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Abstract 

The rapid evolution of wireless communication has driven the need for sixth-generation (6G) networks, which aim to deliver 
unprecedented data rates, ultra-low latency, and seamless connectivity. Terahertz (THz) frequencies are a cornerstone of 6G 
technology due to their vast spectrum availability, but they introduce new challenges such as severe path loss, atmospheric 
attenuation, and security vulnerabilities. To overcome these issues, AI-driven beamforming has gained attention as a 
powerful solution for optimizing signal transmission and interference mitigation. However, existing AI-based methods 
remain susceptible to adversarial attacks, privacy breaches, and suboptimal adaptation in dynamic environments [1]. 
This paper introduces a federated learning (FL)-based AI-driven beamforming approach tailored for THz-enabled 6G 
networks. The framework ensures privacy-preserving intelligence by training beamforming models collaboratively across 
distributed edge devices, eliminating the need for centralized data sharing. To enhance security, we integrate adversarial 
defense techniques, strengthening resilience against potential attacks that could degrade beamforming accuracy. 
Through extensive simulations, we evaluate key performance metrics, including beamforming efficiency, spectral efficiency, 
signal-to-noise ratio (SNR), and resistance to adversarial perturbations. Our results indicate that the proposed FL-based 
beamforming approach improves adaptability, mitigates security threats, and enhances overall network performance 
compared to traditional centralized AI models. This study provides a scalable and secure AI-driven solution for 6G 
beamforming, paving the way for reliable and privacy-aware THz communications. Future work will explore real-world 
deployment and the integration of quantum-secure encryption techniques to further fortify security in 6G networks. 
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1. Introduction

1.1 Background and Motivation 

Wireless communication has witnessed unprecedented 
advancements over the past few decades, culminating in 
the recent deployment of fifth-generation (5G) networks. 
While 5G has significantly improved data rates, reduced 
latency, and enabled massive device connectivity, 
emerging applications such as holographic 

communications, fully autonomous systems, and ultra-
reliable low-latency communications (URLLC) require 
even more efficient and intelligent wireless networks [1]. 
This has led to the conceptualization of sixth-generation 
(6G) networks, which aim to push the boundaries of 
communication technology by leveraging terahertz (THz) 
frequencies (0.1–10 THz). These high-frequency bands 
promise wider bandwidth availability and support for ultra-
fast, high-capacity data transmission [2]. However, 
operating in the THz spectrum presents new challenges, 
such as severe path loss, molecular absorption, beam 
misalignment, and increased security risks [3]. 
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To tackle these challenges, artificial intelligence (AI) has 
been increasingly integrated into 6G communication. AI-
driven beamforming algorithms can optimize THz signal 
transmission, mitigate interference, and enhance overall 
network performance by making real-time intelligent 
decisions [4]. Despite these advantages, AI-based models 
are vulnerable to adversarial attacks, privacy concerns, and 
high computational overhead, which hinder their practical 
deployment in real-time 6G environments [5]. 

A promising solution to these challenges is federated 
learning (FL)—a decentralized AI training method that 
enables multiple devices to collaboratively train AI models 
without sharing raw data. Unlike traditional centralized 
machine learning, where data is collected and processed at 
a central server, FL keeps data localized, reducing privacy 
risks and communication overhead [6]. While FL has 
shown promise in wireless networks, its integration into 
THz beamforming remains largely unexplored, particularly 
in the context of security and adversarial robustness [7]. 

1.2 Research Problem and Challenges 

Although significant progress has been made in AI-driven 
beamforming for 6G networks, several challenges still 
need to be addressed: 

Security Vulnerabilities – AI-driven beamforming 
models are susceptible to adversarial attacks, where small 
perturbations in input signals can mislead the AI into 
making incorrect beam alignment decisions [8]. This poses 
a major risk in mission-critical applications such as 
autonomous vehicles, industrial automation, and military 
communications. 

Privacy Concerns in AI Model Training – Conventional 
AI-based beamforming approaches require large datasets 
to be centralized for training, raising concerns about data 
privacy and security breaches [9]. There is a need for a 
privacy-preserving AI model that does not require raw data 
transfer while still optimizing beamforming efficiency. 

Dynamic Adaptability and Efficiency – 6G networks are 
highly dynamic, with varying channel conditions due to 
user mobility, environmental factors, and atmospheric 
conditions [10]. Existing AI-based beamforming solutions 
often fail to adapt in real-time, leading to performance 
degradation. 

Computational Constraints – Deep learning models 
require significant processing power, making real-time 
beamforming challenging for edge devices with limited 
computational resources [11]. 

To bridge these gaps, this paper introduces a federated 
learning-based AI-driven beamforming framework that 
improves security, adaptability, and computational 
efficiency in THz-enabled 6G networks. 

 

1.3 Contributions of This Work 

The primary contributions of this research are as follows: 

Federated Learning for Secure Beamforming – We 
design a FL-based AI-driven beamforming model that 
enables multiple edge devices to collaboratively train an AI 
model without sharing raw data, improving privacy and 
security in 6G networks. 

Adversarial Robustness in Beamforming – The 
proposed approach integrates defense mechanisms to 
mitigate adversarial attacks, enhancing the reliability and 
trustworthiness of AI-driven beamforming. 

Adaptive Beamforming for Dynamic Environments – 
Our model dynamically adjusts beam patterns based on 
real-time network conditions, ensuring efficient signal 
alignment in dynamic and mobility-intensive 
environments. 

Comprehensive Performance Evaluation – Extensive 
simulations are conducted to analyze the proposed model’s 
performance in terms of beamforming gain, spectral 
efficiency, signal-to-noise ratio (SNR), computational 
overhead, and security resilience. 

2. Related Work 

This section reviews existing research on AI-driven 
beamforming, federated learning for wireless networks, 
and security challenges in THz-based 6G communication. 
By analyzing prior studies, we highlight gaps that this 
paper aims to address. 

2.1 AI-Driven Beamforming in 6G Networks 

Beamforming is a fundamental technology in next-
generation wireless networks, particularly in millimeter-
wave (mmWave) and terahertz (THz) bands, where precise 
directional transmission is required to compensate for high 
path loss and atmospheric absorption [1]. Traditional 
beamforming techniques, such as maximum ratio 
transmission (MRT) and zero-forcing (ZF), rely on 
predefined mathematical models that require extensive 
channel state information (CSI) estimations. However, 
these methods face challenges in rapidly changing wireless 
environments with high mobility and dynamic spectrum 
conditions [2]. 

To improve efficiency, researchers have explored artificial 
intelligence (AI)-driven approaches for optimizing beam 
alignment and mitigating interference. Deep learning (DL)-
based techniques, particularly convolutional neural 
networks (CNNs) and reinforcement learning (RL), have 
been used to enhance spectral efficiency and reduce 
computational complexity [3]. For example, a study in [4] 
employed deep reinforcement learning (DRL) to enable 
adaptive beam selection, demonstrating improved 
performance in mobility-intensive 6G networks. Another 
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work [5] explored generative adversarial networks (GANs) 
for predicting optimal beamforming patterns, reducing 
latency and improving decision accuracy. 

Despite these advancements, two critical challenges remain 
unresolved: 

Vulnerability to Attacks – AI-based beamforming models 
can be manipulated by adversarial attacks, leading to 
incorrect beam alignment and reduced network efficiency 
[6]. 

Data Privacy Concerns – Training AI models for 
beamforming requires large-scale data collection from 
multiple users. Centralized learning models introduce 
security and privacy risks since data must be transmitted to 
cloud servers [7]. 

To mitigate these issues, researchers are now exploring 
federated learning (FL)-based beamforming, which 
enables distributed AI model training without exposing raw 
user data. 

2.2 Federated Learning for Wireless 
Networks 

Federated learning (FL) is a decentralized AI training 
approach that allows devices (such as base stations, user 
equipment, and edge nodes) to collaboratively train models 
while keeping their data locally stored [8]. Unlike 
centralized learning, which requires data aggregation on a 
central server, FL only transmits model updates, reducing 
privacy risks and communication overhead. 

Several studies have explored FL in wireless 
communication systems: 

• A study in [9] introduced an FL-based power 
allocation scheme, improving energy efficiency 
while ensuring secure model training. 

• Research in [10] proposed an FL-driven resource 
allocation framework, demonstrating reduced 
computational overhead in edge computing 
environments. 

• Another work [11] utilized FL for channel 
estimation in massive MIMO systems, improving 
spectral efficiency and data rate. 

While FL has shown significant potential, its application in 
6G beamforming remains largely unexplored. One major 
limitation is slow model convergence—FL models require 
multiple training rounds, which can introduce delays in 
real-time beamforming scenarios. Additionally, FL models 
are vulnerable to security threats, such as poisoning 
attacks, where adversarial participants manipulate model 
updates [12]. 

This study addresses these limitations by integrating FL-
based beamforming with adversarial defense mechanisms 
to enhance both security and efficiency. 

2.3 Security and Adversarial Threats in AI-
Driven 6G Networks 

Security is a major concern in AI-enabled 6G networks, 
particularly as machine learning models play a central role 
in beamforming, resource allocation, and network 
optimization. Several security threats have been identified 
in recent studies: 

• Adversarial Attacks on AI Models – Attackers 
can introduce subtle perturbations into AI-based 
decision-making systems, leading to incorrect 
beam alignment or degraded network 
performance [13]. 

• Model Poisoning in Federated Learning – In 
FL, adversarial participants can inject 
manipulated model updates, corrupting the global 
model and disrupting network stability [14]. 

• Privacy Risks in Distributed Learning – 
Although FL reduces direct data sharing, research 
has shown that model gradients can still leak 
private information if not adequately protected 
[15]. 

Several strategies have been proposed to mitigate these 
risks: 

Adversarial Training – Training AI models with 
adversarial samples enhances their resilience against 
malicious inputs [16]. 

Differential Privacy (DP) – Adding controlled noise to 
FL model updates prevents privacy leakage but can 
reduce model accuracy [17]. 

Blockchain for Secure FL Aggregation – Blockchain 
has been explored as a solution for tamper-proof model 
updates, but it introduces additional latency due to its 
consensus mechanism [18]. 

These existing solutions are not fully optimized for real-
time THz-based 6G beamforming, where low-latency and 
robust AI models are essential. In this work, we propose an 
efficient FL-based beamforming framework that enhances 
both security and adaptability in dynamic wireless 
environments. 

2.4 Identified Research Gaps 

From the literature review, we identify several key gaps 
that this research aims to address: 

Security Limitations in AI-Based Beamforming – Most 
deep learning-based beamforming solutions lack 
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protection against adversarial attacks, making them 
vulnerable in mission-critical 6G applications. 

Limited Research on FL-Based Beamforming in THz 
Networks – While FL has been studied in general wireless 
networks, its use in THz-based beamforming remains 
largely unexplored. 

Need for Adversarially Robust FL Models – Existing FL 
models are still susceptible to poisoning attacks, 
necessitating more secure aggregation and anomaly 
detection techniques. 

This paper proposes a federated learning-powered AI 
beamforming framework that enhances security, real-time 
adaptability, and privacy-preserving AI model training in 
THz-enabled 6G networks. 

2.5 Summary of Contributions 

To bridge the identified research gaps, this study makes the 
following contributions: 

Federated Learning-Based Beamforming Framework – 
A novel decentralized AI-driven beamforming approach 
designed specifically for THz-enabled 6G networks. 

Enhanced Security Against Adversarial Attacks – The 
proposed model integrates defensive AI mechanisms to 
protect against data poisoning and adversarial 
perturbations. 

Dynamic Adaptability for Real-Time Beamforming – 
The FL model is optimized for real-time updates, allowing 
beamforming decisions to adjust dynamically to network 
conditions. 

Comprehensive Performance Evaluation – The 
proposed framework is tested across multiple 6G 
performance metrics, including beamforming gain, 
security resilience, and computational efficiency. 

3. Methods 

This section presents the proposed federated learning (FL)-
based AI-driven beamforming framework for secure and 
adaptive terahertz (THz) communication in 6G networks. 
We first formulate the beamforming optimization problem, 
followed by the federated learning-based training process, 
and finally introduce adversarial defense mechanisms to 
enhance security and robustness. 

3.1 System Model for AI-Driven 
Beamforming in 6G 

Consider a 6G wireless network where multiple base 
stations (BSs) and user equipment (UE) operate in the THz 
spectrum. The primary challenge in THz-based 
beamforming is the high sensitivity to misalignment and 

environmental variations, requiring real-time adaptive AI-
based optimization. 

 

 

3.1.1 Beamforming Model 
In a multi-user multiple-input multiple-output (MU-
MIMO) 6G system, let M  denote the number of antenna 
elements at the BS and N  the number of UEs. The 
received signal at the n -th user is given by: 
 
 (1) 

where: 

• 1M
nh ×∈  represents the THz channel gain 

vector for user n , 

• 1M
nw ×∈  is the beamforming weight vector, 

• ns  is the transmitted signal, 

• 2~ (0, )nn σCN  is the additive Gaussian noise, 

• H
n j j

j n
h w s

≠
∑  represents multi-user interference 

(MUI). 

The signal-to-interference-plus-noise ratio (SINR) at user 
n  is given by: 

 
 (2) 

To maximize network efficiency, we optimize the 
beamforming weights nw  to: 
 
 (3) 

where maxP  is the maximum transmission power 
constraint. 

3.1.2 AI-Based Beam Selection 
Given the high-dimensional nature of THz beamforming, 
deep reinforcement learning (DRL) is employed to 
optimize beam alignment. The problem is formulated as a 
Markov Decision Process (MDP) where: 

• State ( ts ): The THz channel conditions, previous 

beam alignment decisions, and UE mobility 
patterns. 

• Action ( ta ): Selection of an optimal beam from 

a finite codebook. 
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• Reward ( tr ): Improvement in SINR, spectral 

efficiency, and energy efficiency. 

Using deep Q-learning, the optimal beam selection is given 
by: 

 
 (4) 

where γ  is the discount factor ensuring future rewards are 
considered. 

3.2 Federated Learning for Secure 
Beamforming 

3.2.1 Federated Learning Model 
Instead of training a centralized AI model, FL enables 
multiple base stations to collaboratively learn an optimal 
beamforming strategy while preserving user data privacy. 
Each BS trains a local AI model on its dataset and transmits 
only model updates to a global server for aggregation. 

Consider K  participating BSs, each with a local dataset 

kD . The local beamforming model is trained using a loss 

function ( )L θ  based on mean squared error (MSE) loss: 

 
 (5) 

where ( )if xθ  is the AI model’s prediction for input ix . 

The global model update follows the FedAvg algorithm, 
where each BS computes a local update: 
 
 (6) 

The server aggregates all local models using: 

 
 (7) 

This ensures data privacy while enhancing beamforming 
adaptation in dynamic environments. 

3.2.2 Communication Overhead Reduction 
One major limitation of FL in real-time wireless systems is 
the high communication overhead. We integrate gradient 
compression and quantization to reduce the size of model 
updates: 
 
 (8) 

where (.)Q  is a quantization function, and δ  is a 
predefined threshold ensuring numerical stability. 

3.2.3 Implementation Guidelines 
To support practical deployment, the following 
implementation guidelines are provided for researchers and 
industry practitioners: 

• Federated Learning Configuration: The FL-
based beamforming framework utilizes an 
adaptive aggregation mechanism to balance 
model accuracy and communication latency. Each 
edge device updates its local model using FedAvg 
and submits compressed gradient updates to the 
server every T communication rounds to 
minimize overhead. 

• Deployment Considerations: The framework 
can be deployed on cloud-based federated 
learning platforms (e.g., Google FL, Flower 
Framework) or edge-AI hardware such as 
NVIDIA Jetson Xavier or Qualcomm AI Edge 
processors. 

• Codebase and Best Practices: The 
implementation can be structured using Python 
(TensorFlow/PyTorch) with FL libraries such as 
Federated AI Technology Enabler (FATE). 
Security mechanisms, including differential 
privacy and blockchain-secured aggregation, 
should be integrated for real-world deployments. 

• Configuration Settings: Optimal 
hyperparameters include a learning rate of 0.001, 
batch size of 64, and dropout rate of 0.3 for 
beamforming model robustness. 

3.3 Security Mechanisms: Adversarial 
Defense and Privacy Preservation 

3.3.1 Adversarial Training for Robust 
Beamforming 
To counteract adversarial attacks on AI-driven 
beamforming, we integrate adversarial training, where the 
model is trained with both normal and adversarially 
perturbed samples. An adversarial example x′  is 
generated using the Fast Gradient Sign Method (FGSM): 
 
 (9) 

where ò is the attack strength. The AI model is then trained 
on a mix of clean and adversarial samples to improve 
robustness. 

3.3.2 Differential Privacy for FL Model Updates 
To prevent privacy leakage in FL, we incorporate 
differential privacy (DP) by adding controlled noise to 
gradient updates: 
 
 (10) 
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where 2(0, )N σ  is Gaussian noise ensuring privacy-
preserving learning. 

3.3.3 Blockchain-Based Secure FL Aggregation 
To prevent model poisoning attacks, we use blockchain 
technology to validate FL updates before aggregation. 
Each BS submits a hash of its local update, which is 
verified by a consensus mechanism before updating the 
global model. The blockchain ledger ensures tamper-proof 
integrity of the learning process. 

3.4 Computational Complexity Analysis 

3.4.1 Standardized Performance Metrics 
To facilitate fair and reproducible comparisons, the 
following standardized metrics are proposed for evaluating 
AI-driven beamforming solutions in 6G networks: 

1. Beamforming Accuracy (θ-error in degrees) – 
Measures the deviation between the predicted 
beam direction and the optimal alignment. 

2. Spectral Efficiency (bps/Hz) – Assesses how 
efficiently the available bandwidth is utilized. 

3. Computational Overhead (GFLOPS) – 
Evaluates the AI model's computational resource 
demands. 

4. Robustness to Adversarial Attacks (% 
degradation in SINR) – Measures security 
resilience by analyzing accuracy loss under 
FGSM-based adversarial perturbations. 

5. Latency in FL Model Updates (ms) – Quantifies 
communication efficiency in federated learning 
rounds. 

These metrics enable comprehensive performance 
evaluations and allow direct benchmarking against existing 
centralized and decentralized AI-based beamforming 
approaches. 

To evaluate the feasibility of our approach, we analyze the 
computational complexity of different components: 

Table 1. Computational Complexity Analysis of Key 
Components in the Proposed FL-Based AI-Driven 

Beamforming Model. 

Component Computational 
Complexity 

Beamforming Weight 
Optimization 

2( )O M N  

Deep Q-Learning for 
Beam Selection 

2( )O K  

FL Local Model Training ( )O d  

Global Model 
Aggregation (FedAvg) 

( )O Kd  

Blockchain Consensus 
Verification 

( log )O K K  

 
where: 

•       is the number of AI model parameters, 
•       is the number of BSs, 
•              are the number of antennas and users, 

respectively. 

4. Results 

This section presents the experimental setup, simulation 
parameters, performance evaluation, and comparative 
analysis of the proposed federated learning (FL)-based AI-
driven beamforming framework for THz-enabled 6G 
networks. The primary focus is on analyzing beamforming 
efficiency, model convergence, security resilience, and 
computational performance. 

We begin by describing the experimental setup, followed 
by an in-depth analysis of results, visualizations, and 
comparisons with baseline methods. 

4.1 Experimental Setup 

4.1.1 Simulation Environment 
The proposed FL-based AI-driven beamforming 
framework is implemented and evaluated using MATLAB 
and Python (TensorFlow/PyTorch). The simulation 
environment models a 6G network operating in the THz 
spectrum (0.1–10 THz) with multiple base stations (BSs) 
and user equipment (UE). 

• Network Topology: Multi-user MIMO system 
with distributed BSs and mobile UEs 

• THz Spectrum Band: 0.3–1 THz 

• Number of BSs ( K ): 10 

• Number of UEs ( N ): 100 
• Beamforming Model: AI-driven beam selection 

using deep reinforcement learning (DRL) 
• Federated Learning Aggregation: FedAvg 

algorithm 
• Adversarial Attacks: FGSM and model poisoning 

attacks for security evaluation 
• The entire framework is simulated over 200 

communication rounds, with varying user 
mobility and environmental conditions. 

4.2 Beamforming Performance Analysis 

4.2.1 Beamforming Gain vs. User Density 

,M N
K
d
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Figure 1 shows the beamforming gain as a function of the 
number of users ( N ). The proposed FL-based AI 
beamforming model significantly outperforms traditional 
beamforming techniques (MRT, ZF) in dense user 
scenarios due to its adaptive learning capability. 
 
 (11) 

Key Observations: 

• AI-driven beamforming improves gain by 18% 
over conventional techniques. 

• Gains stabilize beyond N=80N = 80N=80 due to 
interference constraints. 

4.2.2 Spectral Efficiency Analysis 
Figure 2 illustrates the spectral efficiency (η ) as a function 
of SNR levels. The proposed FL-based approach 
dynamically optimizes beam selection, resulting in a higher 
spectral efficiency: 

 
 (12) 

where W  is the bandwidth. 

Key Observations: 

• The FL-based approach achieves 24% higher 
spectral efficiency at low SNRs. 

Performance improves as FL model convergence 
stabilizes. 
 
 

 

Figure 1. Beamforming Gain vs. User Density 

 

Figure 2. Spectral Efficiency vs. SNR 

4.3 Federated Learning Convergence 
Analysis 

4.3.1 FL Model Loss Convergence 
To analyze model efficiency, Figure 3 presents the loss 
function convergence over federated learning rounds. The 
loss function follows: 

 
 (13) 

Key Observations: 

• The FL-based model achieves stable convergence 
within 50 rounds. 

• Loss reduces by 32% faster than centralized 
learning. 

4.3.2 Accuracy Improvement vs. Communication 
Rounds 
Figure 4 compares the accuracy improvement over FL 
communication rounds. 

Key Observations: 

• Federated learning improves accuracy faster 
while preserving privacy. 

• Performance reaches 99% accuracy at 150 rounds. 

4.4 Security Resilience Analysis 

4.4.1 Adversarial Robustness in Beamforming 
To evaluate security, Figure 5 compares beamforming 
accuracy under adversarial attacks (FGSM). The attack 
modifies beam inputs by: 
 
 (14) 

Key Observations: 

2
1

Beamforming Gain log (1 SINR )
N

n
n=

= +∑

2

1

log (1 SINR )N
n

n W
η

=

+
=∑

21( ) ( ( ))
| | i i

i
L y f x

D θθ = −∑

sign( )xx x L′ = + ⋅ ∇ò
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• FL-based beamforming withstands attacks with 
only 9% accuracy drop. 

• Non-robust models suffer up to 47% accuracy 
degradation. 

4.5 Computational Performance Evaluation 

4.5.1 Training Time vs. Number of BSs 
Figure 6 analyzes training time per communication round 
vs. number of BSs. 

Key Observations: 

• FL scales efficiently, maintaining stable training 
time. 

• Centralized learning suffers from increasing 
latency. 

4.6 Summary of Results 

The proposed FL-based AI-driven beamforming 
framework demonstrates: 

• 18% improvement in beamforming gain vs. 
traditional methods. 

• 24% increase in spectral efficiency, especially in 
low-SNR environments. 

• 32% faster model convergence, enabling real-
time deployment. 

• 9% accuracy drop under adversarial attacks, 
compared to 47% drop in non-robust models. 

• Stable FL training time, ensuring scalability. 
These results highlight the superiority of federated learning 
for secure, adaptive 6G beamforming 

Practical Implementation Scenarios: 

Beyond controlled simulations, the proposed AI-driven 
beamforming model can be implemented in various real-
world 6G deployment scenarios, offering improved 
security, adaptability, and efficiency. 

• Smart Cities & IoT Networks: AI-driven 
beamforming enhances THz-based IoT networks, 
ensuring fast and reliable data exchange for smart 
grids, traffic control, and environmental 
monitoring. By dynamically adjusting beams, it 
prevents network congestion in dense urban areas 
and optimizes communication for autonomous 
devices. FL ensures secure, privacy-preserving AI 
model training, reducing the risk of data leaks. 
This enables intelligent urban management, 
improving public services and energy efficiency. 

• Autonomous Vehicles (V2X Communication): 
FL-based beam selection improves V2X 

communication, ensuring low-latency, high-
reliability connectivity for self-driving cars. AI-
driven beamforming dynamically adapts to 
vehicle speed, direction, and interference, 
maintaining stable links between vehicles, 
infrastructure, and pedestrians. This enhances 
collision avoidance, real-time traffic updates, and 
emergency response systems, reducing road 
accidents while preserving data privacy. 

• Industrial Automation & Smart Factories: Secure 
and adaptive beamforming supports real-time 
machine communication in smart factories, 
optimizing wireless connectivity for robotic 
systems and automated production lines. THz-
based AI communication reduces latency in 
industrial control loops, improving efficiency and 
precision. FL enables secure collaboration 
between multiple factories, enhancing predictive 
maintenance and fault detection while keeping 
sensitive operational data private. 

• Healthcare & Remote Surgery: THz-enabled 
ultra-low-latency communication enables real-
time robotic-assisted surgery and secure AI-
driven diagnostics. AI-based beamforming 
optimizes high-speed medical data transfer, 
ensuring seamless remote consultations and 
surgical procedures. FL protects sensitive patient 
information by enabling local AI training within 
hospitals, preventing data exposure. This 
enhances global healthcare accessibility, making 
remote surgery and AI-assisted diagnostics more 
reliable and secure. 

 

 

Figure 3. FL Model Loss Convergence over Rounds 
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Figure 4. Model Accuracy vs. Communication 
Rounds 

 

Figure 5. Adversarial Attack Impact on Beamforming 
Accuracy 

 

 

Figure 6. Training Time vs. Number of BSs 

 

 
5. Discussion 

This section provides a comprehensive discussion of the 
experimental findings, highlights the implications of the 
proposed federated learning (FL)-based AI-driven 
beamforming model, and outlines potential future research 
directions to further enhance the security, efficiency, and 
adaptability of 6G THz communication systems. 

5.1 Discussion of Key Findings 

The experimental results presented in Section 4 validate the 
effectiveness and superiority of the proposed FL-based AI-
driven beamforming framework in comparison to 
traditional and centralized approaches. The key 
observations from the results are summarized below: 

5.1.1 Enhanced Beamforming Gain and Spectral 
Efficiency 
The proposed FL-based AI-driven beamforming model 
demonstrated a significant improvement in beamforming 
gain compared to traditional zero-forcing (ZF) and 
maximum ratio transmission (MRT) techniques. 

• Beamforming Gain: The FL-based model 
exhibited an 18% improvement in gain, especially 
in dense-user scenarios (Figure 1). 

• Spectral Efficiency: The proposed framework 
achieved a 24% increase in spectral efficiency, 
particularly in low-SNR conditions (Figure 2). 

These improvements can be attributed to real-time adaptive 
beam selection using deep reinforcement learning (DRL), 
allowing dynamic adjustments based on network 
conditions. 

5.1.2 Federated Learning Convergence and 
Efficiency 
One of the major challenges in FL-based models is 
convergence speed and communication overhead. 
However, our approach demonstrated: 

• Stable loss convergence within 50 rounds (Figure 
3). 

• Faster accuracy improvement compared to 
centralized AI, achieving 99% accuracy at 150 
rounds (Figure 4). 

This shows that FL can achieve high-performance AI 
training while preserving privacy by avoiding raw data 
transmission. 

5.1.3 Robustness Against Adversarial Attacks 
Security evaluations revealed that AI-driven beamforming 
models are highly vulnerable to adversarial attacks. 
However, with the integration of adversarial defense 
mechanisms, our FL-based model: 
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• Maintained 91% beamforming accuracy under 
attack scenarios, whereas traditional models 
dropped to 53% (Figure 5). 

• Showed resilience against FGSM-based 
adversarial perturbations, demonstrating 9% 
degradation instead of 47% in non-robust models. 

This highlights the critical importance of integrating 
adversarial robustness into AI-based 6G networks. 

5.1.4 Scalability and Training Time 
An essential consideration for real-world deployment is the 
computational efficiency of FL-based models. From the 
results: 

• FL-based AI models maintained stable training 
time across an increasing number of base stations 
(BSs) (Figure 6). 

• Centralized AI suffered from increasing latency, 
making it less suitable for large-scale 6G 
networks. 

These findings indicate that FL can efficiently scale with 
growing network size without incurring excessive 
computational overhead. 

5.2 Implications of the Proposed Approach 

The proposed FL-based AI-driven beamforming model has 
profound implications for the design and deployment of 
future 6G wireless networks. 

Privacy-Preserving AI for 6G 

• The FL framework eliminates the need for 
centralized data aggregation, significantly 
reducing privacy risks. 

• This is crucial for user-sensitive applications such 
as smart healthcare, autonomous driving, and 
industrial IoT. 

Security-Enhanced Beamforming 

• The integration of adversarial defense 
mechanisms enhances the trustworthiness of AI-
based communication networks. 

• This ensures reliable and attack-resilient 6G 
connectivity, especially for mission-critical 
applications (e.g., defense, finance). 

Energy-Efficient Distributed Learning 

• FL reduces the reliance on high-power cloud 
computing, making it more energy-efficient. 

• This aligns with global efforts toward green AI 
and sustainable communication. 

Scalability for Ultra-Dense Networks 

• The ability to efficiently train AI models across 
multiple distributed base stations makes the 
approach highly scalable. 

• This is essential for ultra-dense 6G networks that 
will serve billions of connected devices. 

5.3 Limitations and Challenges 

While the proposed FL-based AI-driven beamforming 
model demonstrated strong advantages, there are still some 
challenges that must be addressed: 

Communication Overhead in FL 

• While FL reduces data-sharing needs, the 
exchange of model updates still introduces some 
communication overhead. 

• Future work should explore gradient compression 
techniques to reduce bandwidth consumption. 

Adversarial Defenses Can Impact Model Accuracy 

• Defensive techniques such as adversarial training 
and differential privacy improve security but may 
slightly degrade AI model accuracy. 

• Future work should focus on optimizing 
robustness-accuracy trade-offs. 

Limited Experimental Validation on Real-World 
Hardware 

• The current evaluation was conducted in a 
simulated THz 6G environment. While 
simulations provide valuable insights into system 
performance, real-world testing is crucial for 
validating the practical feasibility of the proposed 
framework. Future efforts should focus on 
engaging with 6G research consortia, such as the 
Next G Alliance and ITU-T Focus Group on 6G, 
and collaborating with industry leaders 
developing THz-based communication 
technologies. Conducting large-scale trials on 6G 
testbeds, such as those hosted by telecom 
companies or academic research centers, will 
offer deeper validation under real-world 
conditions. 

Future implementations should test the framework on real 
6G testbeds with software-defined radios (SDRs). 

6. Conclusion 

The rapid evolution of 6G wireless networks has 
introduced new challenges in beamforming, security, and 
scalability, particularly in THz communication systems. 
This paper proposed a federated learning (FL)-based AI-
driven beamforming framework, addressing critical issues 
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related to privacy, security, and adaptability in ultra-dense 
6G environments. 

Through extensive simulations and evaluations, the 
proposed framework demonstrated significant 
improvements in beamforming performance, spectral 
efficiency, model robustness, and adversarial resilience. 
This final section summarizes the key contributions, 
highlights the impact of our findings, and outlines future 
research opportunities. 

6.1 Summary of Contributions 

This study introduced a novel federated learning-based AI-
driven beamforming model tailored for THz-enabled 6G 
networks. The key contributions of this work are 
summarized as follows: 

Federated Learning for Secure Beamforming 

• Implemented FL-based AI training to eliminate 
centralized data dependencies, enhancing privacy and 
security in THz beamforming. 

Enhanced Beamforming Gain and Spectral Efficiency 

• The FL-based AI beamforming model achieved 18% 
higher beamforming gain and 24% better spectral 
efficiency compared to conventional methods. 

Adversarially Robust AI Beamforming 

• Integrated adversarial defense mechanisms, reducing 
accuracy degradation from 47% to 9% under attack 
scenarios. 

Optimized Model Convergence and Scalability 

• Achieved faster model convergence (50 rounds) and 
32% reduced training overhead, ensuring real-time 
feasibility in 6G networks. 

These contributions establish FL-based AI-driven 
beamforming as a scalable, secure, and adaptive approach 
for future wireless communication systems. 

6.2 Limitations of This Study 

Despite the promising results, there are some limitations 
that require further research: 

Communication Overhead in FL 

• The exchange of model updates in FL still incurs some 
communication overhead. 

• Future research should explore gradient compression 
and optimized FL aggregation techniques. 

Limited Hardware Validation 

• This study was conducted in a simulated environment; 
real-world implementation on 6G testbeds and 
software-defined radios (SDRs) is required for 
validation. 

Computational Complexity of Adversarial Defenses 

• While security mechanisms improved robustness, 
adversarial training adds computational costs. 

Optimizing lightweight AI security solutions is an 
important direction for future work. 

6.3 Future Research Directions 

Building upon the findings of this study, several exciting 
research directions can be explored to further improve AI-
driven beamforming in 6G networks: 

Blockchain-Enabled Federated Learning 

• Integrating blockchain for FL model aggregation can 
prevent model tampering and improve security. 

• Smart contracts can validate model updates in real-
time, ensuring trustworthy FL-based training. 

Quantum Machine Learning for 6G Beamforming 

• Leveraging quantum neural networks (QNNs) can 
significantly accelerate beamforming decision-
making. 

• Future studies should explore how quantum AI can 
optimize THz beam alignment and interference 
mitigation. 

Multi-Agent Reinforcement Learning for Distributed 
Beamforming 

• Implementing multi-agent DRL (MARL) can allow 
base stations to collaboratively optimize 
beamforming. 

• This approach could enable self-learning and self-
optimizing 6G networks. 

Real-Time Edge Intelligence for Beamforming 

• Deploying lightweight AI models at 6G edge devices 
can eliminate cloud dependency and reduce inference 
latency. 

Future research should focus on edge-optimized deep 
learning architectures for beamforming. 

6.4 Final Remarks 

This research has demonstrated that federated learning-
based AI-driven beamforming is a promising and scalable 
solution for future 6G wireless networks. By addressing 
key challenges in privacy, security, and adaptability, the 
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proposed approach enables high-performance, resilient, 
and efficient THz communication. 

Future advancements in blockchain integration, quantum 
AI, and edge intelligence will further enhance the potential 
of intelligent wireless systems, paving the way for the next 
generation of autonomous, self-learning 6G networks. 

The findings of this study provide a strong foundation for 
future research and real-world implementations, 
contributing to the global effort toward reliable, secure, and 
intelligent wireless communication. 
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