final epidemic size
in the model with vaccination when u takes different

Figure 9. In the two models, the vaccines appear at different
times and have different impacts.
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a) b)

Figure 10. Final epidemic size. a) general vaccination; b)
preemptive vaccination.

Table 2. Effect of preemptive vaccines on the final epidemic size

Preemptive vaccines No Yes

The moment when
The Final Epidemic Size = 0 t=0.442 t=0.267

values. The larger the value of u, the more susceptible
nodes will be immune to the virus, and the number
of infected nodes will be reduced significantly, and
the final epidemic size will be reduced accordingly. a)
of Fig. 10 shows that in the model with vaccination,
when the vaccine and virus act synchronously, the final
epidemic size is equal to 0 when x > 0.442.

Suppose E1
I1

= E1(0)
I1(0) = 1

2 ,
E2
I2

= E2(0)
I2(0) = 1

3 ,
E3
I3

= E3(0)
I3(0) = 1

3 ,
and from (28), we have R(∞) +D(∞) = (1 − x)(1 −
e−1.358(R(∞)+D(∞)). b) of Fig. 10 shows that when x >
0.267, a preemptive vaccine immunizes all susceptible
nodes against the virus, making the sum of nodes
that die due to infection and those that are cured by
drug treatment 0. Table 2 illustrates that former delays
the epidemic from reaching a steady state. Thus, for
vaccine-preventable diseases, preemptive vaccine can
effectively protect unvaccinated nodes.

6. Conclusion
Based on the SEIRD model, we add the ideas of multiple
virus coexistence and super-exposure to refine the
model even more. Then the optimal control problem is
analyzed, and proved and verified the structure. Finally,
based on the final epidemic size, the general vaccine
and preemptive vaccine are compared, and the results
show that preemptive vaccine can effectively protect
unvaccinated nodes.
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