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Abstract

1. Introduction

The rapid evolution of wireless communication has driven the need for sixth-generation (6G) networks, which aim to deliver
unprecedented data rates, ultra-low latency, and seamless connectivity. Terahertz (THz) frequencies are a cornerstone of 6G
technology due to their vast spectrum availability, but they introduce new challenges such as severe path loss, atmospheric
attenuation, and security vulnerabilities. To overcome these issues, Al-driven beamforming has gained attention as a
powerful solution for optimizing signal transmission and interference mitigation. However, existing Al-based methods
remain susceptible to adversarial attacks, privacy breaches, and suboptimal adaptation in dynamic environments [1].

This paper introduces a federated learning (FL)-based Al-driven beamforming approach tailored for THz-enabled 6G
networks. The framework ensures privacy-preserving intelligence by training beamforming models collaboratively across
distributed edge devices, eliminating the need for centralized data sharing. To enhance security, we integrate adversarial
defense techniques, strengthening resilience against potential attacks that could degrade beamforming accuracy.

Through extensive simulations, we evaluate key performance metrics, including beamforming efficiency, spectral efficiency,
signal-to-noise ratio (SNR), and resistance to adversarial perturbations. Our results indicate that the proposed FL-based
beamforming approach improves adaptability, mitigates security threats, and enhances overall network performance
compared to traditional centralized AI models. This study provides a scalable and secure Al-driven solution for 6G
beamforming, paving the way for reliable and privacy-aware THz communications. Future work will explore real-world
deployment and the integration of quantum-secure encryption techniques to further fortify security in 6G networks.

Keywords: 6G networks; terahertz (THz) communication; Al-driven beamforming; federated learning; adversarial robustness; privacy-
aware Al; deep learning; wireless security; ultra-reliable low-latency communication (URLLC).
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communications, fully autonomous systems, and ultra-
reliable low-latency communications (URLLC) require
even more efficient and intelligent wireless networks [1].
This has led to the conceptualization of sixth-generation
(6G) networks, which aim to push the boundaries of

1.1 Background and Motivation

Wireless communication has witnessed unprecedented
advancements over the past few decades, culminating in
the recent deployment of fifth-generation (5G) networks.
While 5G has significantly improved data rates, reduced
latency, and enabled massive device connectivity,
emerging applications such as holographic
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communication technology by leveraging terahertz (THz)
frequencies (0.1-10 THz). These high-frequency bands
promise wider bandwidth availability and support for ultra-
fast, high-capacity data transmission [2]. However,
operating in the THz spectrum presents new challenges,
such as severe path loss, molecular absorption, beam
misalignment, and increased security risks [3].
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To tackle these challenges, artificial intelligence (Al) has
been increasingly integrated into 6G communication. Al-
driven beamforming algorithms can optimize THz signal
transmission, mitigate interference, and enhance overall
network performance by making real-time intelligent
decisions [4]. Despite these advantages, Al-based models
are vulnerable to adversarial attacks, privacy concerns, and
high computational overhead, which hinder their practical
deployment in real-time 6G environments [5].

A promising solution to these challenges is federated
learning (FL)—a decentralized Al training method that
enables multiple devices to collaboratively train Al models
without sharing raw data. Unlike traditional centralized
machine learning, where data is collected and processed at
a central server, FL keeps data localized, reducing privacy
risks and communication overhead [6]. While FL has
shown promise in wireless networks, its integration into
THz beamforming remains largely unexplored, particularly
in the context of security and adversarial robustness [7].

1.2 Research Problem and Challenges

Although significant progress has been made in Al-driven
beamforming for 6G networks, several challenges still
need to be addressed:

Security Vulnerabilities — Al-driven beamforming
models are susceptible to adversarial attacks, where small
perturbations in input signals can mislead the Al into
making incorrect beam alignment decisions [8]. This poses
a major risk in mission-critical applications such as
autonomous vehicles, industrial automation, and military
communications.

Privacy Concerns in AI Model Training — Conventional
Al-based beamforming approaches require large datasets
to be centralized for training, raising concerns about data
privacy and security breaches [9]. There is a need for a
privacy-preserving Al model that does not require raw data
transfer while still optimizing beamforming efficiency.

Dynamic Adaptability and Efficiency — 6G networks are
highly dynamic, with varying channel conditions due to
user mobility, environmental factors, and atmospheric
conditions [10]. Existing Al-based beamforming solutions
often fail to adapt in real-time, leading to performance
degradation.

Computational Constraints — Deep learning models
require significant processing power, making real-time
beamforming challenging for edge devices with limited
computational resources [11].

To bridge these gaps, this paper introduces a federated
learning-based Al-driven beamforming framework that
improves security, adaptability, and computational
efficiency in THz-enabled 6G networks.

1.3 Contributions of This Work

The primary contributions of this research are as follows:

Federated Learning for Secure Beamforming — We
design a FL-based Al-driven beamforming model that
enables multiple edge devices to collaboratively train an Al
model without sharing raw data, improving privacy and
security in 6G networks.

Adversarial Robustness in Beamforming - The
proposed approach integrates defense mechanisms to
mitigate adversarial attacks, enhancing the reliability and
trustworthiness of Al-driven beamforming.

Adaptive Beamforming for Dynamic Environments —
Our model dynamically adjusts beam patterns based on
real-time network conditions, ensuring efficient signal
alignment in  dynamic and  mobility-intensive
environments.

Comprehensive Performance Evaluation — Extensive
simulations are conducted to analyze the proposed model’s
performance in terms of beamforming gain, spectral
efficiency, signal-to-noise ratio (SNR), computational
overhead, and security resilience.

2. Related Work

This section reviews existing research on Al-driven
beamforming, federated learning for wireless networks,
and security challenges in THz-based 6G communication.
By analyzing prior studies, we highlight gaps that this
paper aims to address.

2.1 Al-Driven Beamforming in 6G Networks

Beamforming is a fundamental technology in next-
generation wireless networks, particularly in millimeter-
wave (mmWave) and terahertz (THz) bands, where precise
directional transmission is required to compensate for high
path loss and atmospheric absorption [1]. Traditional
beamforming techniques, such as maximum ratio
transmission (MRT) and zero-forcing (ZF), rely on
predefined mathematical models that require extensive
channel state information (CSI) estimations. However,
these methods face challenges in rapidly changing wireless
environments with high mobility and dynamic spectrum
conditions [2].

To improve efficiency, researchers have explored artificial
intelligence (Al)-driven approaches for optimizing beam
alignment and mitigating interference. Deep learning (DL)-
based techniques, particularly convolutional neural
networks (CNNs) and reinforcement learning (RL), have
been used to enhance spectral efficiency and reduce
computational complexity [3]. For example, a study in [4]
employed deep reinforcement learning (DRL) to enable
adaptive beam selection, demonstrating improved
performance in mobility-intensive 6G networks. Another
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work [5] explored generative adversarial networks (GANs)
for predicting optimal beamforming patterns, reducing
latency and improving decision accuracy.

Despite these advancements, two critical challenges remain
unresolved:

Vulnerability to Attacks — Al-based beamforming models
can be manipulated by adversarial attacks, leading to
incorrect beam alignment and reduced network efficiency

[6].

Data Privacy Concerns — Training Al models for
beamforming requires large-scale data collection from
multiple users. Centralized learning models introduce
security and privacy risks since data must be transmitted to
cloud servers [7].

To mitigate these issues, researchers are now exploring
federated learning (FL)-based beamforming, which
enables distributed Al model training without exposing raw
user data.

2.2 Federated Learning for Wireless
Networks

Federated learning (FL) is a decentralized Al training
approach that allows devices (such as base stations, user
equipment, and edge nodes) to collaboratively train models
while keeping their data locally stored [8]. Unlike
centralized learning, which requires data aggregation on a
central server, FL only transmits model updates, reducing
privacy risks and communication overhead.

Several studies have explored FL in wireless
communication systems:

e A study in [9] introduced an FL-based power
allocation scheme, improving energy efficiency
while ensuring secure model training.

e Research in [10] proposed an FL-driven resource
allocation framework, demonstrating reduced
computational overhead in edge computing
environments.

e Another work [11] utilized FL for channel
estimation in massive MIMO systems, improving
spectral efficiency and data rate.

While FL has shown significant potential, its application in
6G beamforming remains largely unexplored. One major
limitation is slow model convergence—FL models require
multiple training rounds, which can introduce delays in
real-time beamforming scenarios. Additionally, FL models
are vulnerable to security threats, such as poisoning
attacks, where adversarial participants manipulate model
updates [12].

This study addresses these limitations by integrating FL-
based beamforming with adversarial defense mechanisms
to enhance both security and efficiency.

2.3 Security and Adversarial Threats in Al-
Driven 6G Networks

Security is a major concern in Al-enabled 6G networks,
particularly as machine learning models play a central role
in beamforming, resource allocation, and network
optimization. Several security threats have been identified
in recent studies:

e Adversarial Attacks on AI Models — Attackers
can introduce subtle perturbations into Al-based
decision-making systems, leading to incorrect
beam alignment or degraded network
performance [13].

e Model Poisoning in Federated Learning — In
FL, adversarial participants can inject
manipulated model updates, corrupting the global
model and disrupting network stability [14].

e Privacy Risks in Distributed Learning -
Although FL reduces direct data sharing, research
has shown that model gradients can still leak
private information if not adequately protected
[15].

Several strategies have been proposed to mitigate these
risks:

Adversarial Training — Training Al models with
adversarial samples enhances their resilience against
malicious inputs [16].

Differential Privacy (DP) — Adding controlled noise to
FL model updates prevents privacy leakage but can
reduce model accuracy [17].

Blockchain for Secure FL Aggregation — Blockchain
has been explored as a solution for tamper-proof model
updates, but it introduces additional latency due to its
consensus mechanism [18].

These existing solutions are not fully optimized for real-
time THz-based 6G beamforming, where low-latency and
robust Al models are essential. In this work, we propose an
efficient FL-based beamforming framework that enhances
both security and adaptability in dynamic wireless
environments.

2.4 |dentified Research Gaps
From the literature review, we identify several key gaps
that this research aims to address:

Security Limitations in AI-Based Beamforming — Most
deep learning-based beamforming solutions lack
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protection against adversarial attacks, making them
vulnerable in mission-critical 6G applications.

Limited Research on FL-Based Beamforming in THz
Networks — While FL has been studied in general wireless
networks, its use in THz-based beamforming remains
largely unexplored.

Need for Adversarially Robust FL. Models — Existing FL
models are still susceptible to poisoning attacks,
necessitating more secure aggregation and anomaly
detection techniques.

This paper proposes a federated learning-powered Al
beamforming framework that enhances security, real-time
adaptability, and privacy-preserving Al model training in
THz-enabled 6G networks.

2.5 Summary of Contributions

To bridge the identified research gaps, this study makes the
following contributions:

Federated Learning-Based Beamforming Framework —
A novel decentralized Al-driven beamforming approach
designed specifically for THz-enabled 6G networks.

Enhanced Security Against Adversarial Attacks — The
proposed model integrates defensive Al mechanisms to
protect against data poisoning and adversarial
perturbations.

Dynamic Adaptability for Real-Time Beamforming —
The FL model is optimized for real-time updates, allowing
beamforming decisions to adjust dynamically to network
conditions.

Comprehensive Performance Evaluation - The
proposed framework is tested across multiple 6G
performance metrics, including beamforming gain,
security resilience, and computational efficiency.

3. Methods

This section presents the proposed federated learning (FL)-
based Al-driven beamforming framework for secure and
adaptive terahertz (THz) communication in 6G networks.
We first formulate the beamforming optimization problem,
followed by the federated learning-based training process,
and finally introduce adversarial defense mechanisms to
enhance security and robustness.

3.1 System Model for Al-Driven
Beamforming in 6G

Consider a 6G wireless network where multiple base
stations (BSs) and user equipment (UE) operate in the THz
spectrum. The primary challenge in THz-based
beamforming is the high sensitivity to misalignment and

environmental variations, requiring real-time adaptive Al-
based optimization.

3.1.1 Beamforming Model

In a multi-user multiple-input multiple-output (MU-
MIMO) 6G system, let M denote the number of antenna
elements at the BS and N the number of UEs. The
received signal at the 7 -th user is given by:

H H
yn:hn Wnsn+zhn W/'Sj_'_nn (1)
Jj#n

where:

hn e M represents the THz channel gain
vector for user 7,

w, el M the beamforming weight vector,

S, is the transmitted signal,

n, ~N (0,6°) is the additive Gaussian noise,

H . .
. Zhn WS, represents multi-user interference

Jj#n

(MUI).

The signal-to-interference-plus-noise ratio (SINR) at user
n is given by:

H 2
’ hn Wn |

"X hw o’

Jj#n

SINR

2)

To maximize network efficiency, we optimize the

beamforming weights w, to:

N
max D log,(1+SINR,) [subjectto llw, <P (3)

max
n=1

where P

max

constraint.

is the maximum transmission power

3.1.2 Al-Based Beam Selection

Given the high-dimensional nature of THz beamforming,
deep reinforcement learning (DRL) is employed to
optimize beam alignment. The problem is formulated as a
Markov Decision Process (MDP) where:

e State (S,): The THz channel conditions, previous

beam alignment decisions, and UE mobility
patterns.

e Action (@,): Selection of an optimal beam from

a finite codebook.
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e Reward (7,): Improvement in SINR, spectral

efficiency, and energy efficiency.

Using deep Q-learning, the optimal beam selection is given
by:

O(s,,a)=r,+ y max 0(s,,,,a’) 4)

where ¥ is the discount factor ensuring future rewards are
considered.

3.2 Federated Learning for Secure
Beamforming

3.2.1 Federated Learning Model

Instead of training a centralized Al model, FL enables
multiple base stations to collaboratively learn an optimal
beamforming strategy while preserving user data privacy.
Each BS trains a local Al model on its dataset and transmits
only model updates to a global server for aggregation.

Consider K participating BSs, each with a local dataset
D, . The local beamforming model is trained using a loss

function L(&) based on mean squared error (MSE) loss:

L0 )_ﬁ,;:(y — f(x))? (5)

where f,,(X,) is the Al model’s prediction for input X, .

The global model update follows the FedAvg algorithm,
where each BS computes a local update:

0" =6, —nVL.(6;) 6)

The server aggregates all local models using:

; 20
9t+1 Z 9t+1 (7)

ZLD

This ensures data privacy while enhancing beamforming
adaptation in dynamic environments.

3.2.2 Communication Overhead Reduction

One major limitation of FL in real-time wireless systems is
the high communication overhead. We integrate gradient
compression and quantization to reduce the size of model
updates:

6, = 0(6,) =sign(6,)-min(| 6, |.5) ®)

where ((.) is a quantization function, and O
predefined threshold ensuring numerical stability.

3.2.3 Implementation Guidelines

To support practical deployment, the following
implementation guidelines are provided for researchers and
industry practitioners:

e Federated Learning Configuration: The FL-
based beamforming framework utilizes an
adaptive aggregation mechanism to balance
model accuracy and communication latency. Each
edge device updates its local model using FedAvg
and submits compressed gradient updates to the
server every T communication rounds to
minimize overhead.

e Deployment Considerations: The framework
can be deployed on cloud-based federated
learning platforms (e.g., Google FL, Flower
Framework) or edge-Al hardware such as
NVIDIA Jetson Xavier or Qualcomm AI Edge
processors.

e Codebase and Best Practices: The
implementation can be structured using Python
(TensorFlow/PyTorch) with FL libraries such as
Federated AI Technology Enabler (FATE).
Security mechanisms, including differential
privacy and blockchain-secured aggregation,
should be integrated for real-world deployments.

e Configuration Settings: Optimal
hyperparameters include a learning rate of 0.001,
batch size of 64, and dropout rate of 0.3 for
beamforming model robustness.

3.3 Security Mechanisms: Adversarial
Defense and Privacy Preservation

3.31 Adversarial
Beamforming

To counteract adversarial attacks on Al-driven
beamforming, we integrate adversarial training, where the
model is trained with both normal and adversarially

Training for Robust

perturbed samples. An adversarial example X' s
generated using the Fast Gradient Sign Method (FGSM):

x'=x+0-sign(V_L(f,(x),)) )

where O is the attack strength. The Al model is then trained
on a mix of clean and adversarial samples to improve
robustness.

3.3.2 Differential Privacy for FL Model Updates
To prevent privacy leakage in FL, we incorporate
differential privacy (DP) by adding controlled noise to
gradient updates:

0" =0 + N(0,6) (10)
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2y . . . . .
where N(0,07) is Gaussian noise ensuring privacy-
preserving learning.

3.3.3 Blockchain-Based Secure FL Aggregation
To prevent model poisoning attacks, we use blockchain
technology to validate FL updates before aggregation.
Each BS submits a hash of its local update, which is
verified by a consensus mechanism before updating the
global model. The blockchain ledger ensures tamper-proof
integrity of the learning process.

3.4 Computational Complexity Analysis

3.4.1 Standardized Performance Metrics

To facilitate fair and reproducible comparisons, the
following standardized metrics are proposed for evaluating
Al-driven beamforming solutions in 6G networks:

1. Beamforming Accuracy (0-error in degrees) —
Measures the deviation between the predicted
beam direction and the optimal alignment.

2. Spectral Efficiency (bps/Hz) — Assesses how
efficiently the available bandwidth is utilized.

3. Computational Overhead (GFLOPS) -
Evaluates the Al model's computational resource
demands.

4. Robustness to Adversarial Attacks (%
degradation in SINR) — Measures security
resilience by analyzing accuracy loss under
FGSM-based adversarial perturbations.

5. Latency in FL Model Updates (ms) — Quantifies
communication efficiency in federated learning
rounds.

These metrics enable comprehensive performance
evaluations and allow direct benchmarking against existing
centralized and decentralized Al-based beamforming
approaches.

To evaluate the feasibility of our approach, we analyze the
computational complexity of different components:

Table 1. Computational Complexity Analysis of Key
Components in the Proposed FL-Based Al-Driven
Beamforming Model.

Component Computational

Complexity
Beamforming Weight O( M2 N)
Optimization

Deep Q-Learning for O( KZ)
Beam Selection
FL Local Model Training o(d)

2 EA

Global Model | O(Kd)
Aggregation (FedAvg)
Blockchain  Consensus | O(K log K)
Verification

where:

e 4 isthe number of Al model parameters,

e K is the number of BSs,

e M ,N are the number of antennas and users,
respectively.

4. Results

This section presents the experimental setup, simulation
parameters, performance evaluation, and comparative
analysis of the proposed federated learning (FL)-based Al-
driven beamforming framework for THz-enabled 6G
networks. The primary focus is on analyzing beamforming
efficiency, model convergence, security resilience, and
computational performance.

We begin by describing the experimental setup, followed
by an in-depth analysis of results, visualizations, and
comparisons with baseline methods.

4.1 Experimental Setup

4.1.1 Simulation Environment

The proposed FL-based Al-driven beamforming
framework is implemented and evaluated using MATLAB
and Python (TensorFlow/PyTorch). The simulation
environment models a 6G network operating in the THz
spectrum (0.1-10 THz) with multiple base stations (BSs)
and user equipment (UE).

e Network Topology: Multi-user MIMO system
with distributed BSs and mobile UEs
e THz Spectrum Band: 0.3—1 THz

e Number of BSs (K): 10

e Number of UEs (V ): 100

e Beamforming Model: Al-driven beam selection
using deep reinforcement learning (DRL)

e Federated Learning Aggregation: FedAvg
algorithm

e Adversarial Attacks: FGSM and model poisoning
attacks for security evaluation

e The entire framework is simulated over 200
communication rounds, with varying user
mobility and environmental conditions.

4.2 Beamforming Performance Analysis

4.2.1 Beamforming Gain vs. User Density
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Figure 1 shows the beamforming gain as a function of the

number of users (V). The proposed FL-based Al
beamforming model significantly outperforms traditional
beamforming techniques (MRT, ZF) in dense user
scenarios due to its adaptive learning capability.

N
Beamforming Gain = Z log,(1+SINR ) (11)

n=1
Key Observations:
e Al-driven beamforming improves gain by 18%
over conventional techniques.

e Qains stabilize beyond N=80N = 80N=80 due to
interference constraints.

4.2.2 Spectral Efficiency Analysis
Figure 2 illustrates the spectral efficiency (77 ) as a function

of SNR levels. The proposed FL-based approach
dynamically optimizes beam selection, resulting in a higher
spectral efficiency:

Y, log,(1+SINR
ﬂ:Z g2( W n)
n=1

(12)

where W is the bandwidth.
Key Observations:

e The FL-based approach achieves 24% higher
spectral efficiency at low SNRs.

Performance improves as FL model convergence
stabilizes.

80 1 -e- Traditional Beamforming

—m— FL-Based Al Beamforming

70 4

60

50

Beamforming Gain (dB)

40

T T T T T
20 40 60 80 100
Number of Users

Figure 1. Beamforming Gain vs. User Density

2 EA

—&- Traditional Beamforming
—a— FL-Based Al Beamforming Y

Spectral Efficiency (bps/Hz)

T T T T T
-5 0 5 10 15
SNR (dB)

Figure 2. Spectral Efficiency vs. SNR

4.3 Federated Learning Convergence
Analysis

4.3.1 FL Model Loss Convergence

To analyze model efficiency, Figure 3 presents the loss
function convergence over federated learning rounds. The
loss function follows:

KO = X0 0

Key Observations:

e The FL-based model achieves stable convergence
within 50 rounds.

e Loss reduces by 32% faster than centralized
learning.

4.3.2 Accuracy Improvement vs. Communication
Rounds

Figure 4 compares the accuracy improvement over FL
communication rounds.

Key Observations:

e Federated learning improves accuracy faster
while preserving privacy.
e  Performance reaches 99% accuracy at 150 rounds.

4.4 Security Resilience Analysis

4.4.1 Adversarial Robustness in Beamforming

To evaluate security, Figure 5 compares beamforming
accuracy under adversarial attacks (FGSM). The attack
modifies beam inputs by:

x'=x+0-sign(V L) (14)
Key Observations:
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e FL-based beamforming withstands attacks with communication, ensuring low-latency, high-
only 9% accuracy drop. reliability connectivity for self-driving cars. Al-
e Non-robust models suffer up to 47% accuracy driven beamforming dynamically adapts to
degradation. vehicle speed, direction, and interference,

maintaining stable links between vehicles,
infrastructure, and pedestrians. This enhances
collision avoidance, real-time traffic updates, and
emergency response systems, reducing road

4.5 Computational Performance Evaluation

4.5.1 Training Time vs. Number of BSs ‘ ‘ ‘ ‘
Figure 6 analyzes training time per communication round accidents while preserving data privacy.
vs. number of BSs. e Industrial Automation & Smart Factories: Secure

and adaptive beamforming supports real-time
machine communication in smart factories,
optimizing wireless connectivity for robotic

Key Observations:

e FL scales efficiently, maintaining stable training

time. systems and automated production lines. THz-

e Centralized learning suffers from increasing based Al communication reduces latency in

latency. industrial control loops, improving efficiency and
precision. FL enables secure collaboration
4.6 Summary of Results between multiple factories, enhancing predictive
maintenance and fault detection while keeping

The proposed FL-based Al-driven beamforming sensitive operational data private.
framework demonstrates: e Healthcare & Remote Surgery: THz-enabled
e 18% improvement in beamforming gain vs. ultra-low-latency communication enables real-
traditional methods. time robotic-assisted surgery and secure Al-
e 24% increase in spectral efficiency, especially in driven  diagnostics. ~ Al-based beamforming
low-SNR environments. optimizes high-speed medical data transfer,
e 32% faster model convergence, enabling real- ensuring seamless remote consultations and

surgical procedures. FL protects sensitive patient
information by enabling local Al training within
hospitals, preventing data exposure. This
enhances global healthcare accessibility, making
remote surgery and Al-assisted diagnostics more

time deployment.

e 9% accuracy drop under adversarial attacks,
compared to 47% drop in non-robust models.

e Stable FL training time, ensuring scalability.

These results highlight the superiority of federated learning )
for secure, adaptive 6G beamforming reliable and secure.

Practical Implementation Scenarios:

—a— FlL-Based Al

-
ES
L

. —e@- Centralized Al
!
t
1
1
1

Beyond controlled simulations, the proposed Al-driven
beamforming model can be implemented in various real-
world 6G deployment scenarios, offering improved
security, adaptability, and efficiency.

=
(8]
L

=
o
L

o
)
L

e Smart Cities & IoT Networks: Al-driven
beamforming enhances THz-based IoT networks,
ensuring fast and reliable data exchange for smart
grids, traffic control, and environmental
monitoring. By dynamically adjusting beams, it
prevents network congestion in dense urban areas 0 25 50 75 100 125 150 175 200

Communication Rounds

Model Loss
o o
- =
1 )

o
(N
N

and optimizes communication for autonomous
devices. FL ensures secure, privacy-preserving Al
model training, reducing the risk of data leaks. Figure 3. FL Model Loss Convergence over Rounds
This enables intelligent urban management,
improving public services and energy efficiency.
e Autonomous Vehicles (V2X Communication):
FL-based beam selection improves V2X
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Figure 6. Training Time vs. Number of BSs

5. Discussion

This section provides a comprehensive discussion of the
experimental findings, highlights the implications of the
proposed federated learning (FL)-based Al-driven
beamforming model, and outlines potential future research
directions to further enhance the security, efficiency, and
adaptability of 6G THz communication systems.

5.1 Discussion of Key Findings

The experimental results presented in Section 4 validate the
effectiveness and superiority of the proposed FL-based Al-
driven beamforming framework in comparison to
traditional and centralized approaches. The key
observations from the results are summarized below:

5.1.1 Enhanced Beamforming Gain and Spectral
Efficiency

The proposed FL-based Al-driven beamforming model
demonstrated a significant improvement in beamforming
gain compared to traditional zero-forcing (ZF) and
maximum ratio transmission (MRT) techniques.

e Beamforming Gain: The FL-based model
exhibited an 18% improvement in gain, especially
in dense-user scenarios (Figure 1).

e Spectral Efficiency: The proposed framework
achieved a 24% increase in spectral efficiency,
particularly in low-SNR conditions (Figure 2).

These improvements can be attributed to real-time adaptive
beam selection using deep reinforcement learning (DRL),
allowing dynamic adjustments based on network
conditions.

5.1.2 Federated Learning Convergence and
Efficiency

One of the major challenges in FL-based models is
convergence speed and communication overhead.
However, our approach demonstrated:

e Stable loss convergence within 50 rounds (Figure
3).
e Faster accuracy improvement compared to
centralized Al, achieving 99% accuracy at 150
rounds (Figure 4).
This shows that FL can achieve high-performance Al

training while preserving privacy by avoiding raw data
transmission.

5.1.3 Robustness Against Adversarial Attacks
Security evaluations revealed that Al-driven beamforming
models are highly vulnerable to adversarial attacks.
However, with the integration of adversarial defense
mechanisms, our FL-based model:
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e Maintained 91% beamforming accuracy under
attack scenarios, whereas traditional models
dropped to 53% (Figure 5).

e Showed resilience against FGSM-based
adversarial perturbations, demonstrating 9%
degradation instead of 47% in non-robust models.

This highlights the critical importance of integrating
adversarial robustness into Al-based 6G networks.

5.1.4 Scalability and Training Time

An essential consideration for real-world deployment is the
computational efficiency of FL-based models. From the
results:

e FL-based Al models maintained stable training
time across an increasing number of base stations
(BSs) (Figure 6).

e Centralized Al suffered from increasing latency,
making it less suitable for large-scale 6G
networks.

These findings indicate that FL can efficiently scale with
growing network size without incurring excessive
computational overhead.

5.2 Implications of the Proposed Approach

The proposed FL-based Al-driven beamforming model has
profound implications for the design and deployment of
future 6G wireless networks.

Privacy-Preserving Al for 6G

e The FL framework eliminates the need for
centralized data aggregation, significantly
reducing privacy risks.

e This is crucial for user-sensitive applications such
as smart healthcare, autonomous driving, and
industrial IoT.

Security-Enhanced Beamforming

e The integration of adversarial defense
mechanisms enhances the trustworthiness of Al-
based communication networks.

e This ensures reliable and attack-resilient 6G
connectivity, especially for mission-critical
applications (e.g., defense, finance).

Energy-Efficient Distributed Learning

e FL reduces the reliance on high-power cloud
computing, making it more energy-efficient.

e This aligns with global efforts toward green Al
and sustainable communication.

Scalability for Ultra-Dense Networks
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e The ability to efficiently train Al models across
multiple distributed base stations makes the
approach highly scalable.

e This is essential for ultra-dense 6G networks that
will serve billions of connected devices.

5.3 Limitations and Challenges

While the proposed FL-based Al-driven beamforming
model demonstrated strong advantages, there are still some
challenges that must be addressed:

Communication Overhead in FL

e While FL reduces data-sharing needs, the
exchange of model updates still introduces some
communication overhead.

e  Future work should explore gradient compression
techniques to reduce bandwidth consumption.

Adversarial Defenses Can Impact Model Accuracy

e Defensive techniques such as adversarial training
and differential privacy improve security but may
slightly degrade Al model accuracy.

e Future work should focus
robustness-accuracy trade-offs.

on optimizing

Limited Experimental Validation on Real-World
Hardware

e The current evaluation was conducted in a
simulated THz 6G environment. While
simulations provide valuable insights into system
performance, real-world testing is crucial for
validating the practical feasibility of the proposed
framework. Future efforts should focus on
engaging with 6G research consortia, such as the
Next G Alliance and ITU-T Focus Group on 6G,
and collaborating  with leaders
developing THz-based
technologies. Conducting large-scale trials on 6G
testbeds, such as those hosted by telecom
companies or academic research centers, will
offer deeper
conditions.

Future implementations should test the framework on real
6G testbeds with software-defined radios (SDRs).

industry
communication

validation under real-world

6. Conclusion

The rapid evolution of 6G wireless networks has
introduced new challenges in beamforming, security, and
scalability, particularly in THz communication systems.
This paper proposed a federated learning (FL)-based Al-
driven beamforming framework, addressing critical issues
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related to privacy, security, and adaptability in ultra-dense
6G environments.

Through extensive simulations and evaluations, the
proposed framework demonstrated significant
improvements in beamforming performance, spectral
efficiency, model robustness, and adversarial resilience.
This final section summarizes the key contributions,
highlights the impact of our findings, and outlines future
research opportunities.

6.1 Summary of Contributions

This study introduced a novel federated learning-based Al-
driven beamforming model tailored for THz-enabled 6G
networks. The key contributions of this work are
summarized as follows:

Federated Learning for Secure Beamforming
e Implemented FL-based Al training to eliminate

centralized data dependencies, enhancing privacy and
security in THz beamforming.

Enhanced Beamforming Gain and Spectral Efficiency

e The FL-based Al beamforming model achieved 18%
higher beamforming gain and 24% better spectral
efficiency compared to conventional methods.

Adversarially Robust AI Beamforming

o Integrated adversarial defense mechanisms, reducing
accuracy degradation from 47% to 9% under attack
scenarios.

Optimized Model Convergence and Scalability

e Achieved faster model convergence (50 rounds) and
32% reduced training overhead, ensuring real-time
feasibility in 6G networks.

These contributions establish FL-based Al-driven
beamforming as a scalable, secure, and adaptive approach
for future wireless communication systems.

6.2 Limitations of This Study
Despite the promising results, there are some limitations
that require further research:

Communication Overhead in FL
e The exchange of model updates in FL still incurs some
communication overhead.

e Future research should explore gradient compression
and optimized FL aggregation techniques.

Limited Hardware Validation

¢ This study was conducted in a simulated environment;

real-world implementation on 6G testbeds and
software-defined radios (SDRs) is required for
validation.

Computational Complexity of Adversarial Defenses

e While security mechanisms improved robustness,
adversarial training adds computational costs.
Optimizing lightweight Al security solutions is an
important direction for future work.

6.3 Future Research Directions

Building upon the findings of this study, several exciting
research directions can be explored to further improve Al-
driven beamforming in 6G networks:

Blockchain-Enabled Federated Learning

e Integrating blockchain for FL model aggregation can
prevent model tampering and improve security.

e Smart contracts can validate model updates in real-
time, ensuring trustworthy FL-based training.

Quantum Machine Learning for 6G Beamforming

e Leveraging quantum neural networks (QNNs) can
significantly accelerate beamforming decision-
making.

e Future studies should explore how quantum Al can
optimize THz beam alignment and interference
mitigation.

Multi-Agent Reinforcement Learning for Distributed
Beamforming

e Implementing multi-agent DRL (MARL) can allow
base  stations to  collaboratively  optimize
beamforming.

e This approach could enable self-learning and self-
optimizing 6G networks.

Real-Time Edge Intelligence for Beamforming

e Deploying lightweight Al models at 6G edge devices
can eliminate cloud dependency and reduce inference
latency.

Future research should focus on edge-optimized deep
learning architectures for beamforming.

6.4 Final Remarks

This research has demonstrated that federated learning-
based Al-driven beamforming is a promising and scalable
solution for future 6G wireless networks. By addressing
key challenges in privacy, security, and adaptability, the
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proposed approach enables high-performance, resilient,
and efficient THz communication.

Future advancements in blockchain integration, quantum
Al, and edge intelligence will further enhance the potential
of intelligent wireless systems, paving the way for the next
generation of autonomous, self-learning 6G networks.

The findings of this study provide a strong foundation for
future research and real-world implementations,
contributing to the global effort toward reliable, secure, and
intelligent wireless communication.
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