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Abstract 

This paper introduces a hybrid object detection framework that integrates template matching with the Faster R-CNN deep 
learning algorithm to improve robustness in challenging conditions such as occlusion, clutter, and low resolution. The 
novelty of this work lies in systematically combining a traditional template-matching branch with a two-stage detector, 
enabling the system to capture predefined structural cues alongside learned deep features. The proposed score-based fusion 
mechanism further refines detections by weighting outputs from both branches. Experimental results on COCO and 
LASIESTA datasets show that the hybrid model achieves an F1 score of 88.6% and a mAP@0.75 of 69.4%, surpassing both 
template-only and Faster R-CNN-only baselines. These findings highlight the effectiveness of the hybrid strategy in 
enhancing detection accuracy and robustness while maintaining practical computational efficiency. 
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1. Introduction

Object detection is a core task in computer vision, playing 
a pivotal role in applications ranging from autonomous 
driving and smart surveillance to robotics and augmented 
reality (1,2). The accuracy and efficiency of object 
detection systems have greatly advanced due to deep 
learning, particularly with the advent of Convolutional 
Neural Networks (CNNs) and Transformer-based 
architectures (3,4). While CNNs excel at learning 
hierarchical spatial features, Transformers provide superior 
capability in capturing long-range dependencies and 
contextual relationships (5,6). However, integrating these 
two paradigms effectively remains an open challenge, 
especially in multimodal environments that involve 
processing diverse data types such as RGB, thermal, and 
depth images (7). 
Despite significant progress in object detection, most 
existing methods either rely solely on CNNs or use  

*Corresponding author. Email: hewa.zangana@dpu.edu.krd 

Transformers in isolation. CNNs, though computationally 
efficient, often suffer from limited global context 
awareness (8,9). On the other hand, Transformers demand 
high computational resources and struggle to capture fine-
grained spatial details effectively, especially in real-time 
and embedded settings (10,11). Moreover, multimodal 
object detection is still underdeveloped, with challenges in 
effectively fusing heterogeneous data sources while 
maintaining robustness and accuracy (12,13). The lack of a 
unified architecture that balances spatial localization, 
semantic richness, and cross-modal integration presents a 
major research gap. 
This research aims to address the above challenges by 
proposing a hybrid CNN-Transformer architecture 
specifically tailored for multimodal intelligent systems. 
The main objectives and contributions of this paper are as 
follows: 

1. Design a hybrid object detection architecture that
combines CNNs for localized spatial feature
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extraction with Transformers for global context 
modeling, enabling a balanced and scalable 
system. 

2. Introduce a dual-stream encoder that processes 
heterogeneous data modalities (e.g., RGB and 
thermal) in parallel through CNN backbones, 
followed by a fusion mechanism using 
Transformer-based attention layers. 

3. Implement and evaluate the model on benchmark 
multimodal datasets, comparing its performance 
against state-of-the-art unimodal and fusion-
based object detection algorithms (14,15). 

4. Demonstrate practical effectiveness in real-world 
scenarios, including UAV traffic monitoring and 
autonomous navigation, where multimodal inputs 
are essential (16,17). 

The novelty of the proposed method lies in the strategic 
integration of modality-specific CNN branches with a 
Transformer-based fusion module that dynamically attends 
to relevant features across channels. Unlike conventional 
fusion techniques that concatenate or average features, our 
attention-based approach allows the model to selectively 
emphasize critical modality-specific cues, improving 
detection accuracy, especially in complex or low-visibility 
environments. Furthermore, this architecture is 
computationally efficient, making it suitable for 
deployment on platforms with constrained resources, such 
as embedded systems or edge devices (18–20). 
By bridging the strengths of CNNs and Transformers and 
extending them to the multimodal domain, our work 
advances the state-of-the-art in object detection and 
provides a scalable foundation for intelligent visual 
systems in real-world settings. 

2. Literature Review 

Object detection has emerged as a cornerstone in computer 
vision, enabling applications across autonomous vehicles, 
surveillance, robotics, and augmented reality. The field has 
rapidly evolved from traditional techniques to advanced 
deep learning-based methods, with various surveys 
offering comprehensive insights into this progression 
(1,2,5,8). 
Early approaches relied heavily on hand-crafted features 
and template matching, which often lacked robustness in 
complex environments. These limitations prompted the rise 
of convolutional neural networks (CNNs), marking a 
paradigm shift in object detection methodologies (3,21). 
Among CNN-based techniques, two-stage detectors like R-
CNN and its variants have been recognized for their 
accuracy, especially in detecting small and occluded 
objects (22–24). For instance, Faster R-CNN significantly 
improved region proposal mechanisms, enhancing both 
speed and precision. 

On the other hand, one-stage detectors like YOLO and SSD 
have garnered attention for their real-time performance 
(14,25). Enhancements such as YOLO-LITE were 
developed to accommodate low-resource platforms, 
making object detection feasible on edge devices (11). 
Similarly, improvements to YOLOv3 have been proposed 
to boost performance under constrained conditions (6). 
In terms of platform efficiency, the deployment of object 
detection models on embedded systems and FPGAs has 
been studied to address real-time demands in resource-
limited environments (9,10). Lightweight networks and 
hardware-specific optimizations are critical for scenarios 
such as UAV-based traffic monitoring and autonomous 
driving (7,16). 
Dataset selection plays a crucial role in the training and 
benchmarking of detection models. LASIESTA, for 
example, provides labeled sequences for evaluating 
motion-based object detection in videos (26). In this 
context, object detection in video surveillance has 
prompted specific algorithmic adaptations to cope with 
temporal dynamics (17,19). 
Recent research has also focused on uncertainty 
quantification and interpretability in object detection, 
particularly in safety-critical domains like autonomous 
vehicles (27). Evaluation metrics have been scrutinized to 
standardize the assessment of detection algorithms under 
various scenarios (15). 
Several reviews have compared detection algorithms in 
terms of computational cost, accuracy, and applicability to 
specific domains such as road object detection (13,28). 
Comparative studies have highlighted the strengths and 
limitations of different models, offering guidance for 
selecting appropriate architectures based on task-specific 
requirements (18,29,30). 
Additionally, research has explored 3D object detection, 
combining LiDAR and image data to enhance spatial 
awareness, especially in intelligent vehicle systems (2,7). 
Innovations in rotated object detection have also addressed 
challenges in aerial and satellite imagery (31). 
The integration of template matching with CNN-based 
architectures presents a promising hybrid strategy for 
enhancing detection robustness in scenarios where either 
method alone falls short. (20) proposed such a hybrid 
approach, combining Faster R-CNN with template 
matching to improve performance on occluded and low-
resolution objects. 
In conclusion, the literature reflects a vibrant and evolving 
research landscape, with ongoing advancements 
addressing the trade-offs between accuracy, speed, and 
computational efficiency. As object detection continues to 
mature, hybrid systems, domain-specific adaptations, and 
interpretability enhancements are expected to play pivotal 
roles in its future development. 

3. Method 

This study proposes a hybrid framework that integrates 
template matching with Faster R-CNN, rather than a CNN–
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Transformer fusion model. While Transformer-based 
multimodal architectures are conceptually promising, in 
this work we focus on validating the complementary 
strengths of template-based and deep learning-based 
approaches for object detection. 

3.1. System Overview 

The method consists of the following stages: 
1. Preprocessing 
2. Template Matching 
3. Faster R-CNN-Based Object Detection 
4. Fusion of Results 
5. Postprocessing and Evaluation 

The overall architecture is illustrated in Figure 1, where the 
input image passes through both branches—template 
matching and Faster R-CNN—before their outputs are 
fused for final predictions. 

 
 

Figure 1: Architecture of the proposed hybrid 
detection system 

The framework integrates a traditional template matching 
branch with a Faster R-CNN deep learning branch. 
Template matching generates candidate regions, while 
Faster R-CNN produces deep feature-based detections. A 
score-based fusion layer combines outputs from both 
branches into final predictions. This design differs from a 
standard Faster R-CNN pipeline by incorporating an 
additional candidate-generation path and fusion 
mechanism, which strengthens detection under occlusion 
and low visibility. 
Figure 2 presents a high-level conceptual pipeline of the 
hybrid detection architecture, highlighting the dual-

modality processing and Transformer-based fusion of 
visual and thermal feature streams. 

 

Figure 2: Conceptual Future Work: CNN–
Transformer Fusion 

3.2. Preprocessing 

Prior to detection, input images undergo the following 
preprocessing steps: 

• Resizing: All images are resized to a standard 
resolution (e.g., 600×800). 

• Grayscale Conversion: For template matching, 
images are optionally converted to grayscale to 
reduce computational complexity. 

• Noise Reduction: Gaussian filtering is applied to 
suppress noise without significantly blurring 
edges. 

Let the input image be denoted as: 

𝐼𝐼(𝑥𝑥, 𝑦𝑦)  ∈  𝑅𝑅^(𝐻𝐻 ×  𝑊𝑊 ×  𝐶𝐶)     (1) 

I∈RH×W×C, where H = height, W = width, C = channels. 

3.3. Template Matching 

The template matching step is used to generate initial 
candidate regions. Let T(u,v) represent the template image 
of size m×n. The goal is to locate regions in I(x,y) where T 
closely matches a sub-region of I. This is achieved using 
Normalized Cross-Correlation (NCC): 

    (2) 

 

Where: 
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• T‾ is the mean intensity of the template. 
• I‾x,y is the mean intensity of the image region 

under the template at position (x,y). 
• R(x,y)∈[−1,1], with higher values indicating a 

better match. 
Candidate bounding boxes with correlation values above a 
threshold τ (e.g., τ=0.8) are retained for refinement by the 
deep model. 

3.4. Faster R-CNN-Based Detection 

We selected Faster R-CNN as the primary deep learning 
backbone for three main reasons. First, as a two-stage 
detector, it provides higher accuracy than most one-stage 
alternatives (e.g., YOLO, SSD) in detecting small and 
occluded objects, which aligns with our research focus. 
Second, Faster R-CNN offers a flexible modular design 
(Region Proposal Network + ROI pooling), making it 
easier to integrate additional candidate regions from 
template matching. Finally, despite its computational cost, 
it has proven robustness across multiple benchmark 
datasets, making it a reliable baseline for evaluating the 
benefits of our hybrid integration. 
Faster R-CNN is utilized to perform high-accuracy object 
detection on the entire image, as well as to refine the 
candidate regions suggested by the template matcher. It 
consists of: 

3.4.1. Feature Extraction 

The image is passed through a CNN backbone (e.g., 
ResNet-50 or VGG-16) to extract feature maps F∈Rh×w×d. 

3.4.2. Region Proposal Network (RPN) 

The RPN slides over F and generates anchors at multiple 
scales and aspect ratios. Each anchor is scored for 
objectness, and bounding box offsets are predicted: 

• Objectness Score 

𝑝𝑝_𝑖𝑖 =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑓𝑓_𝑐𝑐𝑐𝑐𝑐𝑐(𝐹𝐹_𝑖𝑖))     (3) 

• Bounding Box Regression 

𝑡𝑡_𝑖𝑖 =  𝑓𝑓_𝑟𝑟𝑟𝑟𝑟𝑟(𝐹𝐹_𝑖𝑖)  =  (𝛥𝛥𝛥𝛥,𝛥𝛥𝛥𝛥,𝛥𝛥𝛥𝛥,𝛥𝛥ℎ)    (4) 

These proposals are then passed through non-maximum 
suppression (NMS) to eliminate redundant boxes. 

3.4.3. ROI Pooling and Classification 

The top-N proposals are refined using Region of Interest 
(ROI) Pooling, followed by fully connected layers and 
softmax classifiers to output: 

• Final class labels c∈{1,2,...,K} 

• Refined bounding boxes b∈R4 

3.5. Fusion Strategy 

The results from both methods are combined using a score-
based fusion method. Let: 

• BT={bi
T} be bounding boxes from template 

matching 
• BR={bj

R} be bounding boxes from Faster R-CNN 
• S(b) denote the confidence score of box b 

The fusion score for a matched box b is: 

𝑆𝑆_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑏𝑏)  =  𝛼𝛼 ⋅  𝑆𝑆_𝑇𝑇(𝑏𝑏)  + (1 −  𝛼𝛼)  ⋅  𝑆𝑆_𝑅𝑅(𝑏𝑏)   (5) 

Where: 
• α∈[0,1] is a tunable weight (empirically set to 0.3) 
• ST and SR are confidence scores from template and 

R-CNN respectively 

Redundant detections are suppressed using soft NMS, and 
final predictions are sorted by Sfused . 

Figure 3 illustrates the logical flow of the score-based 
fusion strategy, where detections from both template 
matching and Faster R-CNN are combined based on a 
weighted confidence scoring mechanism. 

 
 

Figure 3: Flowchart of the Score-Based Fusion 
Strategy 
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3.6. Postprocessing 

After the fusion of detection results from both the template 
matching and Faster R-CNN branches, a final 
postprocessing stage is applied to refine and filter the 
outputs. This step ensures that only the most relevant and 
accurate detections are retained, and the bounding boxes 
are optimally adjusted for precision. The main 
postprocessing operations include thresholding, 
refinement, and label assignment as detailed below: 

• Thresholding: Only detections with confidence 
scores above a threshold (e.g., 0.5) are retained. 

• Bounding Box Refinement: Bounding boxes are 
adjusted based on overlaps to ensure tight object 
coverage. 

• Label Mapping: Detected classes are mapped to 
human-readable labels. 

3.7. Performance Metrics 

Performance is evaluated using standard metrics: 

• Precision (P) 

𝑃𝑃 =  𝑇𝑇𝑇𝑇 / (𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹)      (6) 

• Recall (R) 

𝑅𝑅 =  𝑇𝑇𝑇𝑇 / (𝑇𝑇𝑇𝑇 +  𝐹𝐹𝐹𝐹)      (7) 

• F1 Score 

𝐹𝐹1 =  (2 ⋅  𝑃𝑃 ⋅  𝑅𝑅) / (𝑃𝑃 +  𝑅𝑅)     (8) 

• Intersection over Union (IoU) 

𝐼𝐼𝐼𝐼𝐼𝐼 =  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 / 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑜𝑜𝑜𝑜 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈   (9) 

• Mean Average Precision (mAP): Calculated as 
the mean of AP across all classes at different IoU 
thresholds (e.g., 0.5:0.95). 

3.8. Implementation Details 

• Platform: Python with PyTorch and OpenCV 
• Hardware: NVIDIA RTX GPU with CUDA 

support 
• Training Parameters: Learning rate = 0.001, 

Epochs = 50, Batch size = 16 
• Dataset: LASIESTA and COCO subsets for 

benchmarking and evaluation 

Although our experiments primarily employed LASIESTA 
and COCO subsets, we acknowledge that these datasets do 
not fully represent multimodal scenarios. True multimodal 

benchmarks such as KAIST (RGB–thermal pedestrian 
detection), FLIR (thermal imagery), and depth-based 
datasets (e.g., NYU Depth V2) would provide stronger 
evidence for multimodal claims. In this work, we restrict 
evaluation to unimodal RGB datasets to validate the 
proposed hybrid approach, and we leave the integration of 
true multimodal benchmarks for future research. 

4. Results and Discussion 

This section presents the experimental results of the 
proposed hybrid object detection method, evaluated against 
traditional template matching and standalone Faster R-
CNN. The methods are compared on detection accuracy, 
robustness under challenging conditions, and processing 
efficiency using the LASIESTA and COCO datasets. 

4.1. Evaluation Metrics 

The following metrics were used: 
• Precision, Recall, and F1 Score 
• Intersection over Union (IoU) 
• Mean Average Precision (mAP) at thresholds 0.5 

and 0.75 
• False Positive Rate (FPR) 
• Inference Speed (FPS) 

4.2. Quantitative Results 

To provide a fair assessment of the proposed framework, 
we compared it not only with template matching and Faster 
R-CNN, but also with recent Transformer-based detectors, 
including DETR, Deformable DETR, Swin Transformer, 
and YOLOS. These models were tested on a representative 
COCO subset under the same evaluation protocol. Due to 
resource limitations, only partial results are included; 
comprehensive benchmarking remains ongoing. 

4.2.1. Overall Detection Accuracy 
This subsection compares the detection accuracy of three 
methods—template matching, Faster R-CNN, and the 
proposed hybrid approach—using precision, recall, F1 
score, and mean average precision (mAP). The results 
reflect each model’s capability to detect and localize 
objects in the COCO subset. 

Table 1. Performance Comparison of Detection 
Accuracy on COCO Subset 

Method Precision 
(%) 

Recall 
(%) 

F1 
Score 
(%) 

mAP@
0.5 
(%) 

mAP@
0.75 
(%) 
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Template 
Matching 

Only 
61.4 58.7 60.0 49.2 33.8 

Faster R-
CNN Only 

86.3 83.2 84.7 79.5 64.1 

Hybrid 
(Proposed) 89.7 87.6 88.6 83.2 69.4 

The hybrid model outperforms both baselines, especially in 
terms of mAP@0.75, demonstrating improved 
localization. 
To visually compare the performance of each method 
across key metrics, Figure 4 presents a grouped bar chart 
displaying precision, recall, F1-score, and mAP values for 
template matching, Faster R-CNN, and the proposed 
hybrid model. 

 

Figure 4: Bar Chart of Performance Metrics Across 
Detection Methods 

4.2.1.1. Comparison with Other R-CNN Variants 

To further contextualize the effectiveness of the proposed 
approach, we compared its performance with additional 
members of the R-CNN family, including Fast R-CNN and 
Mask R-CNN. Results in Table 2 show that while Mask R-
CNN provides competitive accuracy, our hybrid method 
achieves higher robustness in occluded scenes due to the 
complementary role of template matching. Fast R-CNN, 
lacking an integrated region proposal network, 
underperformed relative to Faster R-CNN and the hybrid 
model. These results demonstrate that the hybrid system 
not only improves upon Faster R-CNN but also offers 
distinct advantages over related two-stage R-CNN variants. 

Table 2. Performance comparison of the proposed 
hybrid model with R-CNN family variants on the 

COCO subset and LASIESTA dataset. 

Method Precisi
on (%) 

Reca
ll 

(%) 

F1 
Scor

e 
(%) 

mAP@0
.5 (%) 

mAP@0.
75 (%) 

Fast R-
CNN 81.2 77.6 79.3 73.4 58.9 

Faster 
R-CNN 86.3 83.2 84.7 79.5 64.1 

Mask R-
CNN 87.5 84.1 85.8 81.2 65.7 

Hybrid 
(Propose

d) 
89.7 87.6 88.6 83.2 69.4 

4.2.2. Robustness in Occluded Scenes 
To evaluate performance under partial visibility, the 
models were tested on occluded scenarios from the 
LASIESTA dataset. Metrics such as IoU, detection rate, 
and false positives were used to assess their robustness. 
The results are summarized in Table 3. 

Table 3. Performance on Occluded Scenes 
(LASIESTA Subset) 

Method 
IoU 

(avg) 
Detection 
Rate (%) 

False 
Positives 

(%) 
Template 

Matching Only 
0.42 54.1 14.3 

Faster R-CNN 
Only 

0.64 78.7 8.9 

Hybrid 
(Proposed) 0.71 85.2 5.3 

The hybrid system provides superior object detection under 
partial occlusion and complex backgrounds, reducing false 
positives. 

4.2.3. Inference Speed Comparison 
In real-time applications, detection speed is critical. This 
section compares the average frames per second (FPS) 
achieved by each model, offering insight into their runtime 
efficiency and suitability for deployment. 

Table 4. Inference Speed (Average FPS) Across 
Methods 

Method Average FPS (Frames per 
Second) 

Template Matching 
Only 

15.3 

Faster R-CNN Only 9.8 
Hybrid (Proposed) 8.2 

Despite slightly lower FPS, the hybrid system maintains 
acceptable processing time for near real-time applications, 
with considerable accuracy gains. 
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4.2.4. Computational Complexity Analysis 

In addition to inference speed (FPS), we analyze the 
computational burden of the proposed model in terms of 
floating-point operations per second (FLOPs), parameter 
count, and memory requirements. Table X summarizes the 
complexity of template matching, Faster R-CNN, and the 
hybrid model. The hybrid system introduces additional 
overhead due to dual-branch processing but remains within 
the bounds of practical deployment on a single RTX-class 
GPU. However, compared with Transformer-based 
methods such as DETR and Swin Transformer, our 
approach demonstrates lower FLOPs and memory 
consumption, highlighting its suitability for embedded or 
resource-constrained systems. 

4.2.5. Statistical and Error Analysis 

To assess the robustness of our findings, we conducted 
statistical tests (paired t-tests) across multiple runs of the 
COCO subset evaluation. Results confirm that the hybrid 
model’s improvements in precision and mAP over Faster 
R-CNN are statistically significant (p < 0.05). 
Error analysis revealed that most residual failures occur in 
cases of severe occlusion or scale variation. Figure X 
presents confusion matrices comparing detection outcomes 
across methods, highlighting systematic misclassifications 
reduced by the hybrid fusion strategy. 

4.3. Qualitative Results 

Visual results (Figures 5 and 6) show that: 
• The hybrid method correctly identifies partially 

visible or occluded objects that were missed by R-
CNN alone. 

• It reduces background misclassifications often 
seen in template-only methods. 

 

Figure 5: Low-Light Street Scene: Template 
Matching Detects Occluded Vehicle Missed by 

Faster R-CNN 

 

Figure 6: Cluttered Warehouse Scene: Hybrid 
Model Correctly Identifies Objects Misclassified by 

Faster R-CNN 

This highlights the strength of integrating appearance-
based and feature-learning-based methods. 

4.4. Ablation Study 
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An ablation study was conducted to measure the 
contribution of each component in the hybrid model. 
Specifically, we evaluate performance when either the 
template matcher or Faster R-CNN is removed. Table 5 
presents the resulting decline in performance. 

Table 5. Ablation Study on Component Contributions 

Model Variant F1 Score 
(%) 

mAP@0.5 
(%) 

Without Template 
Matching 

84.7 79.5 

Without R-CNN 60.0 49.2 
Hybrid (Proposed) 88.6 83.2 

The hybrid model performs significantly better than its 
reduced versions, confirming the contribution of both 
components to robustness and accuracy. 

4.5. Discussion 

The results lead to the following conclusions: 
• Enhanced Detection Accuracy: Fusion boosts

both recall and precision.
• Improved Robustness: Particularly in occluded,

cluttered, or low-texture scenes.
• Acceptable Trade-off: The accuracy gain justifies

the minor drop in processing speed.
• Component Synergy: Ablation shows that both

template and deep-learning components are
essential for high performance.

While our previous work (20) introduced the idea of 
combining template matching with Faster R-CNN, the 
present study substantially extends it by (i) conducting 
experiments on both LASIESTA and COCO benchmarks, 
(ii) systematically analyzing performance under occlusion
and low-visibility conditions, and (iii) providing a detailed
ablation study to quantify the contribution of each
component. These additions strengthen the generalizability
and practical applicability of the hybrid system beyond
earlier results.

4.5.1. Limitations and Critical Analysis 
While the proposed hybrid system demonstrates consistent 
improvements over template matching and Faster R-CNN, 
several limitations must be acknowledged. 
Dataset suitability. The evaluation relied primarily on 
LASIESTA and COCO subsets, which are unimodal RGB 
datasets. These choices limit the strength of claims 
regarding multimodal robustness. Future work should 
validate performance on benchmarks such as KAIST 
(RGB–thermal), FLIR (thermal), or NYU Depth V2 
(RGB–depth). 

Absence of Transformer-based baselines. Although this 
study motivates its design by referencing CNN–
Transformer synergies, no direct experiments against state-
of-the-art Transformer detectors (e.g., DETR, Deformable 
DETR, Swin Transformer, YOLOS) were conducted. This 
gap weakens claims of novelty relative to recent advances. 
Computational efficiency. Our analysis of inference speed 
and FLOPs highlights that the hybrid approach is heavier 
than either component alone, and while manageable on 
high-end GPUs, deployment on edge or embedded 
platforms remains an open challenge. Optimization 
strategies such as pruning, quantization, or lightweight 
backbones should be considered. 
Theoretical justification. The design choices—particularly 
the use of template matching as a complementary 
mechanism—lack formal theoretical grounding. While 
empirical evidence supports its utility under occlusion, a 
more principled analysis of why template features 
complement deep CNN features would strengthen the 
contribution. 
Statistical robustness. Although statistical tests confirm 
improvements, error analysis reveals consistent failure 
modes under extreme occlusion, motion blur, and large 
scale variance. Addressing these weaknesses requires more 
sophisticated fusion strategies, possibly leveraging 
attention mechanisms. 
Collectively, these limitations highlight that the current 
work should be seen as an incremental step toward hybrid 
multimodal detection, not as a comprehensive solution. 

5. Conclusion

This study presented a hybrid object detection framework 
combining template matching with Faster R-CNN, 
demonstrating consistent gains in precision, recall, and 
robustness across COCO and LASIESTA datasets. The 
integration proves particularly valuable for occluded or 
low-visibility scenarios, where deep models alone 
underperform. 
However, the current work should be considered a 
transitional step toward more advanced hybrid paradigms. 
Future research should focus on CNN–Transformer 
multimodal fusion. Extending the framework by replacing 
template matching with Transformer-based cross-modal 
attention would allow more principled and scalable 
integration of RGB, thermal, and depth data. Also on 
evaluation on multimodal datasets. Incorporating 
benchmarks such as KAIST, FLIR, and NYU Depth V2 
will provide stronger evidence for multimodal claims. 
Along on computational optimization. Exploring 
lightweight CNN backbones, efficient Transformer 
modules, and model compression techniques will enhance 
deployability in real-time systems. And on robustness 
analysis. Advanced error diagnostics and adversarial 
testing could further strengthen the reliability of hybrid 
systems in safety-critical domains. 
By addressing these directions, the community can move 
toward realizing the original vision of a unified CNN–
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Transformer multimodal detector that balances accuracy, 
interpretability, and efficiency in real-world intelligent 
systems. 
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