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Abstract

As a typical form of machines learning, deep learning has attracted much attention from researchers. It can
independently construct (train) basic rules according to the sample data in the learning process. Especially in
the field of machine vision, neural networks are usually trained by supervised learning, that is, by example
data and predefined results of example data. In this paper, we firstly overview the current research progress
on the deep model training and deployment on the scalable Internet of Things (IoT) networks, by taking into
account both the latency and energy consumption. We then summarize the existing challenges on the model
training and model deployment on the scalable IoT devices. We further give some feasible solutions to solve
the challenges on the model training and model deployment on the scalable IoT devices. The study in this
paper can serve as an important reference for the development of deep model training and model deployment
for scalable IoT networks.
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1. Introduction
AI usually refers to the architecture constructed by
machines (usually computer programs) by imitating or
copying human behavior [1–3]. The term “AI" covers
many sub domains, such as expert systems, pattern
analysis systems, or robots. AI based systems will
use different methods to simulate or model human
behavior and decision-making structure, including
statistical algorithms, heuristic programs, artificial
neural networks (ANN) or other machine learning
derivative technologies [4–6].

Machine learning is a sub field of AI, which can be
classified into “supervised learning" and “unsupervised
learning" [7–9]. In supervised learning, the sample
data of learning contains both the input data and the
corresponding expected results (such as classification)
[10–12], while in unsupervised learning, the system
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should determine the possible results of the input
data by itself [13–15]. As a typical form of machines
learning, deep learning has attracted much attention
from researchers [16–18]. As an artificial neural
network, it can independently construct (train) basic
rules according to the sample data in the learning
process. Especially in the field of machine vision,
neural networks are usually trained by supervised
learning, that is, by example data and predefined
results of example data. Deep learning uses some form
of artificial neural network (ANN) technology, so it
must be trained with sample data first [19–21]. The
trained ANN can be used to perform related tasks.
The process of using trained ANN is called “inference".
In reasoning, ANN will evaluate the data provided
according to the learned rules. For example, it is
possible to evaluate whether an object in an input image
has a defect or not.
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2. Analysis of the current state of research

The acquisition and deployment of intelligent models
is the core of implementing B5G edge intelligence
[22–24]. However, the training of intelligent models
relies on superb computing devices, while large-scale
intelligent models are difficult to deploy in IoT devices
where computing and storage resources are extremely
scarce. In this regard, researchers have conducted
extensive and in-depth research work to propose a
series of efficient and feasible solutions from various
metrics such as training and inference latency and
energy consumption.

We should study the parallel training of intelligent
models. To address the difficulty of storing massive
data in a single node in a cloud computing center,
researchers investigated a model training strategy
based on data parallelism, proposed a partitioning
scheme for the data set, and subsequently allocated
training samples according to the memory capacity of
each computing node within the central cloud, and
theoretically demonstrated the convergence of parallel
training based on this scheme [25–27]. To address the
difficulty of training large-scale intelligent models in
a single node, researchers proposed a model random
partitioning strategy for the structural characteristics
of neural networks, which randomly partitioned the
model into multiple copies and stored them in different
computing nodes, and optimized the transfer process of
gradient parameters within computing nodes based on
the global topology to improve the training efficiency
of intelligent models. In addition, the researchers adopt
an asynchronous hierarchical training method for the
problem of device dropout during parallel training of
the model, and also combine the temporal update of
the global with the generation of gradient parameters,
which greatly accelerates the training process and
improves the robustness of the intelligent learning
system.

We should study the communication mechanism
of distributed training. For the distributed parameter
transmission process, in order to minimize the band-
width consumption of the transmission process, the
researchers investigate the depth gradient compression
strategy to sparse the gradients and then send some
of the gradient elements at each iteration as a way
to reduce the communication overhead of computing
node interactions. In addition, the researchers inves-
tigate the impact of wireless networks on distributed
training, using over-the-air computational transmission
compression quantization parameters for multi-access
channels to minimize transmission errors by regulat-
ing power to achieve low-energy and low-latency dis-
tributed training. In addition, the gradient merging
transmission of adjacent layers of the deep network can

be used instead of the traditional hierarchical transmis-
sion to improve the bandwidth utilization, and the iter-
ative delay of the training process can be significantly
reduced by optimizing the resource scheduling of the
merged transmission.

We should further study efficient model deployment
and inference for mobile devices. To overcome the
shortage of computing power in mobile devices, the
previous work reduces the time complexity of oper-
ations by building new convolutional operators and
optimizes the feature extraction of intelligent models
to significantly reduce the end-to-end inference latency
while ensuring a certain accuracy. The researchers fur-
ther explored the use of pruning techniques to remove
redundant information from intelligent models and
establish a trade-off between latency, energy consump-
tion and model size to achieve flexible and efficient
deep model inference in mobile devices. In addition,
to reduce the inference latency, a cloud-based fusion
model deployment scheme is proposed to utilize the
computing power of mobile devices and the central
cloud for accelerated inference, and the scheme also
reduces the inference latency and energy consumption
by scheduling the computing volume based on the
real-time channels of wireless networks. In this aspect
of research, the researchers propose a training and
deployment mechanism based on multiple exit points
for the heterogeneity of computing power presented by
mobile devices in the B5G edge intelligence network,
and realize real-time scheduling of resources through
an efficient greedy strategy, which significantly reduces
the overall latency of the intelligent system.

3. Challenges on model training and deployment
across data centers
From the analysis of the above research status, it
can be seen that the existing research has conducted
in-depth research on the training and deployment
of intelligent models based on the central cloud,
and has conducted in-depth analysis from multiple
perspectives, such as training and deployment latency,
energy consumption, communication and computation
efficiency, and data security, etc. The performance of
model training and deployment has been significantly
improved by combining the optimal scheduling of
communication and computation resources. These
research works provide important references for the
training and deployment of intelligent models in
B5G edge intelligence networks. However, B5G edge
intelligence networks can also be applied to high-
speed mobile scenarios, where the cross-data center
characteristics have an important impact on the
training and deployment of intelligent models. It
is a difficult challenge to design a new intelligent
model training and deployment scheme for B5G edge
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intelligence networks by deeply exploring the cross-
data center characteristics under high mobility and
combining over-the-air computing and federal learning
technologies.

4. Feasible solutions to model training and
deployment across data centers
First, we study the efficient aggregation and processing
of intelligent models to achieve fast real-time response
and decision making at the control layer and improve
the efficiency of distributed model training across data
centers. Consider an over-the-air federation learning
system consisting of a parameter server and L ≥ 0 edge
data centers. Under the coordination of the parameter
server, the edge data centers aggregate and collaborate
to train shared machine learning models through
wireless updates. Let the parameter vector w denote this
federated learning model, where q denotes the model
size; and let Dl denote the local dataset of edge data
center l, where the dth sample and its label are denoted
by xd and yd , respectively. Then, the local loss function
of the model vector w on Dl is

Fl(w) =
1
|Dl |

∑
(xi ,yj)∈Dl

f (w, xd , yd) + ρR(w), (1)

where f (w, xd , yd) denotes the sample-by-sample loss
function that quantifies the prediction error of model
w in sample xd for its labels yd , and R(w) is a strongly
convex regularization function with hyperparameters
ρ ≥ 0 as scaling factors. For the convenience of the
representation, fi(w) is replaced by f (w, xd , yd). Thus,
the global loss function for all distributed data sets
is F(w) = 1

L

∑
l∈LDlFl(w) where D = ∪l∈LDl , and for

simplicity of notation, it is assumed that the size of the
local data set in all edge data centers is the same, i.e.,
Dl = |Dl | = D̃. The goal of the model training process is
to minimize the global loss function:

w∗ = arg min
w

F(w). (2)

In addition to uploading all local data directly to the
parameter server for centralized training,the learning
process can be implemented iteratively in a distributed
manner based on the gradient averaging method,
i.e., as shown in Fig. 1. In each communication
process τ , the machine learning model is represented
by w(τ) and each edge data center can use its

local dataset Dl to compute the local gradient g
(τ)
l =

1
|Dl |

∑
(xd ,yd)∈Dl

∇fd
(
w(τ)

)
+ ρ∇R(w), where ∇ is the

gradient operation and it is assumed that the whole
local dataset is used to estimate the local gradient.
Next, the edge data center sends all local gradients
simultaneously to the parameter server and averages

them to obtain the global gradient g(τ) = 1
L

∑
l∈L gl

(τ).
Then, the parameter server broadcasts the global
gradient estimate to the edge data center, and the
edge device can update the local model based on this
estimate: w(τ+1) = w(τ) − η · g(τ), where η is the learning
rate. The above learning process is repeated until
the convergence criterion is satisfied or the maximum
number of iterations is reached.

An efficient and feasible scheme is to make full use
of the superposition characteristics of waveforms in air
computing and an efficient model/gradient aggregation
technology based on air computing should be studied.

Let ĥ
(τ)
l denote the complex channel coefficient from

the edge data center l to the parameter server in the

communication process τ , then let h
(τ)
l = |ĥ(τ)

l |. When
uploading the gradient, all edge devices transmit on the
same time-frequency block, so the received aggregated
signal is

y(τ) =
∑

l∈L h
(tau)
1

√
p

(τ)
1 g

(τ)
1 + z(τ), (3)

where p
(τ)
l is the transmission power, z(τ) is the additive

Gaussian white noise, subject to z(τ) ∼ CN (0, N0I0),
in which N0 is the noise power density and I0 is
the identity matrix. Therefore, the global gradient

estimation of the parameter server is ĝ(τ) = y(τ)

L .
The edge data center can adaptively adjust its

transmission power to enhance learning performance.
In addition, each edge is limited by the maximum

transmit power P̃l , i.e., p
(τ)
l ≤ P̃ l ,∀l ∈ L,∀l, and the

average power constraint P̃l , i.e., 1
L

∑
l∈L p

i
l (τ) ≤ P̃l ,∀l ∈

L. In general, the above constraints need to satisfy P̃l ≤
P̃l ,∀l ∈ L.

Secondly, the training accuracy and convergence rate
are established as the performance metrics of federated
learning, and an accurate and reliable mathematical
model is established according to the basic computing
theory, communication theory and federated learning
framework. Let τ0 be the required total number of
communications, and use F(τ+1) to simplify F

(
w(τ+1)

)
,

and let F⋆ = F
(
w⋆

)
. After τ0 communications, the

optimal gap of the loss function, that is, F(τ0+1) − F⋆ ,
can obtain an upper bound related to the transmission

power
{
p

(τ)
1

}
, the learning rate η and τ0: F(τ0+1) −

F⋆ ≤ G

({
p

(τ)
1

}
, η, τ0

)
. Since F⋆ is a constant, the

problem of minimizing F
(
w(τ0)

)
can be approximated

as minimizing the upper bound G

({
p

(τ)
l

}
, η, τ0

)
.

At the same time, according to different application
scenarios, the optimization parameters such as trans-
mission power at the transmitting end and learning
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rate at the receiving end are designed. According to
different performance metrics, an optimization model
of cross data center federated learning based on over the
air computing is constructed. According to the above
model, the obtained optimization problem is modeled
as:

min{
p

(τ)
l

}
,η,N

G
({
p

(τ)
k

}
, η, τ0

)
s.t. P̃l ≤ P̄l ,∀l ∈ L

1
τ0

∑τ=τ0
τ=1 p

(τ)
l ≤ P̃l ,∀l ∈ l({

p
(τ)
l

}
, η, τ0

)
∈ S

(4)

The constraint space S may vary according to
different task requirements. However, this problem
is a nonconvex optimization problem with large
dimension of design parameters and high complexity of
solution. Non-convex optimization, online optimization
and other methods can be used to reasonably
allocate wireless resources (such as time, bandwidth
and transmission power) in combination with deep
reinforcement learning and other means, so as to
improve the convergence speed of the model and realize
efficient air federation edge learning while ensuring the
training accuracy.

Further, the deployment and deduction of
lightweight intelligent models based on model pruning
should be studied to minimize the end-to-end delay
and energy consumption in the deduction process.
Specifically, according to the different application
requirements of B5G edge intelligence, the edge end
joint inference method is proposed to perform network
cutting / pruning on the artificial intelligence model,
so as to obtain the lightweight model under different
compression rates from the heavyweight complex
model. Then, the artificial intelligence model is mixed
and deployed in the edge server and the terminal, so
that the distributed computing resources can be used
to realize rapid model inference. Take the deep neural
network as an example, as shown in Fig. 2. In the
process of model inference, the neural network can be
cut into two layers, and the bottom network is carried
out at the terminal to extract the feature information
of real-time data, and compress and transmit it to the
edge server. The upper layer network performs model
inference at the edge server. Finally, the edge server
sends the inference result to the terminal device.

It is assumed that there are L terminal devices
in the system. Under the coordination of the edge
server, they cooperate to complete the inference of the
intelligent model N. According to different application
requirements, N is compressed by model compression
technologies such as network cutting / pruning, and L
lightweight sub networks {Nl} and heavy sub networks
N0 are obtained. The structure is expressed as Nl , the

compression rate is c(Nl), and the computing storage
and other resources allocated to it by the node are b(Nl).
The energy consumption of completing the sub network
is e(Nl) and the delay τ(Nl) are both related to b(Nl).
Define a(Nl) as the accuracy index of the sub network,
and Ω as the deployment strategy of L lightweight sub
networks at different terminals.

Finally, we should optimize the network wide com-
munication computing resources and model deploy-
ment strategy. In order to cope with different perfor-
mance metric constraints, assuming that the maximum
computing resource given by the terminal l to the model
Nk is Bl , the energy consumption limit γE,l and the delay
limit γth,l , the problem can be expressed as a multi-
objective optimization problem:

min
(b(Nl ),c(Nl ),Ω,G)

∑
l∈L

ϕl (α1e (Nl) + α2l (Al) + α3b (Al))

s.t.e (Nl) ≤ γE,l
l (Nl) ≤ γth,l
b (Nl) ≤ Bl

(b (Nl) , c (Nl) ,Ω, G) ∈ S,
(5)

where {ϕl } is the weight coefficient of the edge server, 
{α1, α2, α3} is the weight coefficient of the performance 
metric compromise, and l ∈ {1, ..., L}. The weighted sum 
problem is a non-convex optimization problem, which 
is difficult to solve directly. Non-convex optimization, 
machine learning and other methods can be used to 
optimize data compression and transmission and 
lightweight network deployment strategies. In 
combination with computing and communication 
resource allocation in the network, the end-to-end 
transmission load can be reduced, and the end-to-end 
delay and energy efficiency deduced by the model can 
be optimized.
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5. Conclusions

As a typical form of machines learning, deep learning has 
attracted much attention from researchers. It can 
independently construct (train) basic rules according to 
the sample data in the learning process. Especially in the 
field of machine vision, neural networks are usually 
trained by supervised learning, that is, by example data 
and predefined results of example data. In this paper, we 
firstly overview the current research progress on the deep 
model training and deployment on the scalable Internet 
of Things (IoT) networks, by taking into account both 
the latency and energy consumption. We then summarize 
the existing challenges on the model training and model 
deployment on the scalable IoT devices. We further give 
some feasible solutions to solve the challenges on the 
model training and model deployment on the scalable 
IoT devices. The study in this paper can serve as an 
important reference for the development of deep 
model training and model deployment for scalable 
IoT networks.
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