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Abstract 

In recent years, formation control for multiple unmanned vehicles becomes an active research topic that has received a lot 

of attention from scientists due to its superior advantages compared with other conventional systems. Algebraic graph and 

graph rigidity theories are the two main mathematical backgrounds of the formation control theory. The graph theory is used 

to describe the interconnections among vehicles in formation while rigid graph theory - an important subset of graph theory 

- ensured that the inter-vehicle distance constraints of the desired formation are enforced via the graph rigidity. This paper

provides a comprehensive review of graph theory supporting formation control for groups of unmanned aerial vehicles

(UAV) or swarm UAVs. The background of the theory and the recent developments of graph-theory-based formation control

are reviewed. We provide a cohesive overview of the formation control and coordination of multiple vehicles. Finally, some

challenges and future potential directions in formation control are discussed.
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1. Introduction

With the advanced development of automation, 

mechatronics, computing, and communication in recent 

decades, multiple unmanned vehicles (MUV) are 

becoming an active research topic and applied in various 

fields [1–5], such as military surveillance, search and 

rescue operations [6–8], remote sensing operations [9–13], 

inspect buildings and infrastructure [14–17], manage and 

monitor crops in agriculture [10], [18–20], transporting 

goods [21]. In practice, moving and working in MUV has 

many significant advantages over a single unmanned 

vehicle, for example, MUV can expand the region of 

surveillance and reduce the expense of missions, increase 

the anti-interference performance and efficiency, improve 

the probability of success in search tasks, increase the 

robustness and efficiency of the system while reducing 

system costs, providing redundancy, and completing 

complex tasks in a vast area. 

*Corresponding author. Email: nguyentuanminh@tnut.edu.vn

While working in a group, each unmanned vehicle 

travels to different places and collaborates with its 

neighbours to complete a given mission. MUV needs to 

avoid collisions with obstacles and also among the other 

partners. In some tasks, MUV may be required to 

autonomously operate in dangerous environments that 

easily cause failures of systems and communication 

interruption. Recently, the formation control problem is 

received great attention from many researchers to develop 

effective algorithms that hopefully overcome the 

challenges. Hence, formation control plays a crucial role in 

coordinated control of a group of unmanned vehicles. This 

controlling problem required a group of autonomous 

vehicles to follow a predefined trajectory while 

maintaining a desired spatial pattern. In many application 

scenarios, a team of vehicles needs to follow the pre-set 

trajectory while maintaining a specific geometric shape.  

In general, the four main formation control problems 

can be summarized as: i) formation generation and 

maintenance; ii) formation tracking; iii) detecting and 

obstacle avoidance with formation; and iv) task assignment 
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[22, 23]. For the aforementioned problems, it is really 

necessary to choose an appropriate control strategy. A 

suitable formation control strategy not only tackles the 

main formation control problems but also maintains the 

formation stability. The control strategies have to ensure 

that the desired shape of the formation must be retained 

while the team performs the operations. In formation 

control for MUV, various strategies have been proposed for 

achieving distributed formation including behaviour-based 

[24 - 27], leader-follower [28 - 31], virtual structure [32 - 

35], graph-based [36 - 38], and artificial potential 

approaches [39 - 42], etc. Even though these strategies are 

with different characteristics and considerations, they can 

be concluded in a graph theory framework, because 

vehicles in the group must sense some aspect of the 

formation geometry to maintain a formation shape. Hence, 

almost all the formation control issues can be contained in 

a unified framework and studied by using the graph theory. 

 Graph theory has a crucial mathematical base in 

formation control for the information exchange between 

autonomous vehicles, to achieve the control law, and 

perform the formation stability analysis of the formation. 

In this approach, algebraic graph theory is exploited for 

modelling the communication topology of MUV where 

each vehicle is represented as a vertex, and the edges that 

connect the vertices represent the information flow from 

one vertex to another. The outstanding advantage of this 

theory is decentralization, by which the network can keep 

a suitable behaviour with varying communication 

topology. Besides, by using the graph-based approach, 

formation stability can be achieved if the information flow 

is stable as long as the local controller stabilizes formation 

dynamics.  

Comparative studies of the major formation control 

strategies show that the graph-based approach solved most 

basic formation problems well, such as formation shape 

generation, trajectory tracking, reconfiguration, and task 

assignment [43 - 46]. Besides, this method also has the 

ability to overcome one of the main challenges of 

formation control which is formation stability [22]. 

In this work, we mainly pay attention to formation 

control based on graph theory. Instead of synthesizing 

strategies and control laws for vehicles in a formation, 

which typically serves multiple objectives such as shape 

control, collision avoidance, and motion to the desired 

trajectory, we focus on reviewing the architectures behind 

the control laws. Accordingly, the recent developments in 

formation control for MUV are summarized in a graph-

theory-based framework. This literature provides a 

cohesive overview for developing advanced research in the 

formation control and coordination of multiple vehicles. 

The rest of the paper is organized as follows: Section 2 

presents algebraic graph-based formation control, this part 

provides a preliminary on the basics of graph theory, the 

mathematical description models of vehicles, and reviews 

of studies of graph-based approach in formation control. 

Section 3 and section 4 give an important subset of the 

algebraic graph-rigid graph theory and formation stability 

problems, respectively which clarifies recent research in 

these fields. Section 5 discusses and evaluates more about 

the graph theory issues to point out research directions. 

Finally, the conclusions and future developments are 

provided in Section 6.  

2. Algebraic Graph Based Formation
Control

2.1. Basic of Graph Theory 

The algebraic graph is the main background of the 

formation control theory. The basic concepts which are 

normally used in formation control are covered such as 

topology, graph theory, and consensus. A tool commonly 

used to analyse consensus control strategies is the graph 

theory, where the topology indicates a potential interaction 

between neighbouring vehicles and is described by the 

graph [47]. 

The graph is a network structure consisting of vertices 

and edges connecting vertices. A graph theory makes no 

sense about not only the length of the segment but also the 

position of vertices. Each node represents a vehicle of 

MUV, and the edge represents the information flow from 

one vertex to another. It can be a directed graph (digraph) 

�⃗� = (𝑉, �⃗⃗�) or an undirected graph 𝐺 = (𝑉, 𝐸) (Figure 1).

An undirected graph 𝐺 = (𝑉, 𝐸) where 𝑖, 𝑗 ∈ 𝑉 is a non-

empty set of vertices 𝑉 = {1,2, … , 𝑛}, (𝑖, 𝑗) ∈ 𝐸 is a non-

empty set of edges 𝐸 ⊂ 𝑉 × 𝑉. The cardinality of V and E 

be |𝑉| = 𝑛 and |𝐸| = 𝑚. An undirected graph does not 

have loops or multiple edges in a pair of vertices. Each edge 

can move in both directions, so the edges represent a 

bidirectional relationship.  

a) Directed graph

b) Undirected graph

Figure 1. Two types of graphs 
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If an edge has a direction as 𝑖 → 𝑗, when connecting two 

vertices i and j, it is called a directed edge and is denoted 

as (𝑖, 𝑗)�̅� . If a part or all of edges have directions, it is called

a directed graph �⃗� = (𝑉, �⃗⃗�).

The set of all vertices that are connected to vertex i with 

an edge, it is called set of neighbours of vertex i and is 

represented by 𝑁𝑖 = {𝑗 ∈ 𝑉|(𝑖, 𝑗) ∈ 𝐸}
A graph is called connected if any two different vertices 

i and j in 𝑉 there exists at least one path from i to j. This 

distance that is the maximum between any two vertices is 

called the diameter 𝛶 [48].   

The adjacency matrix and the Laplacian matrix are the 

most important concepts of graph theory. The adjacency 

matrix of 𝐺: 𝐴 = [𝑎𝑖𝑗] ∈ 𝑅𝑛×𝑛 is a square matrix of the size

|𝑉| [49].  

𝑎𝑖𝑗 = {
1  ,if (𝑖, 𝑗) ∈ 𝐸
0 ,otherwise 

 𝑎𝑖𝑗 = 𝑎𝑗𝑖 , 𝑖 ≠ 𝑗 , 𝑎𝑖𝑖 = 0   (1)

The degree of vertex i is defined as 

the number of its neighbouring vertices. The degree matrix 

𝐷 of graph 𝐺 is also a square and diagonal matrix with 

diagonal entries  

𝑑𝑖,𝑖 = |{𝑗 ∈ 𝑉: {𝑖, 𝑗} ∈ 𝐸}| (𝑖 ∈ 𝑉)                (2)

The matrix 𝐷 is invertible because we assume that the 

graphs are connected. Laplacian of graph 𝐺 is the 

symmetric positive semi-definite matrix, it is defined as:  

𝐿 = 𝐷−1(𝐷 − 𝐴)                                     (3)

Some properties of the Laplacian matrix [50] 

1) All of the eigenvalues of 𝐿 are nonnegative real

numbers less than or equal to 2

2) Zero is one of the eigenvalues of 𝐿
3) The zero eigenvalue occurs with multiplicity

one whenever 𝐺 is connected graph

4) If 𝐺 is connected graph, each nonzero

eigenvalue λ of L:

𝜆 ≥
1

𝛶 ∑ 𝑑𝑖,𝑖𝑖∈𝑉

2.2. System Description 

In general, when studying the formation control for the 

multi-vehicle system, we will focus on the interaction 

between the vehicles, the mathematical model of each 

individual vehicle in the system description can be 

simplified by the single-integrator model or double-

integrator model. 

Consider a group of n kinematic vehicles operating in 

𝑅𝑑  (𝑑 − dimensional Euclidean space, 𝑑 = 2,3)

�̇�𝑖 = 𝑓𝑖  (𝑝𝑖 , 𝑢𝑖 , 𝑤𝑖), for 𝑖 = 1,2,3 … , 𝑛             (4)

In which, 𝑝𝑖  ∈ 𝑅𝑑 denote the position of vehicle i, and

we assume that the absolute position of vehicle is in 

descartes coordinate referenced as the center point of the 

vehicle and each vehicle i has only access to the relative 

position �̂�𝑖
𝑗

= 𝑝𝑗 − 𝑝𝑖 , 𝑗 ∈ 𝑁𝑖 (𝑁𝑖 is the set of neighbour

vehicles who have relationships with vehicle i); The 

control input 𝑢𝑖  ∈ 𝑅𝑑 denotes the velocity of each vehicle:

𝑢𝑖 = ℎ𝑖(�̂�𝑖
𝑗
|𝑗 ∈ 𝑁𝑖); 𝑤𝑖  ∈ 𝑅𝑑 is the disturbance signals if

exists. The dynamics with control laws are rewritten by: 

{
�̇�𝑖 = 𝑓𝑖  (𝑝𝑖 , 𝑢𝑖, 𝑤𝑖)

𝑢𝑖 = ℎ(�̂�𝑖
𝑗
|𝑗 ∈ 𝑁𝑖)

 (5) 

The pre-specified geometric pattern (desired formation) 

defined by 𝑝𝑖𝑗
∗ = 𝑝𝑗

∗ − 𝑝𝑖
∗, 𝑗 ∈ 𝑁𝑖, the formation generation

and maintenance can be achieved in the corresponding 

consensus based on formation. In general, the objective of 

the formation control design is to drive the desired relative 

positions, that is �̂�𝑖
𝑗

= 𝑝𝑖𝑗
∗ . If the distance constraint is the

objective of control design, that is ‖𝑝𝑗 − 𝑝𝑖‖ = 𝑑𝑖𝑗
∗  for

(𝑖, 𝑗) ∈ 𝐸, the scalar parameter 𝑑𝑖𝑗 = 𝑑𝑗𝑖 > 0 represents

the distance at which vehicles 𝑖, 𝑗 should converge to (more 

details will be provided in section 3) 

Figure 2 shows a system description for formation 

control based on graph theory when the objective of the 

control design is relative positions [23]. For the single-

order kinematic models case �̇�𝑖 = 𝑢𝑖 with 𝑒 ∶= 𝑝∗ − 𝑝. In

this construction, the feedback connection between the 

vehicles and the integrator represents the dynamics with 

control laws while the feedback connection between the 

integrator and G represents a relation as: 

�̇� = −(𝐿𝐺 ⊗ 𝐼𝑛)𝑒                              (6)

in which, ⊗ denotes the Kronecker product, 𝐼𝑛 is the

identity matrix. 

 i = 1,2,...n

G

p

w

Figure 2. System description with the relative position 

graph-based formation control  

The control law 𝑢𝑖 evolves according to �̂�𝑖
𝑗
 .The

formation controllers can be designed using the properties 

of the Laplacian matrix, and their stabilities can be verified 

by the eigenvalue of the Laplacian matrix [23, 51, 52]. 
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2.3. Graph Based Approach in Formation 
Control 

Formation control of multiple vehicles can operate together 

to perform global tasks. The main objective of formation is 

to maintain a certain shape with constant relative distances 

between vehicles during the movement toward a specific 

goal. Hence, shape and position are two important factors 

of formation control. Algebraic graph theory is the main 

mathematical base of the formation control theory. An 

outstanding advantage of the graph-based approach in 

formation control is decentralization, by which the multi-

vehicle team can keep an appropriate behaviour even in the 

presence of varying communication topologies. However, 

the main disadvantage of this approach is that vehicles can 

only receive information from their neighbours. 

A distributed formation control strategy for multi-

vehicles based on a double-graph model is presented in 

[53]. In this literature, each vehicle adjusts its behaviour in 

terms of the leader vehicle and its neighbours. The direct 

connection of the network is established between the 

performance of a linear consensus protocol and the 

algebraic connectivity.  

In [54], digraphs are utilized to represent information 

exchanges between vehicles, taking into account the 

general case of unidirectional information exchange. The 

information consensus among vehicles is considered in the 

presence of dynamically changing topology. Information 

consensus can be obtained asymptotically if the union of 

the digraphs has a spanning tree.  

Dong et al. [55] propose two different formation control 

strategies by using graph theory. In the first strategy, the 

model of the robot is transformed into a linear system by 

dynamic feedback linearization. Then, the controller is 

designed based on the graph theory. In the second strategy, 

a time-varying parameter is introduced in the control law 

by means of the time-scaling technique. 

Motion planning is studied for multiple robots subject to 

constraints which are modelled using an algebraic graph in 

[56]. In this approach, each edge is associated with the 

interaction between two robots describing a constraint on 

relative configurations. The weighted graphs are proposed 

to maintain the formation shape and avoid collisions [57]. 

A multi-layer formation control scheme is presented by Li 

et al [58]. In there, a layered finite-time estimator is studied 

for multi-agents in each layer to achieve their target 

positions and velocities based on the information of agents 

in their prior layers. Subsequently, a model-based control 

law is proposed to obtain a multi-layer formation. 

3. Rigid graph based formation control 

The rigidity theory is an important subset of graph theory. 

The formation control theory is developed on the base of 

mathematical concepts from these theories. Rigid graph 

theory ensured that the inter-vehicle distance constraints of 

the desired formation are enforced via the graph rigidity.  

To model a physical structure of n-vehicles, we can use 

a framework 𝐹 = (𝐺, 𝑝), where graph 𝐺 = (𝑉, 𝐸) and 

coordinates 𝑝 = [𝑝1, 𝑝2, … , 𝑝𝑛] ∈ 𝑅𝑛×𝑑. Framework 𝐹 is a 

realization of a graph G at given points in Euclidean space. 

The rigid graph theory studies conditions for a unique 

framework of MUV when the inter-vehicle constraints 

between neighbour vehicles are specified by some scalar or 

vector magnitude. The magnitudes of distances in 

undirected edges are called graph rigidity or distance 

rigidity and distances in directed edges are called 

persistence. In short, an undirected graph is rigid if the only 

possible continuous moves are those which preserve every 

inter-vehicle distance. In general, the concept of rigidity is 

mainly for the undirected graph. For the directed graph, we 

have the concept of persistence [59]. 

Obviously, adding edges to a graph does not destroy 

rigidity whereas removing edges can affect to ensure 

rigidity, hence, the concept of minimal rigidity was 

presented in [60,61], an undirected graph is minimally rigid 

if it is rigid and if a single edge removes, it will lose rigidity 

of graph. This has a crucial role in practice because it 

ensures the formation of multiple vehicles with the 

minimum number of sensing and communication links. 

 i = 1,2,...n

G

p

w

 
Figure 3. Distance rigid graph based formation control 

Depending on an arbitrary ordering of the edges in 𝐸, 

the edge function 𝜙𝐺 for framework 𝐹 = (𝐺, 𝑝) is defined 

by 

𝜙𝐺(𝑝) = [… , ‖𝑝𝑗 − 𝑝𝑖‖
2

, … ]
𝑇

, (𝑖, 𝑗) ∈ 𝐸        (7) 

The rigidity property of framework 𝐹 is characterized 

by a rigidity matrix 𝑅(𝑝) ∈ 𝑅𝑚×𝑑𝑛. The rigidity matrix 

𝑅(𝑝) can be used to determine the infinitesimal rigidity of 

a framework 𝐹.  

The rigidity matrix is given by 

𝑅(𝑝) =
1

2

𝜕𝜙𝐺(𝑝)

𝜕𝑝
                                   (8) 
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In rigidity graph-based formation control, the pre-

specified geometric pattern is given by a set of distance 

constraints ‖𝑝𝑗 − 𝑝𝑖‖ = 𝑑𝑖𝑗
∗  rather than the desired relative 

positions. Therefore, the control laws are designed by using 

distance terms instead of relative positions. The dynamics 

with control laws are rewritten as (9) and the system 

description for formation control based on rigidity theory 

is illustrated in Figure 3 [23]. 

{
�̇�𝑖 = 𝑓𝑖  (𝑝𝑖 , 𝑢𝑖, 𝑤𝑖)                

𝑢𝑖 = ℎ𝑖(‖𝑝𝑗 − 𝑝𝑖‖|𝑗 ∈ 𝑁𝑖)
                    (9) 

The rigid graph-based formation control is heavily 

dependent on the gradients of the potential functions 

closely related to the distance constraints between the 

neighboured vehicles [62]. 

In [63,64], the control law is proposed to eliminate the 

reported inconsistency-induced orbits in rigidity formation. 

In this research, the distance causes the rigid formation to 

converge exponentially fast to a closed circular orbit in 𝑅2 

and the orbit becomes helical in 𝑅3. Other main tools of 

rigidity graphs are the Henneberg sequence and Laman’s 

theorems [65]. The Henneberg sequence constructed two-

dimensional minimally rigid graphs, and Laman’s 

theorems verified if a two-dimensional graph was rigid 

[66]. By using Henneberg sequence and Laman’s 

theorems, the primitive operators are defined to deal with 

the transformations such as restructuring and splitting of 

rigid formation [67, 68]. 

Zen and co.[69] expand the rigidity graph theory to the 

weighted framework and propose the rigidity eigenvalue, 

this eigenvalue is used as the algebraic characterization of 

the infinitesimal rigidity. In there, a fully decentralized 

approach for maintaining the formation rigidity is studied 

by estimating the common relative position reference 

frame of a multi-robot system with only range 

measurements. In other literature, Eren et al. [70] present 

the rigid formations with leader-follower architecture for 

information structures to secure control. 

In [71], the case of a single-integrator rigid formation 

system, undesired rigid motions will occur if there exist 

inconsistent distances perceived by neighboured agent 

pairs. The main approaches in this research include 

linearization analysis and exponential stability. To 

investigate whether such rigid motions still occur in 

double-integrator formation systems with distance 

measurement errors or inconsistent distances, the rigid 

formation control systems are modelled by double 

integrators containing the formation stabilization model 

and flocking control model [72]. 

4. Formation stability 

One of the main goals of formation control is to distribute 

the control activity while still stabling and achieving a 

coordinated task. Hence, the stabilization of vehicle 

formations using techniques from the graph theory is 

studied extensively and achieved a lot of positive results. 

Whereby, by using the graph-based approach, formation 

stability can be achieved if the information flow is stable 

as long as the local controller stabilizes.  

In [73], the authors mention three contents of the 

stability for formation control: string stability, mesh 

stability, and leader-to-formation stability. In [74], the 

authors used the Nyquist-type criterion and solved linear 

matrix inequalities (LMIs) for multi-agent systems (MAS). 

In [75], the authors research the communication graph 

method. Considering a known vehicle model and utilizing 

state-space techniques, they acquire the stability of a 

formation.  

In [76], D. V. Dimarogonas and K. H. Johansson offered 

distance-based formation instead of position-based 

formation. In this research, the author proposed a control 

law based on the negative gradient of a potential function 

between each of the pairs of vertices that creates an edge in 

formation. The results show that the tree graph structure is 

a necessary and sufficient condition for formation 

stabilization. The control law is proposed as (10) and then 

analyse the formation stability by using Lyapunov 

functions (13), (14). 

𝑢𝑖 = − ∑
𝜕𝛾 (𝛽𝑖𝑗(𝑝))

𝜕𝑝𝑖
𝑗∈𝑁𝑖

= − ∑ 2𝜌𝑖𝑗(𝑝𝑖 − 𝑝𝑗)

𝑗∈𝑁𝑖

      (10) 

where  𝛾: 𝑅+ → 𝑅+ ∪ {0} is a function of the distance 

between 𝑖 and 𝑗; 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗;  

𝛽𝑖𝑗(𝑝) = ‖𝑝𝑖 − 𝑝𝑗‖
2
is the Euclidean distance of 

any pair of vehicles in the group 

𝜌𝑖𝑗 ≜
𝜕𝛾(𝛽𝑖𝑗)

𝜕𝛽𝑖𝑗

    

𝛾(𝛽𝑖𝑗) is continuously differentiable;  

𝜌𝑖𝑗 = 𝜌𝑗𝑖  for 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗 

𝛾(𝑑𝑖𝑗
2 ) = 0 and 𝛾(𝛽𝑖𝑗) > 0 for all  𝛽𝑖𝑗 ≠ 𝑑𝑖𝑗

2  

The set of control laws is derived by: 

𝑢 = −2(𝑅⨂𝐼2)𝑝 ,in which  𝑢 = [𝑢1
𝑇 , . . . , 𝑢𝑁

𝑇 ] 
In which, the symmetric matrix R is defined by:  

𝑅𝑖𝑗 = {

−𝜌𝑖𝑗  , 𝑗 ∈  𝑁𝑗         

 ∑ 𝜌𝑖𝑗𝐽∈𝑁𝑖
∑, 𝑖 = 𝑗

0 , 𝑗 ∉ 𝑁𝑗             

                              (11) 

Then, the stability of the system is examined by using the 

candidate Lyapunov function: 

𝑉𝑓(𝑝) = ∑ ∑ 𝛾(𝛽𝑖𝑗(𝑝))𝐽∈𝑁𝑖𝑖                      (12) 

Gradient:  𝛻𝑉𝑓 = 4(𝑅⨂𝐼2)𝑝                                         (13) 

The time-derivative is given by:  

�̇�𝑓 = −4‖(𝑅⨂𝐼2)𝑝‖2 ≤ 0                    (14) 

The authors show that the system reaches a static 

configuration and provide a formation potential (15) that 

guarantees formation stabilization for a class of graphs. 

𝛾 (𝛽𝑖𝑗(𝑝)) =
(𝛽𝑖𝑗 − 𝑑𝑖𝑗

2 )
2

𝛽𝑖𝑗

                      (15) 

In [77], Dimarogonas et al. use the incidence matrix and 

its spectral properties. This matrix is to determine the 

convergence characteristics of two formation control 

problems. First, a communication topology is processed 

and realizes the result. If vertices arrange into a tree 

topology, formation control will have the convergence 
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characteristic. The second problem in the same direction as 

[76] is the distance-based formation control. Chang et al 

[78] also use the Lyapunov stability theorem in the stability 

conditions. Then, the combination of fuzzy sliding-mode 

control (FSMC) and consensus control based on graph 

theory is to check the stability.  

In [79], the authors analyse stability by combining 

graph-theoretic and system-theoretic. In other literature, 

Fax et al. [80] set up the relation between the formation 

controller and the topology of the communication network 

with the Laplacian matrix, and these authors proved that if 

the local controller was stable, then the formation stability 

with linear dynamics based on the stability of the 

information flow. In [81], the authors can describe how 

control signals of leader-vehicle and disturbances influence 

the stability of the formation. They also can control deep 

into the stability of a particular sub-formation. In other 

literature, Lin and co. [82] proved that if and only if there 

is a globally accessible vertex in the perception graph, the 

formation control is stable by using tools of the graph 

theory. The formation problem of multiple robots under a 

directed fixing interaction topology is presented by Wen et 

al [83]. According to this research, the relative output 

measurements of neighbour robots are used for a class of 

distributed information communication protocols.  

Consensus tracking problems and formation control of 

single-leader multiple robot systems with general linear 

node dynamics are solved. 

5. Discussion and opening issues 

The graph theory acts as an essential tool used in multi-

vehicle distributed formation control. Almost all the 

formation control problems for multi-vehicles can be 

contained in a unified framework and studied by using the 

graph theory. By using the properties of the Laplacian 

matrix, distributed formation controllers can be designed, 

and their formation stabilities can also be verified by the 

eigenvalue of the Laplacian matrix. The formation control 

laws will depend on the distance and angle between 

vehicles and primarily stabilize the inter-vehicle distance 

dynamics to desired distances. Most graph-based formation 

controllers utilized the single-integrator model. However, 

recent studies proposed results that are based on the 

double-integrator model or the full dynamic model. 

Besides the achievements, graph-based formation 

control problems remain some open issues. Firstly, existing 

results of this theory are mainly considered vehicles in a 

plane, and the research cannot be directly expanded to 

three-dimensional. Hence, expanding and improving the 

existing foundation's problem of the graph theory to three-

dimensional have not been effectively solved. Secondly, 

the global stability of the rigid formation control remains 

open.  

Further, the Laplace matrix with constant weights only 

solves the single-class problems, and it cannot be used in 

multi-layer formation control due to the existence of cross-

interactions. Therefore, one of the current research trends 

in graph theory-based formation control is focused on 

multilayer systems. Accordingly, control design problems 

have become much more complex and need to be further 

exploited and researched.  

With increasing the applications of MUV, especially in 

the military field and disaster detection systems, the 

increase of the formation scalability becomes extremely 

important. Nevertheless, this problem can induce 

communication delays and decision burdens. Hence, 

formation topologies and network communication between 

vehicles have to be further researched.  

Many experimental results have been designed to 

validate the theories. However, we have to recognize that 

almost the existing theoretical results are only verified by 

simulations, rather than by actual systems, due to various 

restrictions of the experiments and the high cost, etc. 

Therefore, demonstrating and applying the theoretical 

results to the actual MUV is the most pressing. 

6. Conclusions and future work 

Although formation control for MUV based on graph 

theory has technical challenges, its benefits and advantages 

in formation control theory have inspired tremendous 

studies. This paper has reviewed the recent research and 

developments in graph theory-based formation control for 

MUV. We focus on the main mathematical bases of the 

algebraic graph and rigidity theories, respectively which 

clarify recent research in these fields. Besides, the 

formation stability based on graph theory has also been 

specifically reviewed and analysed. 

Most of the studies mentioned in this paper are 

formation control problems based on graph theory in 

normal conditions. In addition to task executions under 

normal conditions, vehicles must possess a fault tolerance 

ability to react correspondingly to eliminate the adverse 

effect on mission completion. A survey of formation 

control under faulty situations on fault detection and 

diagnosis will be further researched and perfected in the 

near future.  

The work on formation control problems for MUV 

includes many practical respects and experiments, and the 

authors believe that in the future, more issues related to 

graph theory-based formation control will be effectively 

solved. With extending the civilian and military 

applications of the MUV system, the increase in the 

formation scalability also becomes profoundly important. 

Formation topology and communication between vehicles 

have to be considered. Consensus algorithms and graph 

theory are effective tools for performing distributed 

computing tasks. Besides, higher levels of decision-making 

problems become essential, especially in distributed 

formation control that uses higher levels of decision-

making. In practice, vehicles may need to make decisions 

to tackle real-time situations. Intelligent controllers based 

on artificial intelligence can be considered a promising 

solution. 
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