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Abstract

Network simulator (ns-3) is a reputed simulation platform for performance evaluation of cellular networks.
In this work, we explore the use of ns-3 for tracking of successful handovers (HO) and handover failures
and consequent impact on 4G LTE network throughput with the aim of discovering new analytical relations
about HOs and new methods to optimize the resulting throughput. Decreased cell sizes in newer generation
networks lead to increasing number of handovers and handover failures that have significant impact. We
begin by reviewing analytical models in the literature that aim to predict number of HO and HO failures in
terms of HO control and network parameters. We initially conduct a suite of exhaustive validation studies
of such analytical models, based on the simulation execution manager (SEM) for ns-3 for parallelization. Via
this, we discover new causal relations relating HO failures and choice of HO control parameters on network
throughput. Based on these initial results, we next evaluate the application of Gaussian process regression for
prediction of instantaneous network throughput and bandit algorithms as an effective mechanism to optimize
throughput over time. The new relations discovered help better understand the impact of input handover
control parameters on the number of handovers and handover failures allowing us to fine tune them. The new
optimization and prediction methods discovered give good gains over baseline algorithms and help accurately
predict throughput respectively.
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1. Introduction
Network densification is a key feature of cellular
network evolution; as 5G aims to achieve peak data rate
of Gbps [1] to users. The use of higher frequency bands
(mmWave) and large channelization bandwidths along
with large-scale MIMO, naturally also lead to such
network densification as means to increase network
capacity via smaller cell sizes and greater frequency
reuse.

A direct consequence of shrinking cell sizes is the
expected increase to rate of handovers (HOs) that
impose significant overhead in terms of mobility man-
agement and HO monitoring and optimization. Further,
deployment of heterogeneous networks overlays - small
cells and macro cells - contribute to even more HOs and
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increased radio link failure (RLF) rates, respectively.
Hence, mobile network operators (MNOs) require accu-
rate and real-time visibility of the network variables
such as number of HOs and RLFs to provide appro-
priate quality of service to end users (e.g., guaranteed
data rates and upper bound on radio link failures). HO
is the process of transferring an associated user entity
(UE) from a current serving cell base station (BS) to a
future target cell BS while RLF occurs due to loss of
connection between UE to a (current) cell BS resulting
from link conditions.

A successful handover in LTE consists of a set
of events occurring according to the 3GPP protocol
as shown in Fig. 1. The UE is configured to send
measurement reports of received power for the source
BS or eNodeB (eNB) and neighboring eNBs. Based on
the reports received, the source eNB takes a decision
to perform HO based on a HO algorithm and performs
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Figure 1. Successful Handover Procedure in LTE [2]

procedures for admission control with the target eNB.
This leads to a handover command being sent to the
UE followed by synchronization and Random Access
Channel (RACH) procedure finally leading to the
reception of HO confirmation at the target eNB. If
the parameters of the HO algorithm are improperly
configured, a HO failure happens. HO failure means
that no HO occurs, HO procedure is not completed or
HO occurs too early. A HO failure is accompanied by an
RLF due to weak signal strength as a result of improper
BS assignment. In the dense scenarios that we consider
in this paper, HO failures and RLFs are equivalent as the
probability of the occurrence of handover failure as no
handover with no RLF or HO failure due to lost control
packets is very low.

1.1. Motivation
Both HOs and RLF cause decrease in throughput but
the impact of RLFs tend to be costlier as the recovery
is more time consuming1. However, the relationship
between the input parameters and the output variables
of number of HOs, number of HO failures and the
throughput is complex. This needs a network simulator
like ns-3 for requisite exploration. While analytical
models do exist [3] [4], they have been defined for
specific scenarios that may not be applicable to a
typical scenario in ns-3 or the real-world. Since the
number of RLFs and HOs that occur are coupled,
it is difficult to minimize both simultaneously. This
necessitates a need for simulation study building upon

1Nonetheless, a small number of HOs is necessary as it can prevent
RLFs and UEs from holding on to weaker cells draining battery
and lower data rates due to selection of low modulation and coding
schemes.

prior theoretical literature. Moreover, prediction (and
thus optimization) of network throughput at a given set
of network parameters and time instant is not possible,
requiring simulation-based algorithms from machine
learning and optimization to achieve the best data rates.

As network operations will small cells become more
complex and challenging to manage and optimize,
operators are increasingly exploring new techniques
to manage HOs and RLFs to minimize their impact
on the network. Network equipment vendors have
proposed new approaches such as conditional HO
[5] [6] enlisting multiple target cells and reducing
HO interruption times [7]. More handover algorithms,
e.g., heuristic and artificial intelligence-based solutions,
especially emerging graph-based deep learning models
[8] [9] [10] [11] are being suggested. Optimizing HO
parameters for attaining improved system performance
- while considering joint optimization of throughput,
number of HOs and RLFs is thus becoming increasingly
important in next-G networks.

Our study explores understanding of the elements
of the existing protocol pertaining to HO based
on analytical relations. It also aims to maximize
throughput under the impact of HOs and RLFs by
optimizing the HO control parameters. We quantify
relationships between the input parameters to HOs in
LTE network and the output variables as shown in
Fig.2 as well as optimization algorithms for network
throughput, using the well-respect network simulation
framework ns-3. The large number of input parameter
combinations and output variables necessitates a
simulation platform to achieve these objectives.

The ns-3 LENA [12] LTE module supports study of
network handover [13], however any detailed validation
study of HO is yet to be documented. To reduce
runtimes, it is desired to use parallel simulations via the
simulation execution manager (SEM) [14]. The relations
that were validated, and the algorithms devised provide
a good foundation for prediction and optimization
of performance in real world networks. Using them,
network providers can arrive at a healthy compromise
between the number of HOs and RLFs to achieve the
best throughputs based on their heuristic policies.

1.2. Previous Work on LTE Network Analysis Under
HOs
The default HO algorithm in ns-3 is the A3 reference
signal received power (RSRP) HO algorithm [15],
described in detail in Section II.A, that has the
three inputs of hysteresis, timeToTrigger and
a3Offset as shown in Fig. 2. Existing HO models
in the literature are mainly based on stochastic
geometry [3] [4] [16]. They model HO and HO failure
locations using concentric circles and estimate the
respective probability density functions by modeling
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Figure 2. Inputs parameters and output variables of mobile
network scenario; RSRQ - Reference Signal Received Quality,
ANR- Automatic Neighbour Relation, CQI- Channel Quality
Index, MCS- Modulation and Coding Scheme

user positions as Poisson Point Processes with linear
trajectories. Closed-form expressions for the HO and
HO failure probability are obtained in terms of the
user speed and the timeToTrigger for the additive
noise channel. Extensions to include channel models
with fading and shadowing were considered in [17];
however, this does not include the parameters of
hysteresis and a3Offset.

The impact of the HO control parameters like hys-

teresis and timeToTrigger on network throughput
and its prediction & optimization in terms of them is
never studied. System level evaluation of throughput in
3GPP reference scenarios [18] or performance evalua-
tion study of simple handover metrics and throughput
[19] [20] have been performed, but no direct relation
between throughput and the HO control parameters
has been discovered. This provides ample scope for
applying tools from machine learning and optimization
like Gaussian process regression and bandit algorithms
for the purpose of throughput prediction and opti-
mization. Moreover, prior studies do not consider non-
standard values of handover control parameters and
their optimization over time.

In addition, there exist some other industry-based
simulation studies [21] [22] [23] that optimize the HO
control parameters for specific scenarios, providing
additional hints for run-time tuning. These include
finer classifications of HOs and RLF events such as i)
too-early RLFs, ii) too-late RLFs and iii) ping-pong HOs
that cannot be measured within ns-3 simulation runs
that only allow estimation of the number of HOs and
RLFs. The relevant expressions from the literature are
described in Section II.B.

1.3. Contributions
The main contributions of this paper are threefold of
HOs, HO failures and throughput in LTE networks. This
was achieved through a careful study using a simulation
platform based on the ns-3 LENA module and SEM.

1. Validation of the analytical relations pertaining
to HOs and RLFs in the literature to produce
additional (statistically justified) insights into
causal (between parameter inputs and measured
outputs) relations based on inferences from
simulation traces.

2. Discovery of the three additional relations never
discussed in the literature:

(a) #HOs ∝ speed/timeToTrigger

(b) #RLFs ∝ speed ∗ hysteresis

(c) #HOs ∝ speed/hysteresis.

This helps us form a deeper understanding of HOs
and their control parameters.

3. Application of Gaussian process regression and
bandit algorithms for the purpose of network
throughput prediction and optimization in terms
of HO control parameters, as HOs and RLFs affect
network throughput.

1.4. Organization
Section II contains a short technical description of
relevant parts of the long term evolution (LTE)
standard, system setup, interface used and known HO
relations from literature. Following this, simulation
results obtained by our platform for validating HO
relations and discovering new ones along with the
runtime details are provided in Section III. Section IV
is dedicated to the impact of the HOs and RLFs on
throughput, its prediction and optimization in terms
of HO control parameters. Finally, Section V concludes
with a brief discussion of the results.

2. System Setup and Known Relations
We next provide a short overview of the A3 HO
algorithm and RLF detection as per the LTE standard,
followed by a description of the system setup and
interface of the simulation platform based on ns-3 +
SEM.

2.1. A3 Handover Algorithm
The A3 RSRP HO algorithm is illustrated in Fig. 3.
The physical significance of the A3 HO algorithm is
that it tries to assign the cell with the strongest signal
to the UE. Hence, it is also called the strongest cell
algorithm. Consider a user entity (UE) moving away
from its serving cell towards a neighbor cell (or target
cell). The reference signal receiver power (RSRP) from
both the cells is measured at the UE and reported back
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Figure 3. A3 HO Algorithm

to base stations (eNB) through measurement reports 2.
The A3 event is defined as the event where the neighbor
cell signal strength is greater than the serving cell signal
strength by an offset. The condition for a successful
handover is given below [24].

RSRPn > RSRPs + A3Of f + Hyst for T T T (1)

where

RSRPn(dB)- RSRP of neighbor cell (or target cell)
RSRPs(dB)- RSRP of serving cell (or source cell)
A3Of f (dB)- a3Offset is the offset by which the

difference in RSRPs is shifted
Hyst(dB)- hysteresis is the HO margin above which

the RSRP difference must stay put for successful HO
T T T (s)- timeToTrigger is the time for which HO

margin must be met for successful HO

In other words, successful handover occurs when the
difference between the RSRP of target cell and source
cell offset by a3Offset is greater than hysteresis for
a time duration of timeToTrigger. Handover does not
occur if the difference between the two RSRPs along
with the offset becomes less than the hysteresis value
even for an instant during the handover or if equation
(1) is never met. Fig. 3 shows the case of a successful
handover where the RSRP of the neighbor cell (orange)
is greater than the RSRP of the serving cell (blue) by the
hysteresis triggering the start of a handover and stays
equal to or above the required margin until completion

2RSRP is measured based on pilot symbols from decoded reference
signals.

Table 1. Standard values for configurable HO parameters [24]

Parameter Values
hysteresis (dB) 0, 0.5, ... 2, ... 14.5, 15

timeToTrigger (ms) 0, 40, 64, 100, 128, 160, 256,
320, 480, 512, 640, 1024,
1280, 2560, 5120

a3Offset (dB) -15, -14.5, ... 0, ... 14.5, 15

of the handover procedure. The dotted line represents
the case when the a3Offset is set to a wrong non-
zero value from the default value of zero, leading to no
handover as the A3 HO condition is never met although
the current scenario necessitates a handover to support
UE connectivity. The role of offset in the A3 handover
algorithm is to make the serving cell look better than
its current measurement in comparison to the neighbor
and can be used to prevent unnecessary handovers.
Handover causes temporary interruption of data flow
due to loss of connection. The time measured from the
handover trigger to the successful completion including
the radio resource control (RRC) procedures is called
the handover interruption time (HIT).

The standard values for the configurable handover
parameters are shown in Table 1 [24]. Exploration
of the parameter space via ns-3 simulation is an
active research direction for understanding HO and
RLF modeling, and its impact on network throughput,
with the caveat that the full range of values may not
be available in deployed networks due to operational
hardware constraints.

2.2. Radio Link Failure (RLF) Detection
A contributing factor to handover failure are RLFs,
representing loss of the UE-to-eNB link, mainly
due to degradation caused by channel conditions,
as illustrated in Fig. 4. Such link loss is caused
by packet decoding failure, resulting for example
due to the presence of additional interference from
neighbour cells as well degradation of received signal
power from the source cell. Hence, the Signal-to-
Interference+noise-Ratio (SINR) as measured at the UE
input is given by Equation (2).

SINR =
RSRPs

RSRPn + σ2 (2)

where RSRPs and RSRPn are the RSRPs of the serving
and neighbor cell respectively and σ2 is the noise power
as measured at the UE. RLF occurs when the SINR falls
below a threshold continuously for a specified duration,
i.e.,

SINR < Qout for τR (3)
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where Qout(dB) is the outage threshold for RLF and
τR(s) is the outage duration. The default value of
Qout(dB) is -5dB in ns-3 and τR(s) tends to be around
100 ms based on the RRC procedures used [25].

This kind of failure is called too-late HO failure or
too-late RLF, as the RLF occurs before the time instant
for successful HO, i.e., the HO process is triggered too
late. RLFs can also occur just after successful handover,
labeled as too-early handover since the HO process is
triggered too early, or otherwise when there are no
links available for HO in the target cell. In ns-3, it
is hard to classify RLFs as i) too-late, ii) too-early or
iii) otherwise. Most (>90%) of the RLFs in our study,
due to the scenario with closely spaced cells, are too-
late RLFs. In summary, RLFs are undesirable events in
an LTE network and operators wish to minimize their
occurrence by setting HO parameters correctly.

2.3. System Setup
In this work, we use the default lena-dual-stripe

scenario as defined in the 3GPP standardization process
[26]. This is a general scenario representative of a
typical mobile network in a city. This scenario was
chosen for its general nature with results applicable
to any other scenario and because it appears in the
standardization documents. We made modifications to
ns-3 to include the functionality and input for the
a3Offset parameter that is not present by default, and
included additional input parameters like hysteresis

and timeToTrigger. The parameters used for the
simulation are described in Table 2 and the interface
between SEM and ns-3 shown in Fig. 5. This platform

Campaign Manager
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Storage File

SEM Runner

Simulation 
Outputs

1. # HOs
2. # RLFs
3. Throughput

Simulation 
Inputs

1. hysteresis
2. timeToTrigger
3. a3Offset
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Simulation 
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1. hysteresis
2. timeToTrigger
3. a3Offset
4. speed

Simulation 
Inputs

1. hysteresis
2. timeToTrigger
3. a3Offset
4. Speed
5. Random Seed

Multiple Parallel Simulations

One set of 
parameters

SEM

Figure 5. Interface between SEM and ns-3

Table 2. Parameter set used for the lena-dual-stripe

scenario in ns-3 for simulation with SEM

Parameter Description

Mobility

SteadyStateRandomWaypointMobilityModel

(default) with min and max speed both set to
vel input from SEM; changing mobility model
keeping speed the same gives similar results

Buildings
No buildings are placed in the scenario by
setting nBlocks to zero

Channel
Model

HybridBuildingsPropagationModel used;
default values used for the eNB (eNodeB or base
station) TX power, bandwidth and EARFCN; no
shadowing component is present as no buildings
are placed

Simulation
Time

simTime set to nominal 5s to obtain statistically
significant results in reasonable time

Number
of UEs

macroUeDensity set to 0.0002 to spawn around
50 UEs at random locations within the scenario
bounding box based on RngRun and RngSeed

Network
EPC in both UL/DL with X2 interface added to
enable HOs; UDP used to stream NGBR video
to each UE over a single bearer

HO Control
Parameters

Added code and additional input for a3Offset;
hysteresis, timeToTrigger and a3Offset

input by SEM; default RLF parameters used

Stochasticity
Fading, shadowing & UE mobility are stochastic
elements with different values of RngRun and
RngSeed

can be used to run multiple parallel simulations in ns-
3 with different input configurations, leading to parsed
output data frames in Python.

2.4. Impact of HO parameters
In this section, we discuss several relations between
HO input parameters and HOs & HO failures, obtained
by studying the A3 HO algorithm in Section IIA in the
light of prior studies [22], [21], [23]. Although previous
work does not explicitly state these relations, they
can be obtained by surveying simulation data. These
provide a good starting point for the HO and RLF
validation process in ns-3 as well as for discovering
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new relations.

Effect of UE Speed.

As speed ⇑,#HOs ⇑ and #RLFs ⇑ . (4)

With higher speed, the UE moves past more cells
per unit time, hence leading to larger number of HO
opportunities. Simultaneously, it also leads to increased
possibility of RLFs, due to SINR degradation as the
RSRP of source cell degrades with distance and the
interference due to the RSRP of neighbor cell increases.
Fig. 6 illustrates this for a simple example of a single
UE moving past three cells.

Effect of Changing timeToTrigger.

As timeToTrigger ⇑,#HOs ⇓ but #RLFs ⇑ . (5)

Fig. 7 illustrates the effect of increasing
timeToTrigger with the simple example of a single

UE

Serving Cell Neighbor Cell

RSRPs

RSRPn

Distance Travelled

With larger 
hysteresis

Less Successful HOs

More RLF LocationsRLF 1

HO 1

Moving

TTT
Short 
Hyst

Large 
Hyst

RS
RP

Figure 8. Effect of changing hysteresis on the number of
HOs and RLFs; simple illustration with two cells and one UE

UE moving past two cells. With the increase of
timeToTrigger, the UE can move farther away from
the serving cell before a HO is successfully completed,
leading to lesser number of HOs. At the same time, as
the UE moves away from the serving cell, an RLF can
be readily caused due to the degraded RSRP and thus
SINR implying that the number of RLFs increases with
timeToTrigger.

Effect of Changing hysteresis.

As hysteresis ⇑,#HOs ⇓ but #RLFs ⇑ . (6)

Fig. 8 illustrates the effect of increasing hysteresis

with the simple example of a single UE moving past two
cells. As hysteresis increases, the UE requires a larger
RSRP difference to trigger HO and can move away from
a possible HO location without the completion of a
successful HO, leading to lesser number of HOs. At
the same time, as the UE moves away from the serving
cell without completing a HO procedure, an RLF can
be readily caused due to the degraded RSRP and thus
SINR implying that the number of RLFs increases with
hysteresis.

Effect of Changing a3Offset.

As a3Offset ⇑,#HOs ⇓ but #RLFs ⇑ . (7)

Fig. 9 illustrates the effect of increasing a3Offset

with the simple example of a single UE moving past two
cells. We observe from that a larger a3Offset offsets the
RSRP curve of the serving cell, for the purpose of the
A3 algorithm, upwards, making it harder to trigger and
perform a successful HO and easier to land into RLF
due to the lack of HO. Hence, the a3Offset parameter
can be used to reduce unnecessary HOs.
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2.5. Relations About Combinations of HO Parameters
In this section, we discuss two relations involving
combinations of HO parameters. The first relation in
Section II.E.1 related to handover appears frequently
in literature [4] [16] [3]. The second relation in Section
II.E.1 is based on observing the effect of change in HO
parameters (Section II.D.1 - II.D.4) on the observed
number of HOs and RLFs. These provide good initial
insight for extrapolation to HO performance in more
complex scenarios involving more HO parameters.

Number of RLFs is proportional to speed*timeToTrigger.

#RLFs ∝ speed ∗ timeToTrigger (8)

This relation appears in several papers [4] [16] [3] as
a result of model-based analysis, and indicates that the
number of RLFs depends on the product of speed and
timeToTrigger, rather than the individual quantities
themselves. This relation is inituitive as number of
RLFs increases with both speed and timeToTrigger

as indicated by equation (4) and (5). Note that speed

is a scenario parameter and timeToTrigger is an
HO control parameter and this relation is about
relationship between them and the number of RLFs.
Hence, it gives a good idea on how the HO control
parameters should be varied as per the scenario
parameters to obtain the required results.

Inverse Relation Between Number of RLFs and HOs. The
intuitive relations discussed in section II.D.3 to section
II.D.5 point towards another intuitive relation. Note
that when any of the HO control parameters is changed,
the number of HOs and RLFs change in contrasting
directions. This implies that over a large number of
simulations or field trials, the number of HOs and RLFs

would be inversely proportional or rather follow an
inverse trend.

2.6. Relations About Throughput
Network throughput is a complex quantity at the higher
transport layer (layer 4) unlike the number of HOs
and RLFs which are link layer (layer 2) quantities.
Hence, the relation between HO control parameters
of the link layer (layer 2) and the number of HOs &
RLFs can be easily deduced as in the previous sections
but not with the network throughput as it involves
many more layers, quantities, and processes. Relations
of the type described in the Section II.D and Section
II.E cannot be arrived at for network throughput in
terms of HO control parameters, making its prediction
and optimization difficult. Hence, Gaussian process
regression and bandit algorithms are proposed as good
tools for the purpose of prediction and optimization of
network throughput in Section 4.

However, the network throughput is expected to
be impacted by increasing number of HOs and RLFs
as they cause loss of connection. HOs cause only
temporary interruption at the link layer, whereas RLFs
cause complete loss of connection, changing the RRC
state. Hence, the loss of throughput with RLFs is more
profound than with HOs. This has been evidenced in
Section IV.A with linear regression fits.

3. Simulation Results About HO Relations
The system setup for the simulations was discussed in
detail in Section II. C and Table II. Initially, results
from a single simulation run using our ns-3 code — the
number of HO and RLFs - was collected. Thereafter,
a larger number of parallel simulations with the ns-
3 + SEM platform described in Section II.C was used
for validation of the causal relations among input
parameters and output, as discussed in Section II.D.
Building upon this, the relations about combination of
HO parameters in Section II.E are validated in Section
III.C and new ones discovered in Section III.D. A short
summary of the runtime details and the simulation
hardware is presented at the end.

3.1. Sample Simulation Run
The source code is available here [27] along with the
commands to configure and run a single simulation.
The log messages obtained from a simulation are parsed
in the python script to obtain the number of HOs and
RLFs. When running a large number of simulations in
parallel in SEM, the same parsing process is performed
for each of the simulation runs and the compiled results
stored in a file. The source code provides scripts to
generate all the result figures in this paper.
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Figure 10. REM for sample simulation run of the lena-dual-

stripe scenario

Table 3. Intercept (a), coefficient (b) and R2 values obtained by
linear regression for the relations validated in Fig. 11

# HOs # RLFs
Quantity a b R2 a b R2

speed -1.9 0.42 0.52 2.53 5e-2 5e-2
timeToTrigger 42.5 -1e-2 0.25 2.39 5e-3 0.43
hysteresis 6.06 -0.49 0.52 1.82 0.11 0.39
a3Offset 23.7 -2.39 0.59 0.77 9e-2 0.33

Fig. 10 displays the radio environment map (REM)
for the sample simulation run. As can be seen, this is
a dense scenario with many UEs (≈50) and 21 closely
spaced cells. Hence, by just running the simulation for a
nominal 5s we can obtain statistically significant results
for # of HOs and RLFs for a particular set of HO control
parameters, as the UEs can traverse many cells in the
duration of a simulaton run. Given that individual HO
and RLF events occupy 40 ms and 100 ms respectively,
using 5s = 5000 ms as the simulation run duration is
a reasonable choice with ≈50 UEs moving and tens
of HOs occurring. 5s gives a good number of HOs
and RLFs with small variations accross simulations and
a larger number for the simulation time would give
similar but scaled numbers. In the next two subsections,
simulation runs are performed with the standard values
of the HO parameters in Table 1 to validate the relations
in Section II.D and II.E. In all the graphs, each plotted
point represents the result of one simulation run on this
platform.

3.2. Validating Relations for Individual HO
Parameters
Fig. 11 validates each of the relations for individual
HO parameters claimed in Section 2.4 by plotting the

number of HOs and RLFs versus the various inputs
individually, i.e., speed, timeToTrigger, hysteresis or
a3Offset while keeping the others fixed. Each point
on the lines (either blue or red) represents the result
of the number of HOs (blue) or RLFs (red) from one
simulation run. The first plot illustrates the impact of
the speed parameter as discussed in Section II.D.1, by
plotting the number of HOs and RLFs with (a3Offset,

timeToTrigger, hysteresis) fixed at (0 dB, 1024

ms, 3 dB). As speed increases along the values- {10

m/s, 20 m/s ..., 120 ms/s}, we note that both the
number of HOs and RLFs increase.

The values of intercept, coefficient and R2 obtained
by linear regression over a larger parameter set, are
shown in Table 3. The R2 values are < 0.6, implying that
number of HO or RLFs are not purely linearly related
to speed. However, for timeToTrigger, hysteresis and
a3Offset, note that the coefficient (or slope) for # HOs
and # RLFs show negative and positive correlation,
respective. Yet, in the case of speed, these are both
positive as discussed in Section II.D.1. The exact value
of the coefficient and intercept in each of plots depends
on the scenario parameters and HO control parameters
that are not varied.

3.3. Validating Relations for Combinations of HO
Parameters
To confirm the relation described in Section II.E.1, we
perform simulations over the entire parameter set of
the combination of speed = {10.0, 20.0, 30.0 ...,

160.0} and standard timeToTrigger values as per
Table 1 resulting in 16 x 16 = 256 parameters. The
result of each simulation run is plotted as a blue dot
with the X-coordinate as the speed*timeToTrigger and
the Y-coordinate as the number of RLFs in Fig. 12. The
proportionality relationship between the number of
RLFs and speed*timeToTrigger is validated by fitting
a straight linear regression line (red) between the two
quantities. The R2 value of the fit is 0.6475 which
implies that a large amount of the variance is explained
and the model is worth attention. For reference, the
intercept and coefficient obtained are -0.7050 and
0.0002 respectively.

To validate the inverse relation in Section II.E.2,
a large number of simulations are performed with
inputs of timeToTrigger, hysteresis and a3Offset

sampled randomly from typical values of {0 ms,

40 ms, 64 ms, 100 ms, 128 ms, 160 ms, 256 ms,

320 ms, 480 ms}, {0 dB, 0.5 dB, ... 9.5 dB,

10dB} and {-3 dB, -2.5 dB ..., 0 dB, ... 2.5

dB, 3dB} respectively. Fig. 13 plots the results of the
simulations as green density bubbles with the sizes as
the frequency of that value and the X-coordinates and
Y-coordinates representing the number of HOs and
RLFs obtained as a result of the simulation runs. The
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Figure 11. Validation of the individual relations for speed,
timeToTrigger, hysteresis and a3Offset to the number
of HOs and RLFs

inverse relation between the number of HOs and RLFs
is showcased by the red trend line. This implies that
these are contradictory in nature and it is not possible
to minimize both. Yet, both have an impact on the
throughput and one wishes to simultaneously reduce
both.

3.4. Discovering New Relations About HO
Parameters
In this subsection, we showcase the results obtained
by running simulations using this platform for

Figure 12. Validation of the HO failure relation in literature-
number of RLFs is proportional to speed x timeToTrigger

(m/s * ms)

Figure 13. Investigation of the inverse relationship or trend
between the number of HOs and RLFs

combinations of parameters that have not been studied
well in the literature leading to the discovery of new
relations from HO parameters to number of HOs and
RLFs.

Fig. 14 illustrates the counterpart, for HOs, of
Fig. 12 with the same simulation parameter set with
256 simulations. If only speed and timeToTrigger

are varied, the number of handovers tends to be
proportional to speed/timeToTrigger (red trend line).
In other words, the number of HOs is dependent
on the quantity speed/timeToTrigger rather than
the individual quantities themselves as described in
equation (9). The coefficient, intercept and R2 values
of the linear regression fit are 35.4779, 17.2003

and 0.4104. The low R2 value indicates that there
are several almost parallel trend lines indicating this
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Figure 14. Investigation of a new relationship- number of HOs
tends to be proportional to speed/timeToTrigger (m/s / ms)

Figure 15. Investigation of a new relationship- number of RLFs
is proportional to speed*hysteresis (dB m/s)

relation in Fig. 14. This is especially true at low
values of timeToTrigger leading to higher values of
speed/timeToTrigger in Fig. 14 and thus lower slopes.

#HOs ∝ speed/timeToTrigger (9)

#RLFs ∝ speed ∗ hysteresis (10)

#HOs ∝ speed/hysteresis (11)

Fig. 15 and Fig. 16 discuss new relationships related
to the combination of speed and hysteresis. As
described in relation (10) and (11), they take a similar
form as their counterparts for the combination of
speed and timeToTrigger in relation (8) and (9).
From Fig. 15, we note that the number of RLFs or
handover failures due to RLFs is directly proportional
to speed*hysteresis as shown by the red regression

Figure 16. Investigation of a new relationship: number of HOs
tends to be proportional to speed/hysteresis (dB/ (m/s))

line. The coefficient, intercept and R2 values of the
linear regression fit in Fig. 15 are 0.0053, -0.7856 and
0.8834 respectively, with the high R2 value indicating
a strong fit with a large amount of variance explained.
New relation (10) seems to hold over the entire
parameter set. At the same time, we note from Fig.
16 that the number of HOs tends to be proportional
to speed/hysteresis. The coefficient, intercept and
R2 values of the linear regression fit in Fig. 16 are
0.8061, 2.4111 and 0.6212 respectively. The high R2

value indicates a strong fit but we notice some outlying
points for which the relation seems to have a different
lower slope in Fig. 16 for lower values of hysteresis

and thus speed/hysteresis. Hence, we note that
that the number of HOs and RLFs are dependent on
these product and dividend expressions more than
the individual quantities of speed and hysteresis

themselves.
These relationships discovered through this simula-

tion platform are entirely new and have not been dis-
cussed in the literature or investigated through simula-
tion or field trials. These relations help mobile operators
better understand the complementary nature of HOs
and RLFs and the directions in which their numbers
change when combinations of parameters are changed.
Using them, they would be able to make the required
adjustments to the HOs parameters in real-world net-
works to obtain gains of necessary quantities.

3.5. Runtime Details
The versions of ns-3 and SEM used to run the
simulations were 3.35 and 0.3.1 respectively. An
nVIDIA GT75 Titan 8RG machine with 12 cores and
16 GB RAM was used to perform bulk of the simulations.
Each simulation took about 30 seconds to run on an
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Figure 17. Throughput Variation with Number of HOs and RLFs

average allowing for a typical parameter set of 300-400
parameters to be explored in around 3 hours.

4. Throughput Analysis and Optimization
As explained in section 2.6, the relation between HO
control parameters and throughput is not as simple as
that for the number of HOs and RLFs. This section
first demonstrates the impact of HOs and RLFs on
network throughput through linear regression plots.
The next subsection provides a good method for
predicting the throughput at any given parameters
using throughput output information obtained from
a grid of input parameters using Gaussian process
regression. Finally, throughput optimization over time
with respect to HO control parameters is illustrated
using bandit algorithms. In this paper, the throughput
that is considered is the application layer throughput,
i.e., the total number of bytes in received internet
protocol packets divided by the total simulation time.

4.1. Throughput Variation with HOs and RLFs
Fig. 17 illustrates the throughput variation with the
number of HOs and RLFs. The regression coefficients
for the number of HOs and RLFs are 4818.8062 and -

142990.8082 respectively. This indicates that there is a
large decrease of throughput for every additional RLF
as compared to HO. In the case of HO, there seems to be
a negligible increase in throughput for every additional
HO, but this is mainly due to the additional control

Figure 18. Gaussian Process Regression over hysteresis and
timeToTrigger to predict network throughput

signals passed around due to the handover process and
is not concerned with the data too much.

4.2. Throughput Prediction with Gaussian Process
Regression
It is difficult to predict throughput at a given point
in terms of the HO control parameters because
network throughput is a transport layer quantity with
complex relationship to hysteresis, timeToTrigger

etc. This becomes especially important when a mobile
network operator wants to carry out optimization over
non-standard values in between the standard values
specified in Table 1. We devise a novel method to
predict the expected throughput at a given point by
interpolation and estimation using Gaussian process
regression from throughput values obtained from a grid
of HO control parameters. We use gaussian process
regression or Kriging as it gives the best linear unbiased
prediction at unsampled locations and is known for its
accuracy and adaptivity across the entire parameter set.
A brief description of Gaussian process regression in
relation to this problem is as below.

1. The function to be predicted, throughput in
this case, is sampled at a number of pairs
of the form (hysteresis, timeToTrigger), i.e.,
{(h1, t1), (h2, t2), ...(hn, tn)}.

2. A kernel function (say, radial basis function)
f (h, t|h1, t1, h2, t2...hn, tn) = g(h, t) is learned over
the sampled points by optimizing its parameters
based on them.

3. The prediction at a point (h′ , t′) is given as g(h′ , t′).
Hence, the function g(h, t) learns to predict the
throughput at any given point.
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Our objective is to maximize the throughput under
all hysteresis and timeToTrigger values as in (P1).

maximize
hyst,ttt

T h(hyst, ttt)

subject to 0 ≤ hyst ≤ hystmax

0 ≤ ttt ≤ tttmax

(P1)

where Th, hyst and ttt stand for throughput,
hysteresis and timeToTrigger respectively.

Throughput values are obtained using ns-3 for each
parameter set in the combination of hysteresis =

{0 dB, 0.1 dB, 0.2 dB, ... 4.4 dB, 4.5dB} and
timeToTrigger = {0 ms, 10 ms, ... 900 ms} with
speed and timeToTrigger kept fixed at 30 m/s and 0

dB respectively. Gaussian process regression is used to
learn a kernel function over this region and interpolate
governed by prior covariances. The throughput values
predicted at each point using the learned function are
shown in Fig. 18 using the colour map. On performing
optimization by sampling the throughput using this
function over a 900 x 1800 grid, we get the maximum
throughput as 1.3073e7 Kbps occuring at hysteresis
& timeToTrigger of 100 ms & 3.83 dB respectively.
The predicted value is within 1.4% of the actual value
of 1.2886e7 Kbps obtained by performing an ns-3
simulation at this point.

4.3. Throughput Optimization Using Bandit
Algorithms
This subsection considers the problem of throughput
optimization over time. In real-world, this could take
the form of throughput optimization by an operator for
a given scenario over months or years by controlling
the HO parameters appropriately. We note that the
throughput values obtained for a given HO parameter
set varies when the RngRun or RngSeed values are
changed in the simulation platform due to presence of
stochastic elements like fading and UE mobility. This
represents the throughput values obtained for a given
network by an operator over different time instants,
whether hours, days or months.

Problem Formulation. Consider the problem of a mobile
operator wanting to select the best hysteresis

and timeToTrigger parameters for the problem of
throughput optimization in a city over a long time
period. At every time instant, the operate is presented
with a row of 6 x 6 choices each representing
a value in the parameter set of the combination
of hysteresis = {0 dB, 1 dB, 3 dB, 5 dB, 7 dB,

9dB} and timeToTrigger = {0 ms, 100 ms, 256

ms, 480 ms, 1024 ms, 2560 ms}, assuming the other
quantities are kept fixed. The multi-armed bandit can
be seen as a set of real distributions of throughput over
time B = {R1, R2, ...R36}, each distribution Ri associated

10000000 15000000 16000000 9000000

Machine 1 Machine 2 Machine 3 Machine 4

..Time 
Instant 1

SELECTED MAX REWARD

Reward = 10000000
Max Reward = 16000000
Regret = 6000000

12000000 14000000 6000000 8000000 ..Time 
Instant 2

SELECTED
MAX REWARD

Reward = 14000000
Max Reward = 14000000
Regret = 0

900000 13000000 14000000 12000000 ..Time 
Instant 3

SELECTED MAX REWARD

Reward = 13000000
Max Reward = 14000000
Regret = 1000000

(Hyst, TTT) (0, 256) (0, 512) (1, 256) (1, 512)

Figure 19. Throughput Optimization as an MAB Problem

with the throughput or reward obtained by selecting
one of the 6 x 6 = 36 parameter sets available for
hysteresis and timeToTrigger at every time instant.
The operator selects one parameter set a out of the
possible 36 at every time instant t and observes the
associated throughput or reward- rta = rt sampled as
per the distribution Ra. The regret xt at a given instant
t is the difference of the max possible reward at the
given time and that of the chosen action as described
by equation (12).

xt = r̂t − rt where r̂t = max
b

rtb, b ϵ{1, 2, ..., 36} (12)

The regret ρT after T time instants is the expected
difference between the rewards associated with the
optimal policy and the selected actions as described by
equation (13).

ρT =
T∑
t=1

r̂t −
T∑
t=1

rta (13)

The objective is to maximize the sum of rewards, i.e.,
minimize the total regret, over a long time horizon H .
This is done through bandit algorithms to optimally
select the actions at a given instant as per a policy.
Average total regret is considered instead of total regret
for purpose of understanding convergence over time
periods. The reduction of average regret over time is a
good indicator of a bandit algorithm’s effectiveness.

Illustration. Fig. 19 shows an illustrative bandit algo-
rithm for this problem, in which the parameter sets are
selected at random at each time instant. At time instant
1, slot machine 1 or arm 1 representing hysteresis

= 0 dB and timeToTrigger = 256 ms is selected giv-
ing a throughput or reward of, 10000000 Kbps. The
maximum possible reward of, 16000000 Kbps is given
by arm 3 at this time instant. The difference of the
maximum possible reward and the obtained reward at
a given time instant is called the regret and calculates
to, 6000000 Kbps at this time instant. The regret at time
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instant 2 is 0 Kbps, as the best parameter set is selected,
and, 1000000 Kbps at time instant 3.

Solution. We implement the standard bandit
algorithms for the problem of throughput optimization
over time and plot the resultant average total reward
for a time horizon of 1000 time instants as in Fig. 20.
The three popular bandit algorithms of Explore-then-
commit (ETC), ϵ-greedy and Upper Confidence Bound
(UCB) were employed for this purpose. Initially, the
algorithm or strategy needs to explore since it has less
information about the rewards associated with each
parameter set. But once the strategy gains enough
information, it can exploit the parameter choices with
high rewards or explore other parameter choices with
less information. The aim of bandit algorithms is
to strike an optimal balance between exploring all
parameter choices so as to not miss out on valuable
ones and exploiting the choices that have been the most
profitable so far. The implementation details of the
bandit algorithms used are given below.

1. ETC:
This algorithm occurs in the below two stages and has

a parameter num_exp.

1. Exploration- Each of the parameter choices is
made for num_exp respectively. The mean reward
obtained for each parameter choice k is calculated
as µk .

2. Exploitation- The parameter set with the highest
µk based on the exploration stage is selected for
the rest of the time horizon.

2.ϵ-greedy: At a given time instant, the mean reward
obtained until that instant for each parameter choice
k is maintained as µk . A random number p is selected
from [0, 1] and one of the below steps is taken based on
its value.

1. p < ϵ (exploration)- a parameter choice is made
uniformly at random

2. p ≥ ϵ (exploitation)- the parameter set with the
highest µk is chosen

The mean reward for the selected parameter set k- µk
is updated after each step.

3.UCB: At a given time instant, the mean reward
obtained until that instant for each parameter choice k
is maintained as µk , the number of times that parameter
is selected as nk and the total number of steps taken

as N . The UCB value of ∆k = µk +
√

2logN
nk

is calculated
for each parameter set k. At each step the parameter
set with the highest ∆k is chosen and the UCB values
updated. The UCB value and algorithm aims to strike a

Figure 20. Average regret over time for various MAB algorithms

balance between the emprical mean reward µk and the

exploration bonus of
√

2logN
nk

.
We note that the average regret for the three

algorithms converges to around 2.80e7 Kbps for the
parameter set in question as compared to the baseline
of 3.12e7 Kbps obtained by selecting a fixed parameter
configuration of (hysteresis, timeToTrigger) = (3

dB, 256 ms). Hence, bandit algorithms give statisti-
cally sound results for the problem of throughput opti-
mization over time for LTE networks.

5. Conclusion
In this work, we explored various relations related to
HO parameters by observing the A3 HO algorithm,
in the context of enabling deeper understanding of
HO modeling. Then we validated these relations
pertaining to HO failures via ns-3 simulations,
leveraging SEM capability for running a number
of parallel simulations using multicore configuration
composing a simulation platform in this process. Using
the same platform, we discovered new HO relations
never discussed in the literature. The validation of
existing relations and discovery of new additional ones
using this platform provides new insights to network
operators to understand the impact of HOs and HO
failures. Further exploiting this simulation platform,
we shifted focus to the more complex quantity of
throughput, quantifying its degradation, predicting
resulting network throughput and devising algorithms
for its optimization via choice of optimal HO control
parameters. The algorithms devised for the choice of
optimal parameters for network throughput in the
presence of HO help them arrive at the best policies
and parameters for network operations. This simulation
platform boosts the credibility of the LENA module for
use in HO modeling, analysis and algorithm discovery,
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and will encourage further use among independent
users and the industry.

Acknowledgments

This paper was motivated by an academic collaboration
between the Fundamentals of Networking Lab (FUN-
Lab) at the University of Washington, Seattle and a
research team at Meta Connectivity. The authors thank
Prof. Thomas R Henderson, U. Washington FUNLab for
his review of an early draft.

References

[1] Andrews, J.G., Buzzi, S., Choi, W., Hanly, S.V., Lozano,
A., Soong, A.C.K. and Zhang, J.C. (2014) What will 5g
be? IEEE Journal on Selected Areas in Communications
32(6): 1065–1082. doi:10.1109/JSAC.2014.2328098.

[2] Dimou, K.D., Wang, M., Yang, Y., Kazmi, M., Larmo, A.,
Pettersson, J., Müller, W. et al. (2009) Handover within
3gpp lte: Design principles and performance. 2009 IEEE
70th Vehicular Technology Conference Fall : 1–5.

[3] Nguyen, M.T. and Kwon, S. (2020) Geometry-based
analysis of optimal handover parameters for self-
organizing networks. IEEE Transactions on Wireless Com-
munications PP: 1–1. doi:10.1109/TWC.2020.2967668.

[4] Chen, D., Liu, J., Huang, Z., Zhang, Z. and Wu, J. (2015)
Theoretical analysis of handover failure and no handover
rates for heterogeneous networks. In 2015 International
Conference on Wireless Communications Signal Processing
(WCSP): 1–5. doi:10.1109/WCSP.2015.7341299.

[5] Lee, C., Cho, H.J., Song, S. and Chung, J. (2020)
Prediction-based conditional handover for 5g mm-wave
networks: A deep-learning approach. IEEE Vehicular
Technology Magazine 15: 54–62.

[6] Ericsson Blog (2020), This is the key
to mobility robustness in 5g netowrks.
https://www.ericsson.com/en/blog/2020/5/

the-key-to-mobility-robustness-5g-networks.
[7] Park, H., Lee, Y., Kim, T., Kim, B.C. and Lee, J.

(2021) Zeus: Handover algorithm for 5g to achieve zero
handover failure. ETRI Journal doi:10.4218/etrij.2020-
0356.

[8] Jiang, W. (2022) Graph-based deep learning
for communication networks: A survey.
Computer Communications 185: 40–54.
doi:https://doi.org/10.1016/j.comcom.2021.12.015,
URL https://www.sciencedirect.com/science/

article/pii/S0140366421004874.
[9] He, S., Xiong, S., Ou, Y., Zhang, J., Wang, J., Huang, Y.

and Zhang, Y. (2021) An overview on the application
of graph neural networks in wireless networks. IEEE
Open Journal of the Communications Society PP: 1–1.
doi:10.1109/OJCOMS.2021.3128637.

[10] Yang, L., Cheng, M., Qu, J. and Chen, Z. (2022)
Graphho: A graph-based handover optimization system
for cellular networks. In 2022 International Symposium
on Wireless Communication Systems (ISWCS): 1–6.
doi:10.1109/ISWCS56560.2022.9940345.

[11] Zhao, S., Jiang, X., Jacobson, G., Jana, R., Hsu,

W.L., Rustamov, R., Talasila, M. et al. (2020) Cel-
lular network traffic prediction incorporating han-
dover: A graph convolutional approach. In 2020
17th Annual IEEE International Conference on Sens-
ing, Communication, and Networking (SECON): 1–9.
doi:10.1109/SECON48991.2020.9158437.

[12] Baldo, N., Miozzo, M., Requena-Esteso, M. and Nin-

Guerrero, J. (2011) An open source product-oriented lte
network simulator based on ns-3. In Proceedings of the
14th ACM International Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems, MSWiM
’11 (New York, NY, USA: Association for Computing
Machinery): 293–298. doi:10.1145/2068897.2068948,
URL https://doi.org/10.1145/2068897.2068948.

[13] Baldo, N., Requena-Esteso, M., Miozzo, M. and
Kwan, R. (2013) An open source model for the
simulation of lte handover scenarios and algorithms
in ns-3. In Proceedings of the 16th ACM International
Conference on Modeling, Analysis &; Simulation of Wireless
and Mobile Systems, MSWiM ’13 (New York, NY,
USA: Association for Computing Machinery): 289–298.
doi:10.1145/2507924.2507940, URL https://doi.org/

10.1145/2507924.2507940.
[14] Magrin, D., Zhou, D. and Zorzi, M. (2019) A simulation

execution manager for ns-3: Encouraging reproducibility
and simplifying statistical analysis of ns-3 simulations:
121–125. doi:10.1145/3345768.3355942.

[15] Herman, B., Baldo, N., Miozzo, M., Requena, M. and
Ferragut, J. (2014) Extensions to lte mobility functions
for ns-3. In Proceedings of the 2014 Workshop on Ns-
3, WNS3 ’14 (New York, NY, USA: Association for
Computing Machinery). doi:10.1145/2630777.2630779,
URL https://doi.org/10.1145/2630777.2630779.

[16] López-Pérez, D., Guvenc, I. and Chu, X. (2012)
Theoretical analysis of handover failure and ping-
pong rates for heterogeneous networks. In 2012 IEEE
International Conference on Communications (ICC): 6774–
6779. doi:10.1109/ICC.2012.6364722.

[17] Vasudeva, K., Simsek, M., Lopez-Perez, D. and
Guvenc, I. (2015) Impact of channel fading on
mobility management in heterogeneous networks.
doi:10.1109/ICCW.2015.7247509.

[18] Marinescu, A., Macaluso, I. and Dasilva, L. (2017)
System level evaluation and validation of the ns-
3 lte module in 3gpp reference scenarios: 59–64.
doi:10.1145/3132114.3132117.

[19] Hendrawan, H., Zain, A. and Lestari, S. (2019)
Performance evaluation of a2-a4-rsrq and a3-rsrp
handover algorithms in lte network. Jurnal Elektronika
dan Telekomunikasi 19: 64. doi:10.14203/jet.v19.64-74.

[20] Lin, P.C., Casanova, L. and Fatty, B. (2016) Data-
driven handover optimization in next generation mobile
communication networks. Mobile Information Systems
2016: 1–11. doi:10.1155/2016/2368427.

[21] Lee, Y., Shin, B., Lim, J. and Hong, D. (2010)
Effects of time-to-trigger parameter on handover per-
formance in son-based lte systems. In 2010 16th Asia-
Pacific Conference on Communications (APCC): 492–496.
doi:10.1109/APCC.2010.5680001.

14 EAI Endorsed Transactions on 
Mobile Communications and Applications 

01 2023 - 06 2023 | Volume 7 | Issue 4 | e4

https://doi.org/10.1109/JSAC.2014.2328098
https://doi.org/10.1109/TWC.2020.2967668
https://doi.org/10.1109/WCSP.2015.7341299
 https://www.ericsson.com/en/blog/2020/5/the-key-to-mobility-robustness-5g-networks
 https://www.ericsson.com/en/blog/2020/5/the-key-to-mobility-robustness-5g-networks
https://doi.org/10.4218/etrij.2020-0356
https://doi.org/10.4218/etrij.2020-0356
https://doi.org/https://doi.org/10.1016/j.comcom.2021.12.015
https://www.sciencedirect.com/science/article/pii/S0140366421004874
https://www.sciencedirect.com/science/article/pii/S0140366421004874
https://doi.org/10.1109/OJCOMS.2021.3128637
https://doi.org/10.1109/ISWCS56560.2022.9940345
https://doi.org/10.1109/SECON48991.2020.9158437
https://doi.org/10.1145/2068897.2068948
https://doi.org/10.1145/2068897.2068948
https://doi.org/10.1145/2507924.2507940
https://doi.org/10.1145/2507924.2507940
https://doi.org/10.1145/2507924.2507940
https://doi.org/10.1145/3345768.3355942
https://doi.org/10.1145/2630777.2630779
https://doi.org/10.1145/2630777.2630779
https://doi.org/10.1109/ICC.2012.6364722
https://doi.org/10.1109/ICCW.2015.7247509
https://doi.org/10.1145/3132114.3132117
https://doi.org/10.14203/jet.v19.64-74
https://doi.org/10.1155/2016/2368427
https://doi.org/10.1109/APCC.2010.5680001


ns-3 Simulation Based Exploration of LTE Handover Optimization

[22] Bae, H.D., Ryu, B. and Park, N.H. (2011)
Analysis of handover failures in lte femtocell
systems. In 2011 Australasian Telecommunication
Networks and Applications Conference (ATNAC): 1–5.
doi:10.1109/ATNAC.2011.6096636.

[23] Legg, P., Hui, G. and Johansson, J. (2010) A simulation
study of lte intra-frequency handover performance. In
2010 IEEE 72nd Vehicular Technology Conference - Fall: 1–
5. doi:10.1109/VETECF.2010.5594477.

[24] (2020) E-UTRA Radio Resource Control (RRC) protocol
specification; Radio Resource Control (RRC); Protocol

specification. Tech. Rep. TS 36.331, 3GPP Release 16.
[25] (2020) E-UTRA Radio Resource Control (RRC) protocol

specification; Requirements for support of radio resource
management. Tech. Rep. TS 36.133, 3GPP Release 16.

[26] Alcatel-Lucent, p.D. and Vodafone (2009) Simulation
assumptions and parameters for FDD HeNB RF require-
ment. Tech. Rep. R4-092042, 3GPP TSG RAN WG4.

[27] URL https://github.com/sachinnUW/ns-3-dev/

tree/lena-sim.

15 EAI Endorsed Transactions on 
Mobile Communications and Applications 

01 2023 - 06 2023 | Volume 7 | Issue 4 | e4

https://doi.org/10.1109/ATNAC.2011.6096636
https://doi.org/10.1109/VETECF.2010.5594477
https://github.com/sachinnUW/ns-3-dev/tree/lena-sim
https://github.com/sachinnUW/ns-3-dev/tree/lena-sim

	1 Introduction
	1.1 Motivation
	1.2 Previous Work on LTE Network Analysis Under HOs
	1.3 Contributions
	1.4 Organization

	2 System Setup and Known Relations
	2.1 A3 Handover Algorithm
	2.2 Radio Link Failure (RLF) Detection
	2.3 System Setup
	2.4 Impact of HO parameters
	Effect of UE Speed
	Effect of Changing timeToTrigger
	Effect of Changing hysteresis
	Effect of Changing a3Offset

	2.5 Relations About Combinations of HO Parameters
	Number of RLFs is proportional to speed*timeToTrigger
	Inverse Relation Between Number of RLFs and HOs

	2.6 Relations About Throughput

	3 Simulation Results About HO Relations
	3.1 Sample Simulation Run
	3.2 Validating Relations for Individual HO Parameters
	3.3 Validating Relations for Combinations of HO Parameters
	3.4 Discovering New Relations About HO Parameters
	3.5 Runtime Details

	4 Throughput Analysis and Optimization
	4.1 Throughput Variation with HOs and RLFs
	4.2 Throughput Prediction with Gaussian Process Regression
	4.3 Throughput Optimization Using Bandit Algorithms
	Problem Formulation
	Illustration
	Solution


	5 Conclusion



